首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Homomeric α7 nicotinic acetylcholine receptors are a well-established, pharmacologically distinct subtype. The more recently identified α9 subunit can also form functional homopentamers as well as α9α10 heteropentamers. Current fluorescent probes for α7 nicotinic ACh receptors are derived from α-bungarotoxin (α-BgTx). However, α-BgTx also binds to α9* and α1* receptors which are coexpressed with α7 in multiple tissues. We used an analog of α-conotoxin ArIB to develop a highly selective fluorescent probe for α7 receptors. This fluorescent α-conotoxin, Cy3-ArIB[V11L;V16A], blocked ACh-evoked α7 currents in Xenopus laevis oocytes with an IC50 value of 2.0 nM. Observed rates of blockade were minute-scale with recovery from blockade even slower. Unlike FITC-conjugated α-BgTx, Cy3-ArIB[V11L;V16A] did not block α9α10 or α1β1δε receptors. In competition binding assays, Cy3-ArIB[V11L;V16A] potently displaced [125I]-α-BgTx binding to mouse hippocampal membranes with a K i value of 21 nM. Application of Cy3-ArIB[V11L;V16A] resulted in specific punctate labeling of KXα7R1 cells but not KXα3β2R4, KXα3β4R2, or KXα4β2R2 cells. This labeling could be abolished by pre-treatment with α-cobratoxin. Thus, Cy3-ArIB[V11L;V16A] is a novel and selective fluorescent probe for α7 receptors.  相似文献   

2.
We studied the role of the α-helix present at the N-terminus of nicotinic acetylcholine receptor (nAChR) subunits in the expression of functional channels. Deletion of this motif in α7 subunits abolished expression of nAChRs at the membrane of Xenopus oocytes. The same effect was observed upon substitution by homologous motifs of other ligand-gated receptors. When residues from Gln4 to Tyr15 were individually mutated to proline, receptor expression strongly decreased or was totally abolished. Equivalent substitutions to alanine were less harmful, suggesting that proline-induced break of the α-helix is responsible for the low expression. Steady-state levels of wild-type and mutant subunits were similar but the formation of pentameric receptors was impaired in the latter. In addition, those mutants that reached the membrane showed a slightly increased internalization rate. Expression of α7 nAChRs in neuroblastoma cells confirmed that mutant subunits, although stable, were unable to reach the cell membrane. Analogous mutations in heteromeric nAChRs (α3β4 and α4β2) and 5-HT3A receptors also abolished their expression at the membrane. We conclude that the N-terminal α-helix of nAChRs is an important requirement for receptor assembly and, therefore, for membrane expression.  相似文献   

3.
In complex tissues where multiple subtypes of nicotinic acetylcholine receptors (nAChRs) are expressed, immunohistochemistry has been the most popular tool for investigation of nAChR subunit distribution. However, recent studies with nAChR subunit knockout mice demonstrated that a large panel of antibodies is unsuitable. Thus, we aimed to develop a histochemical method for selective labeling of α7 nAChR with neurotoxins, utilizing α7 nAChR-transfected cells, dorsal root ganglia (DRG) and spinal cord from wild-type and knockout mouse. The specificity of Alexa Fluor 488-conjugated α-bungarotoxin (Alexa-αBgt) was demonstrated in binding to α7-transfected cells inhibited by long-chain α-cobratoxin (CTX), but not short-chain α-neurotoxin II (NTII). In contrast, binding to Torpedo muscle-type nAChRs and to motor end plates in mouse tongue sections was prevented by both CTX and NTII. In tissue sections of DRG, expressing all neuronal nAChR subunits, only CTX precluded Alexa-αBgt labeling of neurons, with no staining for α7 nAChR knockout tissue. It proved that α7 nAChRs are the major αBgt-binding sites in mouse DRG. Corresponding results were obtained for terminals in the spinal cord. Thus, we present a protocol utilizing Alexa-αBgt and non-labeled CTX/NTII that allows specific histochemical detection of α7 nAChR with a spatial resolution at the level of single axon terminals.  相似文献   

