首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Macrophages in atherosclerotic lesions accumulate excess free cholesterol (FC) and phospholipid. Because excess FC is toxic to macrophages, these observations may have relevance to macrophage death and necrosis in atheromata. Previous work by us showed that at early stages of FC loading, when macrophages are still healthy, there is activation of the phosphatidylcholine (PC) biosynthetic enzyme, CTP:phosphocholine cytidylyltransferase (CT), and accumulation of PC mass. We hypothesized that this is an adaptive response, albeit transient, that prevents the FC:PC ratio from reaching a toxic level. To test this hypothesis directly, we created mice with macrophage-targeted disruption of the major CT gene, CTalpha, using the Cre-lox system. Surprisingly, the number of peritoneal macrophages harvested from CTalpha-deficient mice and their overall health under normal culture conditions appeared normal. Moreover, CT activity and PC biosynthesis and in vitro CT activity were decreased by 70-90% but were not absent. As a likely explanation of this residual activity, we showed that CTbeta2, a form of CT that arises from another gene, is induced in CTalpha-deficient macrophages. To test our hypothesis that increased PC biosynthesis is an adaptive response to FC loading, the viability of wild-type versus CTalpha-deficient macrophages under control and FC-loading conditions was compared. After 5 h of FC loading, death increased from 0.7% to only 2.0% in wild-type macrophages but from 0. 9% to 29.5% in CTalpha-deficient macrophages. These data offer the first molecular genetic evidence that activation of CTalpha and induction of PC biosynthesis in FC-loaded macrophages is an adaptive response. Furthermore, the data reveal that CTbeta2 in macrophages is induced in the absence of CTalpha and that a low level of residual CT activity, presumably due to CTbeta2, is enough to keep the cells viable in the peritoneum in vivo and under normal culture conditions.  相似文献   

2.
We have studied the induction of papilloma formation in response to skin tumor promotion in transgenic mice overexpressing the human ornithine decarboxylase gene and in their nontransgenic littermates. The transgenic animals displayed a basal epidermal ornithine decarboxylase activity that was nearly 20 times higher than in their nontransgenic littermates. A single topical application of 12-O-tetradecanoylphorbol-13-acetate induced a much more profound and longer-lasting increase in transgene-derived ornithine decarboxylase activity in comparison with the endogenous enzyme activity. Initiation of skin tumorigenesis with a single topical application of dimethylbenz[a]antracene followed by twice-weekly application of 12-O-tetradecanoylphorbol-13-acetate resulted in the appearance of first papillomas both in nontransgenic and transgenic animals by week 7. However, after 11 weeks of 12-O-tetradecanoylphorbol-13-acetate application, the number of papillomas per animal was almost 100% higher in the transgenic animals than in their nontransgenic littermates. These results indicate that an overexpression of epidermal ornithine decarboxylase confers a growth advantage on skin tumors in vivo.  相似文献   

3.
During differentiation neurons increase phospholipid biosynthesis to provide new membrane for neurite growth. We studied the regulation of phosphatidylcholine (PC) biosynthesis during differentiation of two neuronal cell lines: PC12 cells and Neuro2a cells. We hypothesized that in PC12 cells nerve growth factor (NGF) would up-regulate the activity and expression of the rate-limiting enzyme in PC biosynthesis, CTP:phosphocholine cytidylyltransferase (CT). During neurite outgrowth, NGF doubled the amount of cellular PC and CT activity. CTbeta2 mRNA increased within 1 day of NGF application, prior to the formation of visible neurites, and continued to increase during neurite growth. When neurites retracted in response to NGF withdrawal, CTbeta2 mRNA, protein, and CT activity decreased. NGF specifically activated CTbeta2 by promoting its translocation from cytosol to membranes. In contrast, NGF did not alter CTalpha expression or translocation. The increase in both CTbeta2 mRNA and CT activity was inhibited by U0126, an inhibitor of mitogen-activated kinase/extracellular signal-regulated kinase kinase 1/2 (MEK1/2). In Neuro2a cells, retinoic acid significantly increased CT activity (by 54%) and increased CTbeta2 protein, coincident with neurite outgrowth but did not change CTalpha expression. Together, these data suggest that the CTbeta2 isoform of CT is specifically up-regulated and activated during neuronal differentiation to increase PC biosynthesis for growing neurites.  相似文献   

