首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aedes albopictus (clone C6/36) cells, which normally grow at 28 degrees C, were maintained at a supraoptimal temperature of 37 degrees C. The effect of continuous heat stress (37 degrees C) on cell growth was analyzed as were the modifications occurring with protein synthesis during short- and long-term heat stress. We observed that cells in lag or exponential growth phase, present inhibition of cell growth, and cells in the lag phase showed more sensitivity to death than cells growing exponentially. During the first hour of exposing the cells to 37 degrees C, they synthesized two heat shock proteins (hsps) of 82 kd and 70 kd, respectively, concomitant with inhibition of normally produced proteins at control temperature (28 degrees C). However, for incubations longer than 2 hr at 37 degrees C, a shift to the normal pattern of protein synthesis occurred. During these transitions, two other hsps of 76 kd and 90 kd were synthesized. Pulse chase experiments showed that the 70-kd hsp is stable at least for 18 hr, when the cells are returned to 28 degrees C. However, if cells were incubated at 37 degrees C, the 70-kd hsp is stable for at least 48 hr. The 70-kd hsp was localized in the cytoplasmic and in the nuclear compartment. Our results indicate a possible role of hsp 70-kd protein in the regulation of cell proliferation.  相似文献   

2.
3.
We have used mitogenic lectin (PHA) and a monoclonal antibody (OKT3) to stimulate human peripheral blood (G0) lymphocytes, in the presence of monocytes, and have found two major preferentially synthesized proteins, 73 and 95 kD, which are induced by the mitogens. The elevated synthesis of both proteins begins approximately 4-6 h after mitogen addition (early to mid G0/G1) before entry into first S phase. Maximum synthesis of both proteins is reached by 12 h after mitogen addition when P95 synthesis represents approximately 4%, and P73 approximately 2%, of the total protein synthesis, compared with less than 0.5% for each protein in cells cultured without mitogen. Thus, the proteins appear to be major components of activated cells. We find that both P73 and P95 are induced by heat stress as well as mitogenic stimulation. The induction of the proteins is not affected by either deleting glucose from the culture media or, alternatively, by supplementing it. Using polyclonal antibodies prepared to each of the proteins isolated from mitogen activated cells and monoclonal antibodies that were raised to heat shock proteins, we are able to show that P95 is electrophoretically and immunologically identical to the HSP 90 induced by heat stress. P73 is one of the 70 kD HSPs, (termed HSC 70; Pelham, H. R. B. 1986. Cell. 46: 959-961), but is different from the most strongly heat inducible form of HSP 70 (72 kD). The distribution of both proteins in subcellular fractions of mitogen activated lymphocytes is similar to the reported localization of the respective HSP's in other cell types. The results suggest that HSP 90 and HSC 70 may have functional roles in stress response and growth processes of human lymphocytes.  相似文献   

4.
5.
The time sequence of nuclear pore frequency changes was determined for phytohemagglutinin (PHA)-stimulated human lymphocytes and for HeLa S-3 cells during the cell cycle. The number of nuclear pores/nucleus was calculated from the experimentally determined values of nuclear pores/µ2 and the nuclear surface. In the lymphocyte system the number of pores/nucleus approximately doubles during the 48 hr after PHA stimulation. The increase in pore frequency is biphasic and the first increase seems to be related to an increase in the rate of protein synthesis. The second increase in pores/nucleus appears to be correlated with the onset of DNA synthesis. In the HeLa cell system, we could also observe a biphasic change in pore formation. Nuclear pores are formed at the highest rate during the first hour after mitosis. A second increase in the rate of pore formation corresponds in time with an increase in the rate of nuclear acidic protein synthesis shortly before S phase. The total number of nuclear pores in HeLa cells doubles from ~2000 in G1 to ~4000 at the end of the cell cycle. The doubling of the nuclear volume and the number of nuclear pores might be correlated to the doubling of DNA content. Another correspondence with the nuclear pore number in S phase is found in the number of simultaneously replicating replication sites. This number may be fortuitous but leads to the rather speculative possibility that the nuclear pore might be the site of initiation and/or replication of DNA as well as the site of nucleocytoplasmic exchange. That is, the nuclear pore complex may have multiple functions.  相似文献   

