首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several protein kinases that copurify with neurofilaments (NF) were identified and each kinase was assessed for its ability to phosphorylate NF proteins. NFs were isolated using an axonal flotation procedure and the kinases were extracted from NFs with 0.8 M KCl. NF kinases were incubated with peptide substrates for selected protein kinases, [32P]ATP and protein kinase cofactors and inhibitors to characterize the kinases. Using peptide substrates, three types of kinase were identified, and a fourth was identified using NF protein as substrate. The first three kinases were the catalytic subunit of cAMP-dependent protein kinase, calcium-calmodulin dependent protein kinase II and a cofactor-independent kinase that phosphorylated prepro VIP sequence 156-170 and was inhibited by heparin. Using NF proteins as substrate, a fourth kinase was identified which was cofactor-independent and was not inhibited by heparin. Neither cofactor-independent kinase was casein kinase II. NF proteins were phosphorylated in vitro on serine and threonine, primarily by the two cofactor-independent kinases. Using [alpha-32P]8-N3ATP for affinity labeling, one kinase of 43,800 Da was identified. Thus, in addition to cAMP-dependent protein kinase and calcium-calmodulin dependent protein kinase II, two kinases have been found which are primarily responsible for NF phosphorylation in vitro and are cofactor-independent.  相似文献   

2.
3.
Phosphorylation of free galactose by lactic streptococci was mediated by an adenosine triphosphate (ATP)-dependent kinase. The phosphoenolpyruvate (PEP) phosphotransferase system (PTS) was involved to a limited extent in transport of the sugar. The conversion of free galactose to glucose also was demonstrated, and uridine diphosphogalactose-4-epimerase was demonstrated to account for this change. Galactose, supplied as lactose, was phosphorylated during transport by means of the PTS with PEP as the phosphate donor. Data also indicated that galactose derived from lactose was catabolized by the glycolytic pathway. Results showed the participation of ATP or PEP, or both, in the phosphorylation of five growth sugars for lactic streptococci, namely, galactose, glucose, lactose, maltose, and mannose. Free galactose was phosphorylated exclusively by ATP except when cells were grown on galactose; in this case, slight involvement of PEP in phosphorylation also was noted. Lactose phosphorylation was much more effective with PEP except when cells were grown on lactose, in which case ATP was equally effective. Glucose was phosphorylated to about the same degree by either ATP or PEP.  相似文献   

4.
The activity of endogenous nuclear protein kinases has been probed in an vitro assay system of isolated nuclei from Chironomus salivary gland cells. The phosphorylation of a set of seven prominent rapidly phosphorylated non-histone proteins and of histones H3, H2A and H4 was analyzed using ATP or GTP as phosphoryl donor and heparin as protein kinase effector. The core histones H2A and H3 both incorporate 32P from [gamma-32P]ATP as well as from [gamma-32P]GTP but their phosphorylation is differentially affected by heparin. The phosphorylation of H2A is blocked by heparin while that of H3 is even stimulated in the presence of heparin when ATP is used as phosphate donor. H4 is unable to incorporate phosphate groups from GTP but its ATP-based phosphorylation is heparin sensitive. Of the non-histone protein kinase substrates, we could only detect two, the 44-kDa and 115-kDa proteins, which are heparin sensitive with either ATP or GTP and, thus, strictly meet the criteria for casein kinase type II-specific phosphorylation. The investigated histones and non-histone proteins can be grouped into three broad categories on the basis of their phosphorylation properties. (A) Proteins very likely affected by casein kinase NII. (B) Proteins phosphorylated by strictly ATP-specific protein kinases. (C) Proteins phosphorylated by ATP as well as GTP utilizing protein kinase(s) other than casein NII. Category B proteins can be subdivided into proteins phosphorylated in a heparin-resistant (B1) and heparin-sensitive (B2) manner. The phosphorylation of category C proteins may be heparin sensitive with ATP only (C1), heparin sensitive with GTP only (C2), heparin insensitive with both ATP and GTP (C3) or stimulated by heparin (C4).  相似文献   