4.
Recently, we have shown that the α-helix present at the N-termini of α7 nicotinic acetylcholine receptors plays a crucial role in their biogenesis. Structural data suggest that this helix interacts with the loop linking β-strands β2 and β3 (loop 3). We studied the role of this loop as well as its interaction with the helix in membrane receptor expression. Residues from Asp62 to Val75 in loop 3 were mutated. Mutations of conserved amino acids, such as Asp62, Leu65 and Trp67 abolished membrane receptor expression in Xenopus oocytes. Others mutations, at residues Asn68, Ala69, Ser70, Tyr72, Gly74, and Val 75 were less harmful although still produced significant expression decreases. Steady state levels of wild-type and mutant α7 receptors (L65A, W67A, and Y72A) were similar but the formation of pentameric receptors was impaired in the latter (W67A). Mutation of critical residues in subunits of heteromeric nicotinic acetylcholine receptors (α3β4) also abolished their membrane expression. Complementarity between the helix and loop 3 was evidenced by studying the expression of chimeric α7 receptors in which these domains were substituted by homologous sequences from other subunits. We conclude that loop 3 and its docking to the α-helix is an important requirement for receptor assembly.  相似文献   

5.
Mechanisms that regulate early events in the biogenesis of the α7 nicotinic acetylcholine receptor (α7 AChR) are not well understood. Data presented here show that single amino acid mutations in the cytoplasmic loop of the α7 AChR, between position 335 and 343, abolish or attenuate expression of mature pentameric α7 AChRs in both human embryonic kidney tsA201 (HEK) and neuronal SH-SY5Y cells. Although the number of mature α7 AChRs is increased significantly in the presence of the chaperone protein resistant to inhibitors of cholineesterase-3 in HEK cells, sucrose gradient sedimentation reveals that the vast majority of α7 subunits are aggregated or improperly assembled. Transfection of α7 AChRs in SH-SY5Y cells, which endogenously express the α7 AChR, results in a much larger fraction of subunits assembled into mature AChRs. Thus, efficient assembly of α7 AChRs is influenced by several regions of the large cytoplasmic domain, as well perhaps by other parts of its structure, and requires as yet unknown factors not required by other AChR subtypes.  相似文献   

6.
α-Bungarotoxin Binding in House Fly Heads and Torpedo Electroplax   总被引:2,自引:2,他引:0  
Abstract: House fly heads contain a site that binds α-bungarotoxin with high affinity. It is present at about 23 pmol/g of heads and binds α-bungarotoxin (labeled with [3H]pyridoxamine phosphate) reversibly with a K d of 6 nM. The effects of 48 drugs have been compared on the α-bungarotoxin binding sites of house fly and Torpedo. The pharmacology of the house fly site is similar to that previously reported for neuronal α-bungarotoxin binding sites in both vertebrates and invertebrates and is distinguishable from that of the classic nicotinic neuromuscular acetylcholine receptor, as exemplified by that of Torpedo electroplax. Differences between the house fly site and Torpedo include higher affinities of the Torpedo receptor for decamethonium, hexamethonium, carbamylcholine, and acetyl-β-methylcholine, but lower affinities for nicotine, atropine, and dihydro-β-erythroidine.  相似文献   

7.
8.
ALS and ARD proteins are thought to represent a ligand binding and a structural subunit, respectively, of Drosophila nicotinic acetylcholine receptors (nAChRs). Here, antibodies raised against fusion constructs encompassing specific regions of the ALS and ARD proteins were used to investigate a potential association of these two polypeptides. Both ALS and ARD antisera removed 20-30% of the high-affinity binding sites for the nicotinic antagonist 125I-alpha-bungarotoxin (125I-alpha-Btx) from detergent extracts of fly head membranes. Combinations of both types of antisera also precipitated the same fraction of alpha-Btx binding sites, a result suggesting that both polypeptides are components of the previously defined class I 125I-alpha-Btx binding sites in the Drosophila CNS. 125I-alpha-Btx binding to a MS2 polymerase-ALS fusion protein containing the predicted antagonist binding region showed that the ALS protein indeed constitutes the ligand binding subunit of a nicotinic receptor complex. These data are consistent with neuronal nAChRs in Drosophila containing at least two types of subunits, ligand binding and structural ones.  相似文献   

