首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The molecular weight of 5-oxoprolinase from rat kidney was estimated by gel filtration on Sephadex G-200 and G-150 to be 460 000 +/- 30 000. A value of 230 000 +/- 10 000 was obtained by zonal sedimentation in a sucrose gradient. Polyacrylamide gel electrophoresis in the presence of sodium dodecylsulfate yielded a molecular weightof 115 000 +/- 6 000. It is concluded that 5-oxoprolinase consists of four subunits of 115 000 daltons each. The dissociation or aggregation behavior of the enzyme seems to be influenced neither by the presence of the substrates 5-oxo-L-proline and MgATP2theta nor by the presence of the stabilizing compounds glutathione mercaptoethanol or dithioerythritol.  相似文献   

2.
B C Reed  H C Rilling 《Biochemistry》1976,15(17):3739-3745
Prenyltransferase (farnesyl pyrophosphate synthetase) was purified from avian liver and characterized by Sephadex and sodium dodecyl sulfate gel chromatography, peptide mapping, and end-group analysis. The enzyme is 85 800 +/- 4280 daltons and consists of two identical subunits as judged by sodium dodecyl sulfate gel electrophoresis, peptide mapping, and end-group analysis. Chemical analysis of the protein revealed no lipid or carbohydrate components. Avian prenyltransferase synthesizes farnesyl pyrophosphate from either dimethylallyl or geranyl pyrophosphate and isopentenyl pyrophosphate. A lower rate of geranylgeranyl pyrophosphate synthesis from farnesyl pyrophosphate and isopentenyl pyrophosphate was also demonstrated. Michaelis constants for farnesyl pyrophosphate synthesis are 0.5 muM for both isopentenyl pyrophosphate and geranyl pyrophosphate. The V max for the reaction is 1990 nmol min-1 mg-1 (170 mol min-1 mol-1 enzyme). Substrate inhibition by isopentenyl pyrophosphate is evident at high isopentenyl pyrophosphate and low geranyl pyrophosphate concentrations. Michaelis constants for geranylgeranyl pyrophosphate synthesis are 9 muM for farnesyl pyrophosphate and 20 muM for isopentenyl pyrophosphate. The Vmax is 16 nmol min-1 mg-1 (1.4 mol min-1 mol-1 enzyme). Two moles of each of the allylic substrates is bound per mol of enzyme. The apparent dissociation constants for dimethylallyl, geranyl, and farnesyl pyrophosphates are 1.8, 0.17, and 0.73 muM, respectively. Dimethylallyl and geranyl pyrophosphates bound competitively to prenyltransferase with one-for-one displacement. Four moles of isopentenyl pyrophosphate was bound per mole of enzyme. Citronellyl pyrophosphate, an analogue of geranyl pyrophosphate, was competitive with the binding of 2 of the 4 mol of isopentenyl pyrophosphate bound. The data are interpreted to indicate that each subunit of avian liver prenyltransferase has a single allylic binding site accommodating dimethylallyl, geranyl, and farnesyl pyrophosphates, and one binding site for isopentenyl pyrophosphate. In the absence of an allylic pyrophosphate or analogue, isopentenyl pyrophosphate also can bind to the allylic site.  相似文献   

3.
1. Uronic acid dehydrogenase was purified to homogeneity. After a 338-fold purification a yield of 16% was achieved with a specific activity of 81 mumol NADH formed min-1 mg protein-1. 2. The purity of the enzyme was controlled by disc electrophoresis, sodium dodecylsulfate electrophoresis and ultracentrifugation. 3. A molecular weight of 60 000 was determined by gel chromatography and by ultracentrifugation. 4. The native enzyme is composed of two subunits, their molecular weight being 30 000 as estimated by sodium dodecylsulfate electrophoresis. The subunits as such are inactive. 5. The absorption spectrum with a maximum at 278 nm shows no evidence for a prosthetic group. 6. For catalytic activity no SH groups and no metals seem to be necessary. 7. The Michaelis constants determined with the pure enzyme are for glucuronic acid Km = 0.37 mM, galacturonic acid Km = 54 muM and NAD+ (with glucuronic acid) Km = 80 muM. 8. A weak reverse reaction could be observed with glucaric acid lactones at acidic pH. 9. NADH is competitive with NAD+. The inhibitor constant is Ki = 60 muM. 10. The NAD+ binding site seems to be of lower specificity than the uronic acid binding site.  相似文献   