5.
Recent studies have advanced the notion that the axonal organization of neurofilaments (NFs) is based on mutual steric repulsion between the unstructured "sidearm" domains of adjacent NFs. Here, we present experimental evidence that these repulsive forces are modulated by the degree of sidearm phosphorylation. When NFs are sedimented into a gelatinous pellet, pellet volume falls with increasing ionic strength and enzymatic dephosphorylation; sedimentation of phosphorylated NFs in the presence of divalent cations also dramatically reduces pellet volume. Further, atomic force microscopy imaging of isolated mammalian NFs reveals robust exclusion of colloidal particles from the NF backbone that is reduced at high ionic strength and attenuated when the filaments are enzymatically dephosphorylated. Phosphate-phosphate repulsion on the NF sidearm appears to modulate NF excluded volume in a graded fashion, thereby controlling axonal NF organization through interfilament forces.  相似文献   

6.
The anterior byssus retractor muscle of Mytilus edulis was used to characterize the myosin cross-bridge during catch, a state of tonic force maintenance with a very low rate of energy utilization. Addition of MgATP to permeabilized muscles in high force rigor at pCa > 8 results in a rapid loss of some force followed by a very slow rate of relaxation that is characteristic of catch. The fast component is slowed 3-4-fold in the presence of 1 mM MgADP, but the distribution between the fast and slow (catch) components is not dependent on [MgADP]. Phosphorylation of twitchin results in loss of the catch component. Fewer than 4% of the myosin heads have ADP bound in rigor, and the time course (0.2-10 s) of ADP formation following release of ATP from caged ATP is similar whether or not twitchin is phosphorylated. This suggests that MgATP binding to the cross-bridge and subsequent splitting are independent of twitchin phosphorylation, but detachment occurs only if twitchin is phosphorylated. A similar dependence of detachment on twitchin phosphorylation is seen with AMP-PNP and ATPgammaS. Single turnover experiments on bound ADP suggest an increase in the rate of release of ADP from the cross-bridge when catch is released by phosphorylation of twitchin. Low [Ca(2+)] and unphosphorylated twitchin appear to cause catch by 1) markedly slowing ADP release from attached cross-bridges and 2) preventing detachment following ATP binding to the rigor cross-bridge.  相似文献   

7.
Omecamtiv mecarbil (OM), a direct myosin motor activator, is currently being tested as a therapeutic replacement for conventional inotropes in heart failure (HF) patients. It is known that HF patients exhibit dysregulated β-adrenergic signaling and decreased cardiac myosin-binding protein C (cMyBPC) phosphorylation, a critical modulator of myocardial force generation. However, the functional effects of OM in conditions of altered cMyBPC phosphorylation have not been established. Here, we tested the effects of OM on force generation and cross-bridge (XB) kinetics using murine myocardial preparations isolated from wild-type (WT) hearts and from hearts expressing S273A, S282A, and S302A substitutions (SA) in the M domain, between the C1 and C2 domains of cMyBPC, which cannot be phosphorylated. At submaximal Ca2+ activations, OM-mediated force enhancements were less pronounced in SA than in WT myocardial preparations. Additionally, SA myocardial preparations lacked the dose-dependent increases in force that were observed in WT myocardial preparations. Following OM incubation, the basal differences in the rate of XB detachment (krel) between WT and SA myocardial preparations were abolished, suggesting that OM differentially affects the XB behavior when cMyBPC phosphorylation is reduced. Similarly, in myocardial preparations pretreated with protein kinase A to phosphorylate cMyBPC, incubation with OM significantly slowed krel in both the WT and SA myocardial preparations. Collectively, our data suggest there is a strong interplay between the effects of OM and XB behavior, such that it effectively uncouples the sarcomere from cMyBPC phosphorylation levels. Our findings imply that OM may significantly alter the in vivo cardiac response to β-adrenergic stimulation.  相似文献   