9.
Neonicotinoid insecticides, such as imidacloprid, are selective agonists of insect nicotinic acetylcholine receptors (nAChRs) and are used extensively in areas of crop protection and animal health to control a variety of insect pest species. Here, we describe studies performed with nAChR subunits Nlα1 and Nlα2 cloned from the brown planthopper Nilaparvata  lugens , a major insect pest of rice crops in many parts of Asia. The influence of Nlα1 and Nlα2 subunits upon the functional properties of recombinant nAChRs has been examined by expression in Xenopus oocytes. In addition, the influence of a Nlα1 mutation (Y151S), which has been linked to neonicotinoid lab generated resistance in N. lugens , has been examined. As in previous studies of insect α subunits, functional expression has been achieved by co-expression with the mammalian β2 subunit. This approach has revealed a significantly higher apparent affinity of imidacloprid for Nlα1/β2 than for Nlα2/β2 nAChRs. In addition, evidence has been obtained for the co-assembly of Nlα1 and Nlα2 subunits into 'triplet' nAChRs of subunit composition Nlα1/Nlα2/β2. Evidence has also been obtained which demonstrates that the resistance-associated Y151S mutation has a significantly reduced effect on neonicotinoid agonist activity when Nlα1 is co-assembled with Nlα2 than when expressed as the sole α subunit in a heteromeric nAChR. These findings may be of importance in assessing the likely impact of the target-site mutations such as Y151S upon neonicotinoid insecticide resistance in insect field populations.  相似文献   

10.
Nicotinic acetylcholine receptors (nAChRs) mediate fast cholinergic synaptic transmission in the insect brain and are targets for neonicotinoid insecticides. Some proteins, other than nAChRs themselves, might play important roles in insect nAChRs function in vivo and in vitro , such as the chaperone, regulator and modulator. Here we report the identification of two nAChR modulators (Nl-lynx1 and Nl-lynx2) in the brown planthopper, Nilaparvata lugens . Analysis of amino acid sequences of Nl-lynx1 and Nl-lynx2 reveals that they are two members of the Ly-6/neurotoxin superfamily, with a cysteine-rich consensus signature motif. Nl-lynx1 and Nl-lynx2 only increased agonist-evoked macroscopic currents of hybrid receptors Nlα1/β2 expressed in Xenopus oocytes, but not change the agonist sensitivity and desensitization properties. For example, Nl-lynx1 increased I max of acetylcholine and imidacloprid to 3.56-fold and 1.72-fold of that of Nlα1/β2 alone, and these folds for Nl-lynx2 were 3.25 and 1.51. When the previously identified Nlα1Y151S mutation was included (Nlα1Y151S/β2), the effects of Nl-lynx1 and Nl-lynx2 on imidacloprid responses, but not acetylcholine response, were different from that in Nlα1/β2. The increased folds in imidacloprid responses by Nl-lynx1 and Nl-lynx2 were much higher in Nlα1Y151S/β2 (3.25-fold and 2.86-fold) than in Nlα1/β2 (1.72-fold and 1.51-fold), which indicated Nl-lynx1 and Nl-lynx2 might also serve as an influencing factor in target-site insensitivity in N. lugens . These findings indicate that nAChRs chaperone, regulator and modulator may be of importance in assessing the likely impact of the target-site mutations such as Y151S upon neonicotinoid insecticide resistance.  相似文献   

11.
The pentameric acetylcholine‐binding protein (AChBP) is a soluble surrogate of the ligand binding domain of nicotinic acetylcholine receptors. Agonists bind within a nest of aromatic side chains contributed by loops C and F on opposing faces of each subunit interface. Crystal structures of Aplysia AChBP bound with the agonist anabaseine, two partial agonists selectively activating the α7 receptor, 3‐(2,4‐dimethoxybenzylidene)‐anabaseine and its 4‐hydroxy metabolite, and an indole‐containing partial agonist, tropisetron, were solved at 2.7–1.75 Å resolution. All structures identify the Trp 147 carbonyl oxygen as the hydrogen bond acceptor for the agonist‐protonated nitrogen. In the partial agonist complexes, the benzylidene and indole substituent positions, dictated by tight interactions with loop F, preclude loop C from adopting the closed conformation seen for full agonists. Fluctuation in loop C position and duality in ligand binding orientations suggest molecular bases for partial agonism at full‐length receptors. This study, while pointing to loop F as a major determinant of receptor subtype selectivity, also identifies a new template region for designing α7‐selective partial agonists to treat cognitive deficits in mental and neurodegenerative disorders.  相似文献   