6.
Resting lymphocytes are in the G0 phase of the cell cycle. Upon activation by PHA, they progress into G1 with accompanying increased protein and RNA synthesis, initiate DNA synthesis and divide. We have studied the kinetics of inhibition of macromolecular synthesis during activation in the absence of single amino acids. Three types of kinetics are observed. In the absence of tryptophan or isoleucine, stimulated lymphocytes show a normal increase in protein and RNA synthesis during the first 30 hours of stimulation, initiate DNA synthesis but are subsequently inhibited. In phenylalanine-deficient medium, no DNA synthesis occurs in spite of a slight increase in protein synthesis. No increase in macromolecular synthesis is observed in medium lacking any one of the other essential amino acids (eg: lysine). Our results indicate that the kinetics of macromolecular synthesis in tryptophan-deficient medium is the result of a limited reserve of protein-bound tryptophan which becomes exhausted after 30 hours. On the other hand, delayed inhibition of synthesis in isoleucine-deficient medium probably reflects an initially low requirement for this amino acid followed by inhibition of the synthesis of isoleucine-rich proteins involved in some late event of stimulation. Partial deprivation of lysine results in kinetics of protein synthesis similar to that in tryptophan- or isoleucine-deficient media. The results indicate that the kinetics of macromolecular synthesis during activation of lymphocytes in the absence of an essential amino acid is a function of the quantitative requirement for that amino acid, at a given time during stimulation. Upon replacement of lysine, lymphocytes inhibited by lysine deficiency begin RNA and protein synthesis immediately and at a rate faster than that of unstimulated cultures to which PHA is added. They also initiate DNA synthesis earlier and therefore, are closer to the S phase than resting lymphocytes. It is concluded that lymphocytes stimulated in the absence of lysine are activated even though no overall increase in macromolecular synthesis is observed. Furthermore, the kinetics of DNA synthesis following reversal of inhibition by phenylalanine suggests that lymphocytes stimulated during phenylalanine deprivation become arrested at most six hours before S. These results indicate that amino acid deficiencies lead to arrest of activated lymphocytes at various stages of stimulation, depending on how stringent these deficiencies are.  相似文献   

7.
E Smolarz  P Gr?bner  P Loidl 《Biochemistry》1988,27(11):4142-4147
High mobility group like (HMG-like) nuclear proteins were isolated from plasmodia of the lower eucaryote Physarum polycephalum and characterized by different types of polyacrylamide gel electrophoresis. The synthesis of these proteins was measured during the naturally synchronous cell cycle of Physarum. The four HMG-like proteins (AS1-4) exhibit a pronounced cell cycle dependent pattern of synthesis: AS1 and AS4 have a clear maximum of synthesis in mid S phase with a basal synthesis during the entire G2 period. In contrast, AS2 and AS3 have little synthesis in S phase but a broad maximum in mid G2 period. The four HMG-like proteins have a very low synthesis in early S phase and late G2 period. In addition, other non-histone proteins, which are coextracted with the HMG proteins, exhibit distinct periodic synthesis patterns. A novel non-histone protein, which is the most abundant protein species in 0.35 M NaCl extracts, was detected. It exhibits a high rate of synthesis around the time of mitosis. In general, the results indicate that, in contrast to the main cytoplasmic proteins, most nuclear proteins are phase-specific with respect to their synthesis in the cell cycle.  相似文献   

8.
A double-isotope labeling approach has been employed in an attempt to identify the proteins synthesized by lymphocytes early after stimulation by phytohemagglutinin (PHA). The earliest effect of PHA, within the first hour, was the induction of large aggregates of cellular proteins, which were not dissociated by 1% sodium dodecyl sulfate (SDS) in the absence of β-mercaptoethanol. These aggregates were composed of proteins of molecular weight approximately 70,000, but they did not include PHA. The aggregates were made up of preexisting as well as newly synthesized cellular proteins. Subsequently, within the first 2 hr after the addition of PHA, there was a nonspecific stimulation of protein synthesis. This was followed by the preferential synthesis of several classes of proteins including at least one group of nuclear proteins. The structural changes described here are among the earliest events known to occur within the lymphoid cell after its interaction with PHA.  相似文献   