8.
Phosphorylation of neurofilament-L protein (NF-L) by the catalytic subunit of cAMP-dependent protein kinase (A-kinase) inhibits the reassembly of NF-L and disassembles filamentous NF-L. The effects of phosphorylation by A-kinase on native neurofilaments (NF) composed of three distinct subunits: NF-L, NF-M, and NF-H, however, have not yet been described. In this paper, we examined the effects of phosphorylation of NF proteins by A-kinase on both native and reassembled filaments containing all three NF subunits. In the native NF, A-kinase phosphorylated each NF subunit with stoichiometries of 4 mol/mol for NF-L, 6 mol/mol for NF-M, and 4 mol/mol for NF-H. The extent of NF-L phosphorylation in the native NF was nearly the same as that of purified NF-L. However, phosphorylation did not cause the native NFs to disassemble into oligomers, as was the case for purified NF-L. Instead, partial fragmentation was detected in sedimentation experiments and by electron microscopic observations. This is probably not due to the presence of the three NF subunits in NF or to differences in phosphorylation sites because reassembled NF containing all three NF subunits were disassembled into oligomeric forms by phosphorylation with A-kinase and the phosphorylation by A-kinase occurred at the head domain of NF-L whether NF were native or reassembled. Disassembling intermediates of reassembled NF containing all three NF subunits were somewhat different from disassembling intermediates of NF-L. Thinning and loosening of filaments was frequently observed preceding complete disassembly. From the fact that the thinning was also observed in the native filaments phosphorylated by A-kinase, it is reasonable to propose the native NF is fragmented through a process of thinning that is stimulated by phosphorylation in the head domain of the NF subunits.  相似文献   

9.
We have developed polyclonal antibodies (SA226P) to a peptide of the human connexin43 (Cx43) protein between amino acids 271 and 288 containing phosphorylated S279 and S282. Antibodies specific for the phosphorylated form of the peptide were isolated by double immunoaffinity chromatography and were characterised using proteins of the cell line WB-F344, known to contain large amounts of Cx43. SA226P recognises specifically the slowest migrating Cx43 band in immunoblots of proteins isolated from untreated cells. In immunofluorescence experiments SA226P scarcely stains the plasma membrane in untreated cells in contrast to a commercial antibody recognising all isoforms of the Cx43 protein. EGF or stress treatment of the cells results in a rapid increase in the phosphorylated forms of Cx43 as revealed by immunoblotting. Immunofluorescence experiments reveal that both phosphorylated and non-phosphorylated Cx43 could be found at the plasma membrane. Whether phosphorylation of S279/S282 takes place before or after incorporation of Cx43 into the membranes is so far unknown. More interestingly, confocal microscopy using our antibodies and a commercial antibody recognising all isoforms of Cx43 shows the coexistence of differentially phosphorylated forms of the protein at the plasma membrane. Our results indicate that MAP kinases erk1/2 are mainly responsible for this phosphorylation, as already published. Nevertheless, treatment of the cells with anisomycin, known to activate stress kinase p38 but not erk1/2, also results in a weak but reproducible Cx43 phosphorylation.  相似文献   

10.
Members of the nuclear factor 90 (NF90) family of human double-stranded RNA (dsRNA) binding proteins are phosphorylated and translocate into the cytoplasm with the onset of mitosis. We investigated the mechanism of translocation for NF90 and NF110, its larger splice variant. During interphase, NF90 is predominantly nuclear, NF110 is exclusively nuclear, and both are bound to RNA. About half of the NF90 is tethered in the nucleus by RNA bound to the protein's dsRNA-binding motifs. The nuclear localization of NF110 is also dependent on RNA binding but is independent of these motifs, and is governed by contacts made to the protein's unique C terminus. During mitosis, about half of the cytoplasmic NF90 becomes dissociated from RNA, but phosphorylation does not impair the binding affinity of either NF90 or NF110 for dsRNA. We conclude that NF90 and NF110 engage RNA differentially and translocate from the nucleus to the cytoplasm in mitosis because phosphorylation disturbs their interactions with other nuclear proteins.  相似文献   