12.
The crystal structure of the snake long alpha-neurotoxin, alpha-cobratoxin, bound to the pentameric acetylcholine-binding protein (AChBP) from Lymnaea stagnalis, was solved from good quality density maps despite a 4.2 A overall resolution. The structure unambiguously reveals the positions and orientations of all five three-fingered toxin molecules inserted at the AChBP subunit interfaces and the conformational changes associated with toxin binding. AChBP loops C and F that border the ligand-binding pocket move markedly from their original positions to wrap around the tips of the toxin first and second fingers and part of its C-terminus, while rearrangements also occur in the toxin fingers. At the interface of the complex, major interactions involve aromatic and aliphatic side chains within the AChBP binding pocket and, at the buried tip of the toxin second finger, conserved Phe and Arg residues that partially mimic a bound agonist molecule. Hence this structure, in revealing a distinctive and unpredicted conformation of the toxin-bound AChBP molecule, provides a lead template resembling a resting state conformation of the nicotinic receptor and for understanding selectivity of curaremimetic alpha-neurotoxins for the various receptor species.  相似文献   

13.
GABAA receptors are pentameric ligand-gated ion channels that are major mediators of fast inhibitory neurotransmission. Clinically relevant GABAA receptor subtypes are assembled from α5(1-3, 5), β1-3 and the γ2 subunit. They exhibit a stoichiometry of two α, two β and one γ subunit, with two GABA binding sites located at the α/β and one benzodiazepine binding site located at the α/γ subunit interface. Introduction of the H105R point mutation into the α5 subunit, to render α5 subunit-containing receptors insensitive to the clinically important benzodiazepine site agonist diazepam, unexpectedly resulted in a reduced level of α5 subunit protein in α5(H105R) mice. In this study, we show that the α5(H105R) mutation did not affect cell surface expression and targeting of the receptors or their assembly into macromolecular receptor complexes but resulted in a severe reduction of α5-selective ligand binding. Immunoprecipitation studies suggest that the diminished α5-selective binding is presumably due to a repositioning of the α5(H105R) subunit in GABAA receptor complexes containing two different α subunits. These findings imply an important role of histidine 105 in determining the position of the α5 subunit within the receptor complex by determining the affinity for assembly with the γ2 subunit.  相似文献   

14.
Abstract: The presynaptic nicotinic modulation of dopamine release from striatal nerve terminals is well established, but the subtype(s) of neuronal nicotinic acetylcholine receptor (nAChR) underlying this response has not been identified. Recently, α-conotoxin-MII has been reported to inhibit potently and selectively the rat α3/β2 combination of nAChR subunits. Here we have synthesised the peptide, confirmed its specificity, and examined its effect on the (±)-anatoxin-a-evoked release of [3H]dopamine from rat striatal synaptosomes and slices. α-Conotoxin-MII (112 nM) completely blocked acetylcholine-evoked currents of α3β2 nAChRs expressed in Xenopus oocytes (IC50 = 8.0 ± 1.1 nM). Pairwise combinations of other nicotinic subunits were not blocked by 112 nMα-conotoxin-MII. On perfused striatal synaptosomes and slices, α-conotoxin-MII dose-dependently inhibited [3H]dopamine release evoked by 1 µM (±)-anatoxin-a with IC50 values of 24.3 ± 2.9 and 17.3 ± 0.1 nM, respectively. The dose-response curve was shifted to the right with increasing agonist concentrations. However, the maximal inhibition of responses achieved by α-conotoxin-MII (112 nM) was 44.9 ± 5.4% for synaptosomes and 25.0 ± 4.1% for slices, compared with an inhibition by 10 µM mecamylamine of 77.9 ± 3.7 and 88.0 ± 2.1%, respectively. These results suggest the presence of presynaptic α3β2-like nAChRs on striatal dopaminergic terminals, but the incomplete block of (±)-anatoxin-a-evoked [3H]dopamine release by α-conotoxin-MII also supports the participation of nAChRs composed of other subunits. The lower inhibition found in slices is consistent with an additional indirect nicotinic stimulation of dopamine release via an α-conotoxin-MII-insensitive nAChR.  相似文献   