4.
ATP-sulfurylase (ATP:sulfate adenylyltransferase; EC 2.7.7.4), the first enzyme of the two-step sulfate activation sequence, was purified extensively from rat liver cytosol. The enzyme has a native molecular mass of 122 +/- 12 kDa and appears to be composed of identical 62 +/- 6-kDa subunits. At 30 degrees C and pH 8.0 (50 mM Tris-Cl buffer containing 5 mM excess Mg2+), the best preparations have "forward reaction" specific activities of about 20 and 2 units X mg protein-1 with MoO4(2-) and SO4(2-), respectively. The reverse (ATP synthesis) specific activity is about the same as the forward molybdolysis activity. The kinetic constants under the above conditions are as follows: KmA = 0.21 mM, Kia = 0.87 mM, KmB = 0.18 mM, KmQ = 0.65 microM, Kiq = 0.11 microM, and KmP = 5.0 microM where A = MgATP, B = SO4(2-), Q = APS, and P = total PPi at 5 mM Mg2+. PPi is a mixed-type inhibitor with respect to MgATP and SO4(2-). SeO4(2-) is an alternative inorganic substrate with a Vmax about 20% that of SO4(2-). The product, APSe, is unstable. But in the presence of a sufficient excess of APS kinase, APSe is completely converted to PAPSe. The rate constant for nonenzymatic PAPSe hydrolysis was determined from measurements of the final steady-state reaction rate in the presence of limiting initial SeO4(2-) and a large excess of MgATP, ATP sulfurylase, APS kinase, and the other coupling enzymes and their cosubstrates. The results yielded a k of 2.4 +/- 0.5 X 10(-3) sec-1 (t1/2 ca. 5 min). Phosphate is an effective buffer for enzyme purification and storage but inhibits catalytic activity, particularly at low substrate concentrations. In the presence of buffer levels of Pi, the MgATP reciprocal plot of the SO4(2-)-dependent reaction is concave-up. Inorganic monovalent oxyanions are dead end inhibitors competitive with SO4(2-) and apparently uncompetitive with respect to MgATP. The relative potencies are in the order ClO3- greater than ClO4- greater than FSO3- greater than NO3-. Thiosulfate is also competitive with SO4(2-) but noncompetitive with respect to MgATP. Several divalent oxyanions (MoO4(2-), WO4(2-), CrO4(2-), and HAsO4(2-] promote the enzyme-catalyzed cleavage of MgATP to AMP and MgPPi. The ratio Vmaxf/KmA ranged from 0.7 to 200 for various reactive inorganic substrates. The cumulative results suggest the random binding of MgATP and the inorganic substrate but the ordered release of MgPPi before APS.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
The role of ubiquitous mitochondrial creatine kinase (uMtCK) reaction in regulation of mitochondrial respiration was studied in purified preparations of rat brain synaptosomes and mitochondria. In permeabilized synaptosomes, apparent Km for exogenous ADP, Km (ADP), in regulation of respiration in situ was rather high (110 +/- 11 microM) in comparison with isolated brain mitochondria (9 +/- 1 microM). This apparent Km for ADP observed in isolated mitochondria in vitro dramatically increased to 169 +/- 52 microM after their incubation with 1 muM of dimeric tubulin showing that in rat brain, particularly in synaptosomes, mitochondrial outer membrane permeability for ADP, and ATP may be restricted by tubulin binding to voltage dependent anion channel (VDAC). On the other hand, in synaptosomes apparent Km (ADP) decreased to 25 +/- 1 microM in the presence of 20 mM creatine. To fully understand this effect of creatine on kinetics of respiration regulation, complete kinetic analysis of uMtCK reaction in isolated brain mitochondria was carried out. This showed that oxidative phosphorylation specifically altered only the dissociation constants for MgATP, by decreasing that from ternary complex MtCK.Cr.MgATP (K (a)) from 0.13 +/- 0.02 to 0.018 +/- 0.007 mM and that from binary complex MtCK.MgATP (K (ia)) from 1.1 +/- 0.29 mM to 0.17 +/- 0.07 mM. Apparent decrease of dissociation constants for MgATP reflects effective cycling of ATP and ADP between uMtCK and adenine nucleotide translocase (ANT). These results emphasize important role and various pathophysiological implications of the phosphocreatine-creatine kinase system in energy transfer in brain cells, including synaptosomes.  相似文献   