11.
In mammalian and squid nervous systems, the phosphorylation of neurofilament proteins (NFs) seems to be topographically regulated. Although NFs and relevant kinases are synthesized in cell bodies, phosphorylation of NFs, particularly in the lys‐ser‐pro (KSP) repeats in NF‐M and NF‐H tail domains, seem to be restricted to axons. To explore the factors regulating the cellular compartmentalization of NF phosphorylation, we separated cell bodies (GFL) from axons in the squid stellate ganglion and compared the kinase activity in the respective lysates. Although total kinase activity was similar in each lysate, the profile of endogenous phosphorylated substrates was strikingly different. Neurofilament protein 220 (NF220), high‐molecular‐weight NF protein (HMW), and tubulin were the principal phosphorylated substrates in axoplasm, while tubulin was the principal GFL phosphorylated substrate, in addition to highly phosphorylated low‐molecular‐weight proteins. Western blot analysis showed that whereas both lysates contained similar kinases and cytoskeletal proteins, phosphorylated NF220 and HMW were completely absent from the GFL lysate. These differences were highlighted by P13suc1 affinity chromatography, which revealed in axoplasm an active multimeric phosphorylation complex(es), enriched in cytoskeletal proteins and kinases; the equivalent P13 GFL complex exhibited six to 20 times less endogenous and exogenous phosphorylation activity, respectively, contained fewer cytoskeletal proteins and kinases, and expressed a qualitatively different cdc2‐like kinase epitope, 34 kDa rather than 49 kDa. Cell bodies and axons share a similar repertoire of molecular consitutents; however, the data suggest that the cytoskeletal/kinase phosphorylation complexes extracted from each cellular compartment by P13 are fundamentally different. © 1999 John Wiley & Sons, Inc. J Neurobiol 40: 89–102, 1999  相似文献   

12.
The phosphorylation of plasma membrane proteins from red beet (Beta vulgaris L.) by radioactive inorganic phosphate was studied. Only few proteins were phosphorylated, among them was one polypeptide with an apparent molecular weight of about 100,000. The phosphorylation of this protein was decreased when orthovanadate was present in the reaction mixture, or when the phosphorylated protein was treated with hydroxylamine. These facts suggest that this protein is a transport ATPase which is phosphorylated in a carboxyl group during the catalytic cycle. This protein was identified immunologically as the plasma membrane H+-ATPase. The phosphorylation level of this enzyme was enhanced by dimethyl sulfoxide, whereas potassium ions did not have a significant effect on this level unless ATP was present. ATP stimulated the phosphorylation by inorganic phosphate. This stimulation was more apparent in the presence of potassium ions.  相似文献   

13.
The mechanism(s) of force development in vascular smooth muscle following pharmacological activation of protein kinase C by phorbol esters are not known. In this study, we examined the myosin light chain phosphorylation response following stimulation by phorbol 12,13-dibutyrate (PDB) or phenylephrine in rabbit aorta which had been incubated with 32PO4 in order to label ATP pools. Through tryptic phosphopeptide mapping of myosin light chain from intact tissue and comparison to controls using purified components, we inferred that Ca2+-dependent force stimulated by PDB was associated with small increases in serine-19 phosphorylation, consistent with a contractile mechanism involving indirect activation of myosin light chain kinase. Additional residues, consistent with the in vitro substrate specificity of protein kinase C, were also observed to be phosphorylated in response to PDB and represented proportionately a larger fraction of the total phosphorylated myosin light chain in Ca2+-depleted tissues. Stimulation by an alpha 1-adrenergic agonist (phenylephrine) resulted in phosphorylation of residues which were consistent with an activation mechanism involving myosin light chain kinase only. These results indicate that in rabbit aorta the contractile effects of PDB may be partially mediated by Ca2+-dependent activation of myosin light chain kinase. However, the data do not rule out a component of the PDB-stimulated contractile response which is independent of myosin light chain phosphorylation on the serine-19 residue. In addition, activation by a more physiological stimulus, phenylephrine, does not result in protein kinase C-mediated myosin light chain phosphorylation.  相似文献   

14.
1. When pig heart pyruvate dehydrogenase complex was phosphorylated to completion with [gamma-32P]ATP by its intrinsic kinase, three phosphorylation sites were observed. The amino acid sequences around these sites were: sequence 1, Tyr-Gly-Met-Gly-Thr-Ser(P)-Val-Glu-Arg; and sequence 2, Tyr-His-Gly-His-Ser(P)-Met-Ser-Asp-Pro-Gly-Val-Ser(P)-Tyr-Arg. 2. When phosphorylated to inactivation by repetitive additions of limiting quantities of [gamma-32P]ATP, phosphate was incorporated mainly (more than 90%) into Ser-5 of sequence 2. Phosphorylation of this site thus results in activation of pyruvate dehydrogenase. 3. If Ser-5 is phosphorylated with ATP and the enzyme then incubated with [gamma-32P]ATP, phosphorylation of the remaining sites occurred. Ser-12 of sequence 2 is phosphorylated about twice as rapidly as Ser-6 of sequence 1. 4. Incubation of pyruvate dehydrogenase with excess [gamma-32P]ATP with termination of phosphorylation at about 50% complete inactivation showed that Ser-5 of sequence 2 was phosphorylated most rapidly, but also that Ser-12 of sequence 2 was significantly (15% of total) phosphorylated. Ser-6 sequence 1 contained about 1% total P. 5. These results suggest that addition of limiting amounts of ATP produces primarily phosphorylation of Ser-5 of sequence 2 (inactivating site). This also occurs during incubation with excess ATP before complete inactivation occurs, but a greater occupancy of other sites also occurs during this treatment.  相似文献   