15.
A synthetic peptide corresponding to the C-terminus of the alpha 3 subunit of the rat neuronal nicotinic acetylcholine receptor (nAChR) was used to generate a rabbit polyclonal alpha 3 antibody. The specificity of this antibody was characterized by immunoblotting, immunohistochemical and immunoprecipitation techniques. Using this antibody, the relative densities of the alpha 3 subunit were quantitatively determined in different brain regions and in superior cervical ganglion (SCG). Among these regions, SCG, interpeduncular nucleus (IPN) and pineal gland showed the highest levels of alpha 3 protein expression. Habenula and superior colliculi had intermediate levels of expression. Low levels were found in cerebral cortex, hippocampus and cerebellum. The ontogenic profile of the alpha 3 subunit in the SCG was also determined. The alpha 3 protein level is low at postnatal day (P 1), but increases rapidly during the first seven postnatal days. This level then plateaus and remains stable through postnatal day 35. These findings suggest that neuronal nAChRs containing the alpha 3 subunit participate in important roles in specific regions of the rat brain and the SCG.  相似文献   

16.
Protease-activated receptor-2 (PAR-2) is a G protein-coupled receptor activated by trypsin and other trypsin-like serine proteases. The widely expressed PAR-2 is involved in inflammation response but the physiological/pathological roles of PAR-2 in the nervous system are still uncertain. In the present study, we report novel PAR-2 interaction proteins, αA-crystallin and αB-crystallin. These 20 kDa proteins have been implicated in neurodegenerative diseases like Alexander's disease, Creutzfeldt-Jacob disease, Alzheimer's disease, and Parkinson's disease. Results from yeast two-hybrid assay using the cytoplasmic C-tail of PAR-2 as bait suggested that αA-crystallin interacts with PAR-2. We further demonstrate the in vitro and cellular in vivo interaction of C-tail of PAR-2 as well as of full-length PAR-2 with αA(αB)-crystallins. We use pull-down, co-immunoprecipitation, and co-localization assays. Analysis of αA-crystallin deletion mutants showed that amino acids 120–130 and 136–154 of αA-crystallin are required for the interaction with PAR-2. Co-immunoprecipitation experiments ruled out an interaction of αA(αB)-crystallins with PAR-1, PAR-3, and PAR-4. This demonstrates that αA(αB)-crystallins are PAR-2-specific interaction proteins. Moreover, we investigated the functional role of PAR-2 and α-crystallins in astrocytes. Evidence is presented to show that PAR-2 activation and increased expression of α-crystallins reduced C2-ceramide- and staurosporine-induced cell death in astrocytes. Thus, both PAR-2 and α-crystallins are involved in cytoprotection in astrocytes.  相似文献   

17.
α4β2 Nicotinic acetylcholine receptors play an important role in the reward pathways for nicotine. We investigated whether receptor up-regulation of α4β2 nicotinic acetylcholine receptors involves expression changes for non-receptor genes. In a microarray analysis, 10 μM nicotine altered expression of 41 genes at 0.25, 1, 8 and 24 h in hα4β2 SH-EP1 cells. The maximum number of gene changes occurred at 8 h, around the initial increase in 3[H]-cytisine binding. Quantitative RT-PCR corroborated gene induction of endoplasmic reticulum proteins CRELD2, PDIA6, and HERPUD1, and suppression of the pro-inflammatory cytokines IL-1β and IL-6. Nicotine suppresses IL-1β and IL-6 expression at least in part by inhibiting NFκB activation. Antagonists dihydro-β-erythroidine and mecamylamine blocked these nicotine-induced changes showing that receptor activation is required. Antagonists alone or in combination with nicotine suppressed CRELD2 message while increasing α4β2 binding. Additionally, small interfering RNA knockdown of CRELD2 increased basal α4β2 receptor expression, and antagonists decreased CRELD2 expression even in the absence of α4β2 receptors. These data suggest that endoplasmic reticulum proteins such as CRELD2 can regulate α4β2 expression, and may explain antagonist actions in nicotine-induced receptor up-regulation. Further, the unexpected finding that nicotine suppresses inflammatory cytokines suggests that nicotinic α4β2 receptor activation promotes anti-inflammatory effects similar to α7 receptor activation.  相似文献   