9.
Proliferating cell nuclear antigen (PCNA/cyclin) is a nuclear protein that can stimulate purified DNA polymerase delta in vitro, and its synthesis correlates with the proliferation rate of cells. We have attempted to determine whether synthesis of PCNA/cyclin in Chinese hamster ovary cells is necessary to regulate entry into S phase. We have measured cellular PCNA/cyclin concentration of the mRNA or protein throughout the cell cycle. Cells were separated by centrifugal elutriation into populations enriched for G-1, S, and G-2/M phases. Quantitative Northern hybridization analysis was performed on RNA isolated from each cell population by using a cDNA clone of PCNA/cyclin as a probe. Results demonstrated that although intact PCNA/cyclin mRNA is present during all phases of the cell cycle, an induction of about 3-fold occurs during S phase. Two-parameter staining for PCNA/cyclin and DNA, and analysis by flow cytometry, confirmed that the quantity of PCNA/cyclin protein in the cells increases severalfold in G-1 or early S phase but generally is invariant in S and G-2/M phases. This cell cycle dependence of PCNA/cyclin expression suggests that the observed synthesis is a prerequisite for initiation of DNA replication. Introduction of an antisense oligonucleotide complementary to the PCNA/cyclin mRNA to inhibit PCNA/cyclin synthesis effectively prevented entry of G-1 phase cells into S phase. A complementary sense oligonucleotide used as a control did not have an inhibitory effect. This result suggests that a threshold concentration of PCNA/cyclin is necessary for entry into S phase.  相似文献   

10.
A method is presented for the study of the entrance of in vitro stimulated cells into their first poststimulation S phase. PHA-stimulated lymphocytes were incubated continuously with 14C-TdR. This isotope was then removed at different intervals and the cells were incubated for 8 h in medium containing 3H-TdR. Cells which had incorporated 3H-TdR but not 14C-TdR were considered to have entered their first post-stimulation S phase during the 8 h incubation with 3H-TdR. These cells were identified by double-layer autoradiography.The majority of PHA-stimulated lymphocytes entered their first period of DNA synthesis between 48 and 72 h after the addition of PHA. However, the variability was pronounced, some cells entering their first S phase at about 24 h and others some 100 h later. Cells entering their first S phase accounted for a considerable part of the population of cells in DNA synthesis still as late as 72 h after the addition of PHA.Calculation of the total number of cells that entered their first S phase during the 6 day culture period showed that DNA synthesis was initiated in some 40 % of the cells of the initial population.  相似文献   

11.
C-myc protein expression in human T cells was specifically inhibited by a 15-mer deoxy-oligonucleotide complementary to the 5' end of the human c-myc gene second exon. The oligonucleotide penetrates the cells without any treatment, with a plateau of cell association reached in 2 h. The oligonucleotide specifically blocked the de novo synthesis of c-myc protein, induced by PHA in human resting peripheral T cells, without impairing the overall synthesis of other proteins, as shown by two-dimensional analysis of [35S]methionine pulse-labeled proteins. The specific inhibition of c-myc protein synthesis prevented the entry into S phase of resting T cells, induced to proliferate by PHA, or IL-2-dependent T cells induced by IL-2, as shown by [3H]thymidine incorporation. The inhibition of proliferation was specific since it was not observed with the corresponding sense-oligonucleotide and was reversed by preincubation of the cells with an excess of sense oligonucleotide. These results clearly support a role for c-myc protein in the proliferation process and show that inducible protein expression can be blocked by means of synthetic oligonucleotides complementary to a coding exon.  相似文献   

12.
When growth-arrested GC-7 cells, a cell line from African green monkey kidney, are stimulated with 10% calf serum, they enter S phase 14-15 h later. Cytochalasin D at 0.6 micrograms/ml blocks the entrance into S phase, and inhibits, though only partially, the increase in protein synthesis after serum stimulation. Since partial inhibition of protein synthesis by cycloheximide interferes with accumulation of labile proteins and thus blocks the entrance of serum-stimulated cells into S phase, the effects of these two inhibitors are compared. Cytochalasin D at lower concentrations reduced the rate of entry into S phase without affecting the length of the prereplicative phase, whereas cycloheximide extended the prereplicative phase dose dependently without affecting the rate of entry into S phase. Cytochalasin D affected neither individual [35S]methionine-labeled spots on two-dimensional polyacrylamide-gel nor degradation of cellular proteins. These results indicate that cytochalasin D, though it interferes with protein synthesis, blocks prereplicative progression of serum-stimulated GC-7 cells in a different manner than cycloheximide.  相似文献   