6.
MgATP binding to the actomyosin complex is followed by the dissociation of actin and myosin. The rate of this dissociation process was determined from the relationship between the maximum velocity of shortening and the MgATP concentration. It is shown here that the overall dissociation rate is rather similar in different types of muscle fibers. The relation between MgATP concentration and the maximum shortening velocity was investigated in fast and slow fibers and bundles of myofibrils of the iliofibularis muscle of Xenopus laevis at 4 degrees C from which the sarcolemma was either removed mechanically or made permeable by means of a detergent. A small segment of each fiber was used for a histochemical determination of fiber type. At 5 mM MgATP, the fast fibers had a maximum shortening velocity (Vmax) of 1.74 +/- 0.12 Lo/s (mean +/- SEM) (Lo: segment length at a sarcomere length of 2.2 microns). For the slow fibers Vmax was 0.41 +/- 0.15 Lo/s. In both cases, the relationship between Vmax and the ATP concentration followed the hyperbolic Michaelis-Menten relation. A Km of 0.56 +/- 0.06 mM (mean +/- SD) was found for the fast fibers and of 0.16 +/- 0.03 mM for the slow fibers. Assuming that Vmax is mainly determined by the crossbridge detachment rate, the apparent second order dissociation rate for the actomyosin complex in vivo would be 3.8.10(5) M-1s-1 for the fast fibers and 2.9.10(5) M-1 s-1 for the slow fibers. Maximum power output as a function of the MgATP concentration was derived from the force-velocity relationships.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The binding of MgATP to purified Ca2+Mg2+-dependent adenosine triphosphatase from rabbit muscle sarcoplasmic reticulum was studied by using a flow-dialysis method. Phosphoryl-enzyme formation and catalytic activity were also measured, and all three processes demonstrated negative co-operativity, with half-saturation of all three parameters at a MgATP concentration of 40-50muM, and a Hill coefficient (h) of 0.8. The variation of the binding constant with with pH was measured and showed tighter binding of MgATP with increasing pH over the range 6.8-8.5. Binding parameters for ATP analogues were also measured. The binding of Ca2+ in the presence and absence of ATP analogues gave half saturation at a Ca2+ concentration of 1.2-1.3muM. Hill plots of Ca2+-binding data gave a slope of 0.8. These results show that the binding of MgATP and Ca2+ can occur in a random manner, with neither substrate influencing the affinity of the enzyme for the other.  相似文献   

8.
To define the mechanism responsible for the slow rate of calcium transport by cardiac sarcoplasmic reticulum, the kinetic properties of the Ca2+-dependent ATPase of canine cardiac microsomes were characterized and compared with those of a comparable preparation from rabbit fast skeletal muscle. A phosphoprotein intermediate (E approximately P), which has the stability characteristics of an acyl phosphate, is formed during ATP hydrolysis by cardiac microsomes. Ca2+ is required for the E approximately P formation, and Mg2+ accelerates its decomposition. The Ca2+ concentration required for half-maximal activation of the ATPase is 4.7 +/- 0.2 muM for cardiac microsomes and 1.3 +/- 0.1 muM for skeletal microsomes at pH 6.8 and 0 degrees. The ATPase activities at saturating concentrations of ionized Ca2+ and pH 6.8, expressed as ATP hydrolysis per mg of protein, are 3 to 6 times lower for cardiac microsomes than for skeletal microsomes under a variety of conditions tested. The apparent Km value for MgATP at high concentrations in the presence of saturating concentrations of ionized Ca2+ is 0.18 +/- 0.03 ms at pH 6.8 and 25 degrees. The maximum velocity of ATPase activity under these conditions is 0.45 +/- 0.05 mumol per mg per min for cardiac microsomes and 1.60 +/- 0.05 mumol per mg per min for skeletal microsomes. The maximum steady state level of E approximately P for cardiac microsomes, 1.3 +/- 0.1 nmol per mg, is significantly less than the value of 4.9 +/- 0.2 nmol per mg for skeletal microsomes, so that the turnover number of the Ca2+-dependent ATPase of cardiac microsomes, calculated as the ratio of ATPase activity to the E approximately P level is similar to that of the skeletal ATPase. These findings indicate that the relatively slow rate of calcium transport by cardiac microsomes, whem compared to that of skeletal microsomes, reflects a lower density of calcium pumping sites and lower Ca2+ affinity for these sites, rather than a lower turnover rate.  相似文献   