18.
Neonicotinoid insecticides, such as imidacloprid, are selective agonists of insect nicotinic acetylcholine receptors (nAChRs) and are used extensively to control a variety of insect pest species. Previously, we have identified a nAChR point mutation (Y151S) associated with insecticide resistance in the brown planthopper Nilaparvata lugens . Although this mutation has been identified in two different N. lugens nAChR subunits (Nlα1 and Nlα3) because of difficulties in heterologous expression of Nlα3; its influence on agonist potency has been examined only in Nlα1-containing nAChRs. Here we describe the cloning of a novel nAChR subunit from N. lugens (Nlα8), together with evidence for its co-assembly with Nlα3 in native and recombinant nAChRs. This has, for the first time, enabled the functional effects of the Nlα3Y151S mutation to be examined. The Nlα3Y151S mutation has little effect on agonist potency of acetylcholine but has a dramatic effect on neonicotinoid insecticides (reducing I max values and increasing EC50 values). The apparent affinity of neonicotinoids was higher and the effect of the Y151S mutation on neonicotinoid agonist potency was more profound in Nlα3-containing, rather than Nlα1-containing nAChR. We conclude that Nlα3- and Nlα1-containing nAChRs may be representative of two distinct insect nAChR populations.  相似文献   

19.
Abstract: α - d -Mannosidase (EC 3.2.1.24.) was purified to homogeneity from adult rat brain. The enzyme, of apparent molecular weight 397,000, appears to be formed of subunits of molecular weight 120,000 made of two protomers (62,000) bound by disulfide bridges. Isoelectric focusing gives two bands, of pi 5.40 and 5.15. Both isoenzymes seem to have the same pH curve (a small peak of activity at pH 4.5 and a maximum of activity around pH 6.0). These two isoenzymes are immunologically related.  相似文献   

20.
Rapid neurotransmission is mediated through a superfamily of Cys-loop receptors that includes the nicotinic acetylcholine (nAChR), gamma-aminobutyric acid (GABA(A)), serotonin (5-HT(3)) and glycine receptors. A class of ligands, including galanthamine, local anesthetics and certain toxins, interact with nAChRs non-competitively. Suggested modes of action include blockade of the ion channel, modulation from undefined extracellular sites, stabilization of desensitized states, and association with annular or boundary lipid. Alignment of mammalian Cys-loop receptors shows aromatic residues, found in the acetylcholine or ligand-binding pocket of nAChRs, are conserved in all subunit interfaces of neuronal nAChRs, including those that are not formed by alpha subunits on the principal side of the transmitter binding site. The amino-terminal domain containing the ligand recognition site is homologous to the soluble acetylcholine-binding protein (AChBP) from mollusks, an established structural and functional surrogate. We assess ligand specificity and employ X-ray crystallography with AChBP to demonstrate ligand interactions at subunit interfaces lacking vicinal cysteines (i.e. the non-alpha subunit interfaces in nAChRs). Non-competitive nicotinic ligands bind AChBP with high affinity (K(d) 0.015-6 microM). We mutated the vicinal cysteine residues in loop C of AChBP to mimic the non-alpha subunit interfaces of neuronal nAChRs and other Cys loop receptors. Classical nicotinic agonists show a 10-40-fold reduction in binding affinity, whereas binding of ligands known to be non-competitive are not affected. X-ray structures of cocaine and galanthamine bound to AChBP (1.8 A and 2.9 A resolution, respectively) reveal interactions deep within the subunit interface and the absence of a contact surface with the tip of loop C. Hence, in addition to channel blocking, non-competitive interactions with heteromeric neuronal nAChR appear to occur at the non-alpha subunit interface, a site presumed to be similar to that of modulating benzodiazepines on GABA(A) receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号