4.
Two enzymatic activities of the nuclear enzyme poly(ADP-ribose) polymerase or transferase (ADPRT, EC 2.4.2.30), a DNA-associating abundant nuclear protein with multiple molecular activities, have been determined in HL60 cells prior to and after their exposure to 1 microM retinoic acid, which results in the induction of differentiation to mature granulocytes in 4-5 days. The cellular concentration of immunoreactive ADPRT protein molecules in differentiated granulocytes remained unchanged compared to that in HL60 cells prior to retinoic acid addition (3.17 +/- 1.05 ng/10(5) cells), as did the apparent activity of poly(ADP-ribose) glycohydrolase of nuclei. On the other hand, the poly(ADP-ribose) synthesizing capacity of permeabilized cells or isolated nuclei decreased precipitously upon retinoic acid-induced differentiation, whereas the NAD glycohydrolase activity of nuclei significantly increased. The nuclear NAD glycohydrolase activity was identified as an ADPRT-catalyzed enzymatic activity by its unreactivity toward ethenoadenine NAD as a substrate added to nuclei or to purified ADPRT. During the decrease in in vitro poly(ADP-ribose) polymerase activity of nuclei following retinoic acid treatment, the quantity of endogenously poly(ADP-ribosylated) ADPRT significantly increased, as determined by chromatographic isolation of this modified protein by the boronate affinity technique, followed by gel electrophoresis and immunotransblot. When homogenous isolated ADPRT was first ADP-ribosylated in vitro, it lost its capacity to catalyze further polymer synthesis, whereas the NAD glycohydrolase function of the automodified enzyme was greatly augmented. Since results of in vivo and in vitro experiments coincide, it appears that in retinoic acid-induced differentiated cells (granulocytes) the autopoly(ADP-ribosylated) ADPRT performs a predominantly, if not exclusively, NAD glycohydrolase function.  相似文献   

5.
It was discovered that there is sphingomyelinase activity in the rat liver nuclei. The maximum of enzyme activity is at pH 7.1. The data obtained demonstrated that the main part of sphingomyelinase is located in the nuclear membrane. Comparison of sphingomyelinase activity in cell nuclei, liver and brain homogenates shows high level of enzyme activity in the nuclei. The authors discuss possible participation of sphingomyelinases in changes of phospholipids composition in nuclear structure under different functional activity of cell nuclei.  相似文献   

6.
In order to investigate whether foreign genes can be used as genetic markers of donor nuclei in fish nuclear transplantation, expression of the GFP gene derived from donor nuclei was examined in nuclear transplants in medaka (Oryzias latipes). Embryonic nuclei were obtained from blastula embryos produced by crossing of transgenic fish of the wild-type strain heterozygous for the GFP gene with nontransgenic ones or by mutual crossing between transgenic fish. The GFP gene was driven by the promoter of the medaka elongation factor gene, EF-1alpha-A, which is known to induce GFP expression in many tissues except for the muscle in the transgenic fish. The nuclei were transplanted into nonenucleated unfertilized eggs of the orange-red strain. Adult nuclear transplants were successfully obtained at the rate of about 2% of the operated eggs. They were triploid and had no reproductive potential. The GFP gene was expressed in embryos, fry, and adults of nuclear transplants in a pattern similar to that in the transgenic fish. These results indicate that GFP is useful as a foreign genetic marker of donor nuclei in fish nuclear transplantation.  相似文献   

7.
Macrophage-specific overexpression of cholesteryl ester hydrolysis in hormone-sensitive lipase transgenic (HSL Tg) female mice paradoxically increases cholesterol esterification and cholesteryl ester accumulation in macrophages, and thus susceptibility to diet-induced atherosclerosis compared to nontransgenic C57BL/6 mice. The current studies suggest that whereas increased cholesterol uptake could contribute to transgenic foam cell formation, there are no differences in cholesterol synthesis and the expression of cholesterol efflux mediators (ABCA1, ABCG1, apoE, PPARgamma, and LXRalpha) compared to wild-type macrophages. HSL Tg macrophages exhibit twofold greater efflux of cholesterol to apoA-I in vitro, suggesting the potential rate-limiting role of cholesteryl ester hydrolysis in efflux. However, macrophage cholesteryl ester levels appear to depend on the relative efficacy of alternate pathways for free cholesterol in either efflux or re-esterification. Thus, increased atherosclerosis in HSL Tg mice appears to be due to the coupling of the efficient re-esterification of excess free cholesterol to its limited removal mediated by the cholesterol acceptors in these mice. The overexpression of cholesterol acceptors in HSL-apoA-IV double-transgenic mice increases plasma HDL levels and decreases diet-induced atherosclerosis compared to HSL Tg mice, with aortic lesions reduced to sizes in nontransgenic littermates. The results in vivo are consistent with the effective efflux from HSL Tg macrophages supplemented with HDL and apoA-I in vitro, and highlight the importance of cholesterol acceptors in inhibiting atherosclerosis caused by imbalances in the cholesteryl ester cycle.  相似文献   