15.
c-Src kinase activity is regulated by phosphorylation of Y527 and Y416. Y527 phosphorylation stabilizes a closed conformation, which suppresses kinase activity towards substrates, whereas phosphorylation at Y416 promotes an elevated kinase activity by stabilizing the activation loop in a manner permissive for substrate binding. Here we investigated the correlation of Y416 phosphorylation with c-Src activity when c-Src was locked into the open and closed conformations (by mutations Y527F and Q528E, P529E, G530I respectively). Consistent with prior findings, we found Y416 to be more greatly phosphorylated when c-Src was in an open, active conformation. However, we also observed an appreciable amount of Y416 was phosphorylated when c-Src was in a closed, repressed conformation under conditions by which c-Src was unable to phosphorylate substrate STAT3. The phosphorylation of Y416 in the closed conformation arose by autophosphorylation, since abolishing kinase activity by mutating the ATP binding site (K295M) prevented phosphorylation. Basal Y416 phosphorylation correlated positively with cellular levels of c-Src suggesting autophosphorylation depended on self-association. Using sedimentation velocity analysis on cell lysate with fluorescence detection optics, we confirmed that c-Src forms monomers and dimers, with the open conformation also forming a minor population of larger mass complexes. Collectively, our studies suggest a model by which dimerization of c-Src primes c-Src via Y416 phosphorylation to enable rapid potentiation of activity when Src adopts an open conformation. Once in the open conformation, c-Src can amplify the response by recruiting and phosphorylating substrates such as STAT3 and increasing the extent of autophosphorylation.  相似文献   

16.
Mutations in the NF2 tumor suppressor gene encoding merlin induce the development of tumors of the nervous system. Merlin is highly homologous to the ERM (ezrin-radixin-moesin) family of membrane/cytoskeleton linker proteins. However, the mechanism for the tumor suppressing activity of merlin is not well understood. Previously, we characterized a novel role for merlin as a protein kinase A (PKA)-anchoring protein, which links merlin to the cAMP/PKA signaling pathway. In this study we show that merlin is also a target for PKA-induced phosphorylation. In vitro [gamma-(33)P]ATP labeling revealed that both the merlin N and C termini are phosphorylated by PKA. Furthermore, both in vitro and in vivo phosphorylation studies of the wild-type and mutated C termini demonstrated that PKA can phosphorylate merlin at serine 518, a site that is phosphorylated also by p21-activated kinases (PAKs). Merlin was phosphorylated by PKA in cells in which PAK activity was suppressed, indicating that the two kinases function independently. Both in vitro and in vivo interaction studies indicated that phosphorylation of serine 518 promotes heterodimerization between merlin and ezrin, an event suggested to convert merlin from a growth-suppressive to a growth-permissive state. This study provides further evidence on the connection between merlin and cAMP/PKA signaling and suggests a role for merlin in the cAMP/PKA transduction pathway.  相似文献   

17.
VDAC1 is a key component of the mitochondrial permeability transition pore. To initiate apoptosis and certain other forms of cell death, mitochondria become permeable such that cytochrome c and other pre-apoptotic molecules resident inside the mitochondria enter the cytosol and activate apoptotic cascades. We have shown recently that VDAC1 interacts directly with never-in-mitosis A related kinase 1 (Nek1), and that Nek1 phosphorylates VDAC1 on Ser193 to prevent excessive cell death after injury. How this phosphorylation regulates the activity of VDAC1, however, has not yet been reported. Here, we use atomic force microscopy (AFM) and cytochrome c conductance studies to examine the configuration of VDAC1 before and after phosphorylation by Nek1. Wild-type VDAC1 assumes an open configuration, but closes and prevents cytochrome c efflux when phosphorylated by Nek1. A VDAC1-Ser193Ala mutant, which cannot be phosphorylated by Nek1 under identical conditions, remains open and constitutively allows cytochrome c efflux. Conversely, a VDAC1-Ser193Glu mutant, which mimics constitutive phosphorylation by Nek1, remains closed by AFM and prevents cytochrome c leakage in the same liposome assays. Our data provide a mechanism to explain how Nek1 regulates cell death by affecting the opening and closing of VDAC1.  相似文献   