9.
The calcium activation of the ATPase (ATP phosphohydrolase, EC 3.6.1.3) activity of cardiac actomyosin reconstituted from bovine cardiac myosin and a complex of actin-tropomyosin-troponin extracted from bovine cardiac muscle at 37 degrees C was studied and compared with similar proteins from rabbit fast skeletal muscle. The proteins of the actin complex were identified by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. Half-maximal activation of the cardiac actomyosin was seen at a calcium concentration of 1.2 +/- 0.002 (S.E. of mean) muM. A hybridized reconstituted actomyosin made with cardiac myosin and the actin-tropomyosin-troponin complex extracted from rabbit skeletal muscle was also activated by calcium but the half-maximal value was shifted to 0.65 +/- 0.02 (S.E. of mean) muM Ca2+. Homologous rabbit skeletal actomyosin showed half-maximal activation at 0.90 +/- 0.01 (S.E. of mean) muM Ca2+ and the value for a hybridized actomyosin made with rabbit skeletal myosin and the actin-complex from cardiac muscle was found at 1.4 +/- 0.03 (S.E. of mean) muM Ca2+ concentration. Kinetic analysis of the Ca2+ activated ATPase activity of reconstituted bovine cardiac actomyosin indicated some degree of cooperativity with respect to calcium. Double reciprocal plots of reconstituted actomyosins made with bovine cardiac actin complex were curvilinear and significantly different than those of reconstituted actomyosins made with the rabbit fast skeletal actin complex. The Ca2+-dependent cooperativity was of a mixed type as determined from Hill plots for homologous reconstituted bovine cardiac and rabbit fast skeletal actomyosin. The results show that cooperative interactions in reconstituted actomyosins were greater when the actin-tropomyosin-troponin complex was derived from cardiac than skeletal muscle.  相似文献   

10.
R M Raushel  W W Cleland 《Biochemistry》1977,16(10):2176-2181
Isotope exchange studies show that beef liver fructokinase has a random kinetic mechanism in which release of fructose from the enzyme is slower than that catalytic reaction. The stickiness of fructose in the presence of MgATP is confirmed by isotope partition studies, which show it to be released 0.53 times as fast as V1/Et in the presence, and 80--130 times as fast in the absence of MgATP. Fructose-1-P release from it binary complex is not at all rate limiting in the forward direction since no exchange of MgADP back into MgATP could be observed during the forward reaction. Failure to find any isotope effect by the equilibrium perturbation method with [1-18O]fructose (upper limit, 1.003, shows that P--O bond cleavage or formation is not rate limiting. The pH profiles for the forward reaction show a group (probably carboxyl with pK 5.7-6.0 and deltaHion = 0) that must be ionized and a group (perhaps lysine, with pK 9--10, and deltaHion 5-9 kcal/mol) which must be protonated for activity. The profile for the back reaction shows only a group with pK 5.5--6 that must be protonated for activity. A chemical mechanism is proposed in which a carboxyl group on the enzyme accepts a proton from the 1-hydroxyl of fructose during the forward reaction and donates it back during the reverse reaction.  相似文献   

11.
A single cyclic AMP-dependent protein kinase (EC 2.7.1.37) has been isolated from human platelets by using DEAE-cellulose ion-exchange chromatography and Sephadex G-150 gel filtration. The molecular weight of the protein kinase was estimated to be 86 490. In the presence of cyclic AMP, the protein kinase could be dissociated into a catalytic subunit of molecular weight 50 000, and either one regulatory subunit of molecular weight 110 000 or two regulatory subunits of molecular weights 110 000 and 38 100, depending on the pH used. Recombination of either of the regulatory subunits with the catalytic subunit restored cyclic AMP-dependency in the catalytic subunit. The apparent Km for ATP in the presence of 10 muM Mg2+ was 4 muM (plus cyclic AMP) and 4.3 muM (minus cyclic AMP). The concentration of cyclic AMP needed for half-maximal stimulation of the protein kinase was 0.172 muM and apparent dissociation constants of 3.7 nM (absence of MgATP) and 0.18 muM (presence of MgATP) were exhibited by the "protein kinase-cyclic AMP complex". The enzyme required Mg2+ for maximum activity and showed a pH optimum of 6.2 with histone as substrate. In addition to four major endogenous platelet protein acceptors of apparent molecular weights 45 000, 28000, 18 500, and 11 100, the platelet protein kinase also phosphorylated the exogenous acceptor proteins thrombin, collagen and histone, all capable of inducing platelet aggregation. Prothrombin, a nonaggregating agent, was not phosphorylated.  相似文献   