13.
Nuclear and cytoplasmic protein kinases were measured during the traverse of synchronous CHO cultures through G1 into S phase. Cells were synchronized by selective detachment of cells blocked in metaphase using colcemid. Nuclei were isolated and the protein kinases extracted from the nuclear preparation with 0.6 M NaCl. This procedure solubilized greater than 90% of the total protein kinase activity present in the nuclear preparation. DEAE chromatography of this extract showed 5 apparently different ionic forms of nuclear protein kinases. The nuclear protein kinases preferred casein and phosvitin to histone as substrates and were cyclic AMP-independent. Nuclear protein kinase activities increased greater than two-fold, when expressed as units of activity per cell nucleus, during G1 phase traverse, concomitant with a 70% increase in nuclear non-histone proteins (those soluble in 0.6 M NaCl). This resulted in only a 40% increase in the specific activities (units/microgram protein in 0.6 M NaCl extractable nuclear fraction) of these enzymes as cells progressed through G1 into S phase. This was in contrast to cytoplasmic cyclic AMP-dependent protein kinase activities which also increased two-fold during progression through G1 phase while total cellular protein increased less than 20%. Activation of, as well as synthesis of, cyclic AMP-dependent cytoplasmic protein kinases during G1 phase suggests a regulatory mechanism for precise temporal phosphorylation, whereas the constant specific activity in nuclear kinases during cell cycle is more compatible with the maintenance of bulk phosphorylation processes in the nucleus.  相似文献   

14.
Early Events in Lymphocyte Transformation by Phytohaemagglutinin   总被引:1,自引:0,他引:1  
Synthesis and phosphorylation of three main nuclear protein fractions were studied in human lymphocytes stimulated by phytohaemagglutinin (PHA). The first fraction to be synthesized and phosphorylated after induction was that of the acidic proteins, followed by that containing the soluble proteins. Synthesis of histories commenced 24 h after exposure to PHA. Distinctive patterns of both synthesis and phosphorylation of the acidic proteins were recorded at different times in the cell cycle, which may reflect activation or suppression of specific cellular functions. Phosphorylation of the histones also occurred, as an early event during lymphocyte transformation and also much later, at the time of DNA synthesis.  相似文献   

15.
We have followed the induction of protein synthesis in mitogen-activated human peripheral blood mononuclear cells during the transition from quiescence, or G0, through the prereplicative phase and into first S phase. Doses of mitogens optimal for proliferative response preferentially enhance the synthesis of a subset of intracellular proteins during the approximately 24-h lag interval. The mitogenic lectin phytohemagglutinin (PHA) and OKT3, a mitogenic monoclonal antibody to the CD3 component of the T cell antigen receptor, preferentially enhance bands of the same molecular weight in one-dimensional SDS-PAGE. The proteins are low detergent soluble (0.1% Triton X-100) "cytoplasmic" cellular components and some have been identified as single spots on two-dimensional gels. Bands of 51 and 66 kDa are induced early in lag phase (4 h after stimulation) but are transiently synthesized, decreasing later in lag phase. The majority of the mitogen-induced proteins, 39, 51, 55, 60, 73, and 95 kDa are enhanced by mid lag phase (12 h after stimulation). With the exception of the 55-kDa band, five of these proteins are clearly enhanced in T cells purified after mitogen stimulation. The same five bands show sustained synthesis in actively cycling cells 42-48 h after stimulation and are major synthesized proteins, and corresponding bands are synthesized in a transformed T cell line, MOLT-4. Two of the proteins in this group that are most prominently synthesized during the lag interval have been previously identified as the heat shock proteins, HSP 90 (95-kDa band) and HSC 70 (73-kDa band). We speculate that this group of five proteins, including HSP 90 and HSC 70, may be coordinately expressed in actively replicating T cells and may have some common structural or functional role in sustaining the replicative state.  相似文献   

16.
Nucleophosmin (NPM) (B23) is an essential protein in mouse development and cell growth; however, it has been assigned numerous roles in very diverse cellular processes. Here, we present a unified mechanism for NPM's role in cell growth; NPM directs the nuclear export of both 40S and 60S ribosomal subunits. NPM interacts with rRNA and large and small ribosomal subunit proteins and also colocalizes with large and small ribosomal subunit proteins in the nucleolus, nucleus, and cytoplasm. The transduction of NPM shuttling-defective mutants or the loss of Npm1 inhibited the nuclear export of both the 40S and 60S ribosomal subunits, reduced the available pool of cytoplasmic polysomes, and diminished overall protein synthesis without affecting rRNA processing or ribosome assembly. While the inhibition of NPM shuttling can block cellular proliferation, the dramatic effects on ribosome export occur prior to cell cycle inhibition. Modest increases in NPM expression amplified the export of newly synthesized rRNAs, resulting in increased rates of protein synthesis and indicating that NPM is rate limiting in this pathway. These results support the idea that NPM-regulated ribosome export is a fundamental process in cell growth.  相似文献   