8.
DNase , which cleaves chromosomal DNA into nucleosomal units (DNA ladder formation), has been suggested to be the critical component of apoptotic machinery. Using rat pheochromocytoma PC12 cells, which are differentiated to sympathetic neurons by nerve growth factor (NGF), we investigated whether DNase -like enzyme is present in neuronal cells and is involved in neuronal cell death. The nuclear auto-digestion assay for DNase catalyzing internucleosomal DNA cleavage revealed that nuclei from neuronal differentiated PC12 cells contain acidic and neutral endonucleases, while nuclei from undifferentiated PC12 cells have only acidic endonuclease. The DNA ladder formation observed in isolated nuclei from neuronal differentiated PC12 cells at neutral pH requires both Ca2+ and Mg2+, and is sensitive to Zn2+. The molecular mass of the neutral endonuclease present in neuronal differentiated PC12 cell nuclei is 32000 as determined by activity gel analysis (zymography). The properties of the neuronal endonuclease present in neuronal differentiated PC12 cell nuclei were similar to those of purified DNase from rat thymocytes and splenocytes. Interestingly, in neuronal differentiated PC12 cells, internucleosomal DNA fragmentation is observed following NGF deprivation, whereas undifferentiated PC12 cells fail to exhibit DNA ladder formation during cell death by serum starvation. These results suggest that the DNase -like endonuclease present in neuronal differentiated PC12 cell nuclei is involved in internucleosomal DNA fragmentation during apoptosis, induced by NGF deprivation.  相似文献   

9.
Abstract: Copper/zinc superoxide dismutase (Cu/Zn-SOD) is a major free radical scavenging enzyme. Increased Cu/Zn-SOD activity protects cells against oxidative stress mediated by different mechanisms. However, there is also in vitro and in vivo evidence that, in the absence of abnormal oxidative stress, chronic increased Cu/Zn-SOD activity is detrimental to living cells. To address this issue, we examined the fate of mature midbrain neurons from transgenic mice expressing human Cu/Zn-SOD and from their nontransgenic littermates. Midbrain from transgenic pups had about threefold higher Cu/Zn-SOD activity than that from nontransgenic pups. Virtually all transgenic neurons were strongly immunoreactive for human Cu/Zn-SOD protein in their cell bodies and processes. The number of midbrain neurons decreased over time in both transgenic and nontransgenic cultures, but to a significantly smaller extent in the transgenic cultures. Postnatal midbrain neurons died by either necrosis or apoptosis, and increased Cu/Zn-SOD activity attenuated both forms of cell death. Furthermore, increased Cu/Zn-SOD activity better prevented the loss of dopaminergic neurons than GABAergic neurons. We also found that neuronal processes were dramatically denser in transgenic cultures than in nontransgenic cultures. These results indicate that chronic increased Cu/Zn-SOD activity does not appear to be detrimental, but rather promotes cell survival and neuronal process development in postnatal midbrain neurons, probably by providing more efficient detoxification of free radicals. They also show that increased Cu/Zn-SOD activity does not seem to play a critical role in determining the mode of cell death in this culture system.  相似文献   

10.
The photosynthetic characteristics of four transgenic rice lines over-expressing rice NADP-malic enzyme (ME), and maize phosphoenolpyruvate carboxylase (PC), pyruvate,orthophosphate dikinase (PK), and PC+PK (CK) were investigated using outdoor-grown plants. Relative to untransformed wild-type (WT) rice, PC transgenic rice exhibited high PC activity (25-fold increase) and enhanced activity of carbonic anhydrase (more than two-fold increase), while the activity of ribulose-bisphosphate carboxylase/oxygenase (Rubisco) and its kinetic property were not significantly altered. The PC transgenic plants also showed a higher light intensity for saturation of photosynthesis, higher photosynthetic CO2 uptake rate and carboxylation efficiency, and slightly reduced CO2 compensation point. In addition, chlorophyll a fluorescence analysis indicates that PC transgenic plants are more tolerant to photo-oxidative stress, due to a higher capacity to quench excess light energy via photochemical and non-photochemical means. Furthermore, PC and CK transgenic rice produced 22–24% more grains than WT plants. Taken together, these results suggest that expression of maize C4 photosynthesis enzymes in rice, a C3 plant, can improve its photosynthetic capacity with enhanced tolerance to photo-oxidation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
Cu/Zn superoxide dismutase plays important role in immune response   总被引:6,自引:0,他引:6  
Activation of macrophages leads to the secretion of cytokines and enzymes that shape the inflammatory response and increase metabolic processes. This, in turn, results in increased production of reactive oxygen species. The role of Cu/Zn superoxide dismutase (SOD-1), an important enzyme in cellular oxygen metabolism, was examined in activated peritoneal elicited macrophages (PEM) and in several inflammatory processes in vivo. LPS and TNF-alpha induced SOD-1 in PEM. SOD-1 induction by LPS was mainly via extracellular signal-regulated kinase-1 activation. Transgenic mice overexpressing SOD-1 demonstrated a significant increase in the release of TNF-alpha and of the metalloproteinases MMP-2 and MMP-9 from PEM. Disulfiram (DSF), an inhibitor of SOD-1, strongly inhibited the release of TNF-alpha, vascular endothelial growth factor, and MMP-2 and MMP-9 from cultured activated PEM. These effects were prevented by addition of antioxidants, further indicating involvement of reactive oxygen species. In vivo, transgenic mice overexpressing SOD-1 demonstrated a 4-fold increase in serum TNF-alpha levels and 2-fold stronger delayed-type hypersensitivity reaction as compared with control nontransgenic mice. Conversely, oral administration of DSF lowered TNF-alpha serum level by 4-fold, lowered the delayed-type hypersensitivity response in a dose-dependent manner, and significantly inhibited adjuvant arthritis in Lewis rats. The data suggest an important role for SOD-1 in inflammation, establish DSF as a potential inhibitor of inflammation, and raise the possibility that regulation of SOD-1 activity may be important in the treatment of immune-dependent pathologies.  相似文献   