12.
P F Guidinger  T Nowak 《Biochemistry》1991,30(36):8851-8861
The participation of lysine in the catalysis by avian liver phosphoenolpyruvate carboxykinase was studied by chemical modification and by a characterization of the modified enzyme. The rate of inactivation by 2,4-pentanedione is pseudo-first-order and linearly dependent on reagent concentration with a second-order rate constant of 0.36 +/- 0.025 M-1 min-1. Inactivation by pyridoxal 5'-phosphate of the reversible reaction catalyzed by phosphoenolpyruvate carboxykinase follows bimolecular kinetics with a second-order rate constant of 7700 +/- 860 M-1 min-1. A second-order rate constant of inactivation for the irreversible reaction catalyzed by the enzyme is 1434 +/- 110 M-1 min-1. Treatment of the enzyme with pyridoxal 5'-phosphate gives incorporation of 1 mol of pyridoxal 5'-phosphate per mole of enzyme or one lysine residue modified concomitant with 100% loss in activity. A stoichiometry of 1:1 is observed when either the reversible or the irreversible reactions catalyzed by the enzyme are monitored. A study of kobs vs pH suggests this active-site lysine has a pKa of 8.1 and a pH-independent rate constant of inactivation of 47,700 M-1 min-1. The phosphate-containing substrates IDP, ITP, and phosphoenolpyruvate offer almost complete protection against inactivation by pyridoxal 5'-phosphate. Modified, inactive enzyme exhibits little change in Mn2+ binding as shown by EPR. Proton relaxation rate measurements suggest that pyridoxal 5'-phosphate modification alters binding of the phosphate-containing substrates. 31P NMR relaxation rate measurements show altered binding of the substrates in the ternary enzyme.Mn2+.substrate complex. Circular dichroism studies show little change in secondary structure of pyridoxal 5'-phosphate modified phosphoenolpyruvate carboxykinase. These results indicate that avian liver phosphoenolpyruvate carboxykinase has one reactive lysine at the active site and it is involved in the binding and activation of the phosphate-containing substrates.  相似文献   

13.
A novel alpha-glucosidase with an apparent subunit mass of 59 +/- 0. 5 kDa was purified from protein extracts of Rhizobium sp. strain USDA 4280, a nodulating strain of black locust (Robinia pseudoacacia L), and characterized. After purification to homogeneity (475-fold; yield, 18%) by ammonium sulfate precipitation, cation-exchange chromatography, hydrophobic chromatography, dye chromatography, and gel filtration, this enzyme had a pI of 4.75 +/- 0.05. The enzyme activity was optimal at pH 6.0 to 6.5 and 35 degrees C. The activity increased in the presence of NH4+ and K+ ions but was inhibited by Cu2+, Ag+, Hg+, and Fe2+ ions and by various phenyl, phenol, and flavonoid derivatives. Native enzyme activity was revealed by native gel electrophoresis and isoelectrofocusing-polyacrylamide gel electrophoresis with fluorescence detection in which 4-methylumbelliferyl alpha-glucoside was the fluorogenic substrate. The enzyme was more active with alpha-glucosides substituted with aromatic aglycones than with oligosaccharides. This alpha-glucosidase exhibited Michaelis-Menten kinetics with 4-methylumbelliferyl alpha-D-glucopyranoside (Km, 0.141 microM; Vmax, 6.79 micromol min-1 mg-1) and with p-nitrophenyl alpha-D-glucopyranoside (Km, 0.037 microM; Vmax, 2.92 micromol min-1 mg-1). Maltose, trehalose, and sucrose were also hydrolyzed by this enzyme.  相似文献   