17.
E A Ivanova 《Ontogenez》1988,19(2):220-222
The rate of synthesis of cytoplasmic and nuclear proteins in the reproductive tract and muscle of rabbit embryos from 17 to 23 days of development was estimated by the intensity of 3H-leucine incorporation per 1 mg protein for 30 min in vitro. Testosterone increased several-fold the rate of synthesis of both cytoplasmic and nuclear proteins. At the same time the intensity of synthesis of nuclear proteins was several times higher that of cytoplasmic ones and attained the max values on the 20 day of development.  相似文献   

18.
The course of the assembly of ribosomal subunits in yeast   总被引:17,自引:0,他引:17  
The course of the assembly of the various ribosomal proteins of yeast into ribosomal particles has been studied by following the incorporation of radioactive individual protein species in cytoplasmic ribosomal particles after pulse-labelling of yeast protoplasts with tritiated amino acids. The pool of ribosomal proteins is small relative to the rate of ribosomal protein synthesis, and, therefore, does not affect essentially the appearance of labelled ribosomal proteins on the ribosomal particles. From the labelling kinetics of individual protein species it can be concluded that a number of ribosomal proteins of the 60 S subunit (L6, L7, L8, L9, L11, L15, L16, L23, L24, L30, L32, L36, L40, L41, L42, L44 and L45) associate with the ribonucleoprotein particles at a relatively late stage of the ribosomal maturation process. The same was found to be true for a number of proteins of the 40 S ribosomal subunit (S10, S27, S31, S32, S33 and S34). Several members (L7, L9, L24 and L30) of the late associating group of 60-S subunit proteins were found to be absent from a nuclear 66 S precursor ribosomal fraction. These results indicate that incorporation of these proteins into the ribosomal particles takes place in the cytoplasm at a late stage of the ribosomal maturation process.  相似文献   

19.
Ribosomal S6 kinase 1 (RSK1) belongs to a family of proteins with two kinase domains. Following activation in the cytoplasm by extracellular signal-regulated kinases (ERK1/2), it mediates the cell-proliferative, cell-growth, and survival-promoting actions of a number of growth factors and other agonists. These diverse biological actions of RSK1 involve regulation of both cytoplasmic and nuclear events. However, the mechanisms that permit nuclear accumulation of RSK1 remain unknown. Here, we show that phosphorylation of RSK1 on S221 is important for its dissociation from the type Iα regulatory subunit of protein kinase A (PKA) in the cytoplasm and that RSK1 contains a bipartite nuclear localization sequence that is necessary for its nuclear entry. Once inside, the active RSK1 is retained in the nucleus via its interactions with PKA catalytic subunit and AKAP95. Mutations of RSK1 that do not affect its activity but disrupt its entry into the nucleus or expression of AKAP95 forms that do not enter the nucleus inhibit the ability of active RSK1 to stimulate DNA synthesis. Our findings identify novel mechanisms by which active RSK1 accumulates in the nucleus and also provide new insights into how AKAP95 orchestrates cell cycle progression.  相似文献   

20.
We have studied the role of guanine-nucleotide binding regulatory proteins (G proteins) in the stimulation of inositol lipid breakdown during mitogenic activation of normal human T lymphocytes. The effect of the mitogen phytohemagglutinin (PHA) was compared with the action of two G-protein activators, fluoroaluminate (AlF4-) and guanosine-5'-O-thiotriphosphate (GTP gamma S). PHA and AlF4- stimulated the breakdown of inositol lipids via both the phospholipase A and C pathways when added to intact lymphocytes. PHA, AlF4- and GTP gamma S also triggered both these pathways when added to permeable lymphocytes. The magnitude of the response obtained with AlF4- and GTP gamma S was about four-fold less than with PHA. This difference was attributable to increases in cAMP elicited by AlF4- and GTP gamma S which inhibited the phospholipase pathways. AlF4-, GTP gamma S, and PHA all stimulated the phosphorylation of a 42 kDa protein on tyrosine residues. We propose a model for the early steps following mitogen binding, including sequential activation of a G protein, phospholipase C, protein kinase C and a tyrosine protein kinase. A parallel pathway involving G protein mediated activation of phospholipase A is also implicated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号