18.
Coated vesicles isolated from bovine brain contained a protein kinase(s) which phosphorylated phosvitin and an endogenous protein with a molecular weight (Mr) of 48,000. A clathrin light chain (Mr 33,000), a constituent of the coat structure of the coated vesicles, was also phosphorylated when histone was added to the incubation medium. The clathrin light chain was phosphorylated with GTP as well as ATP as the phosphoryl donor. The phosphorylation reaction was inhibited by heparin. An additional 1.35 mol of PO4/mol was incorporated into the clathrin light chain which had contained approximately 1.5 mol of PO4/mol when the coated vesicles were incubated with ATP, Mg2+, and histone. Phosphoamino acid determination revealed the presence of 32P-phosphorylated threonine and serine in phosvitin, threonine in the endogenous protein (Mr 48,000) and serine in the clathrin light chain (Mr 33,000).  相似文献   

19.
Abstract: We have shown previously that a neurofilament (NF)-associated kinase (NFAK) extracted from chicken NF preparations phosphorylates selectively the middle molecular mass NF subunit (NF-M). Here we show that the major kinase activity in NFAK is indistinguishable from enzymes of the casein kinase I (CKI) family based on the following criteria: (1) inhibition of NFAK phosphorylation by the selective CKI inhibitor CKI-7, (2) the similarity in substrate specificity of NFAK and authentic CKI, (3) the correspondence of two-dimensional phosphopeptide maps of NF-M phosphorylated in vitro by NFAK with those generated by CKI under similar conditions, and (4) immunological cross-reactivity of NFAK with an antibody raised against CKI. We have also identified Ser502, Ser528, and Ser536 as phosphorylation sites by NFAK/CKI in vitro, each of which is also phosphorylated in vivo. All three serines are found in peptides with CKI phosphorylation consensus sequences, and Ser528 and Ser536 and flanking amino acids are highly conserved in higher vertebrate NF-M sequences. Neither Ser502 nor Ser536 has been identified previously as NF-M phosphorylation sites.  相似文献   

20.
We examined the respective roles of dynein and kinesin in axonal transport of neurofilaments (NFs). Differentiated NB2a/d1 cells were transfected with green fluorescent protein-NF-M (GFP-M) and dynein function was inhibited by co-transfection with a construct expressing myc-tagged dynamitin, or by intracellular delivery of purified dynamitin and two antibodies against dynein's cargo domain. Monitoring of the bulk distribution of GFP signal within axonal neurites, recovery of GFP signal within photobleached regions, and real-time monitoring of individual NFs/punctate structures each revealed that pertubation of dynein function inhibited retrograde transport and accelerated anterograde, confirming that dynein mediated retrograde axonal transport, while intracellular delivery of two anti-kinesin antibodies selectively inhibited NF anterograde transport. In addition, dynamitin overexpression inhibited the initial translocation of newly-expressed NFs out of perikarya and into neurites, indicating that dynein participated in the initial anterograde delivery of NFs into neurites. Delivery of NFs to the axon hillock inner plasma membrane surface, and their subsequent translocation into neurites, was also prevented by vinblastine-mediated inhibition of microtubule assembly. These data collectively suggest that some NFs enter axons as cargo of microtubues that are themselves undergoing transport into axons via dynein-mediated interactions with the actin cortex and/or larger microtubules. C-terminal NF phosphorylation regulates motor association, since anti-dynein selectively coprecipitated extensively phosphorylated NFs, while anti-kinesin selectively coprecipitated less phosphorylated NFs. In addition, however, the MAP kinase inhibitor PD98059 also inhibited transport of a constitutively-phosphorylated NF construct, indicating that one or more additional, non-NF phosphorylation events also regulated NF association with dynein or kinesin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号