14.
A radioactive assay for the determination of pyruvate dehydrogenase complex activity in muscle tissue has been developed. The assay measures the rate of acetyl-CoA formation from pyruvate in a reaction mixture containing NAD+ and CoASH. The acetyl-CoA is determined as [14C]citrate after condensation with [14C]-oxaloacetate by citrate synthase. The method is specific and sensitive to the picomole range of acetyl-CoA formed. In eleven normal subjects, the active form of pyruvate dehydrogenase (PDCa) in resting human skeletal muscle samples obtained using the needle biopsy technique was 0.44 +/- 0.16 (SD) mumol acetyl-CoA.min-1.g-1 wet wt. Total pyruvate dehydrogenase complex (PDCt) activity was determined after activation by pretreating the muscle homogenate with Ca2+, Mg2+, dichloroacetate, glucose, and hexokinase. The mean value for PDCt was 1.69 +/- 0.32 mumol acetyl-CoA.min-1.g-1 wet wt, n = 11. The precision of the method was determined by analyzing 4-5 samples of the same muscle piece. The coefficient of variation for PDCa was 8% and for PDCt 5%.  相似文献   

15.
FliI is a key component of the flagellar export apparatus in Salmonella typhimurium. It catalyzes the hydrolysis of ATP which is necessary for flagellar assembly. Affinity blotting experiments showed that purified flagellin and hook protein, two flagellar axial proteins, interact specifically with FliI. The interaction of either of the two proteins with FliI, increases the intrinsic ATPase activity. The presence of either flagellin or hook protein stimulates ATPase activity in a specific and reversible manner. A Vmax of 0.12 nmol Pi min-1 microgram-1 and a Km for MgATP of 0.35 mM was determined for the unstimulated FliI; the presence of flagellin increased the Vmax to 0.35 nmol Pi min-1 microgram-1 and the Km for MgATP to 1.1 mM. The stimulation induced by the axial proteins was fully reversible suggesting a direct link between the catalytic activity of FliI and the export process.  相似文献   

16.
A poly(A) polymerase has been purified from the soluble protein fraction of calf thymus gland. The activity is cytoplasmic and nonparticulate. Mn-2+ATP is the preferred substrate. On the basis of disc gel electrophoresis in sodium dodecyl sulfate-acrylamide gels, gel filtration, and sedimentation velocity in sucrose gradients, the enzyme has a molecular weight of 62,000 and appears to consist of one polypeptide chain. The enzyme preparation is shown to be nearly homogeneous by disc gel electrophoresis and isoelectric-focusing. The activity has a pI of about 7.4. The specific activity of the enzyme is about 1700 mumol per hour per mg of protein, giving a turnover number of about 1800 mol of substrate per mol of enzyme min- minus 1. The activity is highly specific for ATP and is inhibited by other ribonucleoside triphosphates. It is sensitive to high levels of RNA-polymerase inhibitors. Km for oligoadenylate is 50 muM in the presence of Mn-2+ and 200 muM in Mg-2+ and equivalent Vmax is achieved with either metal ion. The initiator function may be filled by a variety of oligoribonucleotides having a free 3'-OH.  相似文献   

17.
1. A cephalosporin-binding protein obtained from a strain of Citrobacter freundii was purified to the extent of a single band in analytical and sodium dodecyl sulfate-containing disc electrophoresis. 2. The molecular weight determined by disc electrophoresis was 53 000. 3. The binding protein did not show any beta-lactamase activity at substrate concentrations examined: 6 mM to 100 muM of penicillins and 12 mM to 100 muM of cephalosporins. 4. In gel filtration, [14C]benzylpenicillin was found not to bind to the binding protein. 5. In fluorescence titration, all cephalosporins tested quenched the fluorescence. Association constants of cephalosporins were in the range of 0.8-12-103 M-1, and one binding site was calculated for all cephalosporins tested.  相似文献   

18.
A preparation method has been described to obtain a relatively pure and functionally intact fragmented sarcoplasmic reticulum (SR) vesicles fraction from normal and atrophied muscles. Purified SR preparations from rabbit gastrocnemius muscle atrophied by disuse showed similar protein composition (gel electrophoresis; Laemmli 1970) and similar vanadate induced crystallization (Dux and Martonosi 1983) properties of Ca2+-ATPase as those of control preparations. In the early period of atrophy (1-2 weeks) both the Ca2+-ATPase activity and Ca2+ uptake showed a 2-3-fold increase (from 3.42 +/- 0.24 to 7.34 +/- 0.25 mumol Pi X mg-1 prot X min-1 and from 1.26 +/- 0.10 to 3.36 +/- 0.22 mumol/l Ca2+ X min-1 X mg-1 prot. respectively).  相似文献   

19.
Junctional sarcoplasmic reticulum (SR) vesicles isolated from back muscles of normal and malignant hyperthermia susceptible (MHS) pigs were phosphorylated by addition of MgATP in the presence of 5 mM Ca2+ and 1 microM calmodulin (CaM). The major site of phosphorylation was a 60 kDa protein both in normal and MHS SR. The maximal amount of phosphorylation in MHS SR (5 pmol P/mg SR) was significantly lower than that in the normal SR (12 pmol P/mg SR). The phosphorylated 60 kDa protein was spontaneously dephosphorylated both in normal and MHS SR. Ca2+ release from the passively loaded SR was induced by a Ca2+-jump, and monitored by stopped-flow fluorometry using chlorotetracycline. In the absence of preincubation with MgATP, no significant difference was found in any of the kinetic parameters of Ca2+ release between normal and MHS SR. Upon addition of 20 microM MgATP to the passively loaded SR to phosphorylate the 60 kDa protein, the initial rate of Ca2+ release in normal SR significantly decreased from 659 +/- 102 to 361 +/- 105 nmol Ca2+/mg SR per s, whereas in MHS SR the rate decreased from 749 +/- 124 to 652 +/- 179 nmol Ca2+/mg SR per s. Addition of 20 microM adenosine 5'-[beta, gamma-imido]triphosphate (p[NH]ppA) did not significantly alter the initial rate of Ca2+ release both in normal and MHS SR. These results suggest that the previously reported higher Ca2+ release rate in MHS SR (Kim et al. (1984) Biochim. Biophys. Acta 775, 320-327) is at least partly due to the reduced extent of the Ca2+/CaM-dependent phosphorylation of the 60 kDa protein. Two-dimensional gel electrophoresis study showed that amount of a protein with Mr = 55,000 was significantly lower in MHS SR than in normal SR suggesting that the abnormally lower amount of 55 kDa protein would cause the lower amount of phosphorylation of the 60 kDa protein in MHS SR.  相似文献   

20.
Addition of MgADP to skinned skeletal muscle fibers causes a rise in Ca(2+)-activated isometric tension. Mechanisms underlying this tension increase have been investigated by rapid photogeneration of ADP within skinned single fibers of rabbit psoas muscle. Photolysis of caged ADP (P2-1(2-nitrophenyl)ethyladenosine 5'-diphosphate) resulted in an exponential increase in isometric tension with an apparent rate constant, kADP, of 9.6 +/- 0.3 s-1 (mean +/- SE, n = 28) and an amplitude, PADP, of 4.9 +/- 0.3% Po under standard conditions (0.5 mM photoreleased MgADP, 4 mM MgATP, pH 7.0, pCa 4.5, 0.18 M ionic strength, 15 degrees C). PADP depended upon the concentration of photoreleased MgADP as well as the concentration of MgATP. A plot of 1/PADP vs. 1/[MgADP] at three MgATP concentrations was consistent with competition between MgADP and MgATP for the same site on the crossbridge. The rate of the transient, kADP, also depended upon the concentration of MgADP and MgATP. At both 4 and 1 mM MgATP, kADP was not significantly different after photorelease of 0.1-0.5 mM MgADP, but was reduced by 28-40% when 3.5 mM MgADP was added before photorelease of 0.5 mM MgADP. kADP was accelerated by about twofold when MgATP was varied from 0.5 to 8 mM MgATP. These effects of MgATP and MgADP were not readily accounted for by population of high force-producing states resulting from reversal of the ADP dissociation process. Rather, the results suggest that competition between MgADP and MgATP for crossbridges at the end of the cycle slows detachment leading to accumulation of force-generating crossbridges. Elevation of steady- state Pi concentration from 0.5 to 30 mM caused acceleration of kADP from 10.2 +/- 0.5 to 27.8 +/- 1.8 s-1, indicating that the tension rise involved crossbridge flux through the Pi dissociation step of the cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号