12.
In two groups of silver foxes--i.e. selected by the domestic type of behaviour and aggressive ones--studies have been made on the activity of the key enzyme in biosynthesis of catecholamines--i.e. tyrosine hydroxylase from the brain. Domesticated animals exhibited higher enzymic activity in the locus coeruleus, hypothalamus and cortex. Animals from both groups did not differ with respect to the level of tyrosine hydroxylase activity in the corpus striatum. The enzymic reactions of homogenates from locus coeruleus region of the brain in both groups of animals, as well as homogenates from the corpus striatum of the brain of aggressive animals exhibited low and approximately equal values of Michaelis constant for tyrosine. The value of KM was 3 times higher in the hypothalamus in both groups of foxes and in the corpus striatum of tame animals. Presumably, selection of silver foxes for the domestic type of behaviour resulted in the increase of biosynthesis of catecholamines in the brain due to the increase in the number of enzyme molecules. The increase in the activity of tyrosine hydroxylase in noradrenaline system of the brain may be associated with changes in the behavioural pattern of animals resulting from selection.  相似文献   

13.
Class A scavenger receptors (SR-A) have several proposed functions that could impact atherosclerosis and inflammatory processes. To define the function of SR-A in vivo, we created C57BL/6 transgenic mice that expressed bovine SR-A under the control of the restricted macrophage promoter, lysozyme (lyso-bSR-A). bSR-A mRNA was present in cultured peritoneal macrophages of transgenic mice and tissues that contain significant macrophages including spleen, lung, and ileum. Functional overexpression of SR-A was demonstrated in peritoneal macrophages both by augmented cholesterol ester deposition in response to AcLDL and enhanced adhesion in transgenic mice compared with nontransgenic littermates. To determine whether macrophage-specific expression of bSR-A regulated inflammatory responses, granulomas were generated by subcutaneous injection of carrageenan. Granuloma size was significantly increased in lyso-bSR-A transgenic mice compared with wild-type littermates [421 +/- 51 mg (n = 11) vs. 127 +/- 22 mg (n = 10), P < 0.001]. However, the larger granulomas in lyso-bSR-A transgenic mice were only associated with an increase in unesterified cholesterol, and not cholesterol esters. Furthermore, granulomas from transgenic mice had an increase in the number of macrophages within the tissue.Therefore, macrophage expression of bSR-A increased presence of this cell type in granulomas without enhancing the deposition of cholesterol esters, consistent with a role of the adhesive property of the protein.  相似文献   

14.
Li JX  Li ZQ  Pang YZ  Tang CS 《Life sciences》2003,73(8):969-980
The present study is undertaken to investigate whether the phospholipase A(2) (PLA(2)) influences mRNA nucleocytoplasmic transport evaluated by nucleoside triphosphatase (NTPase) activity and mRNA export in isolated hepatic nuclear envelope. Isolated hepatic nuclei from rat liver were exposed to PLA(2) (10(-5) approximately 10(-2)/ml) with or without incorporation of nuclei with phosphatidylcholine (PC) liposome. Messenger RNA exports and NTPase activities of nuclear membrane were assayed using ATP and GTP as substrates. We found that the RNA efflux, evaluated by [3H] uridine, was potently decreased in a concentration-dependent manner, by incubation of hepatic nuclei with PLA(2), regardless using ATP or GTP as substrates. The PC content in nuclear membrane was also decreased by PLA(2)-treatment. The PC was incorporated into the nuclear membrane by addition of phospholipid liposomes into the incubation mixture. PC incorporation into the nuclear membrane did not alter mRNA export. However this resulted in a significant increase in mRNA export rate in PLA(2)-treated group. Messenger RNA export rate in PLA(2) (10(-3) unit/mL)- treated nuclear membrane was positively correlated with level of PC incorporation, both using ATP and GTP as substrates. The activity of nucleoside triphosphatase, a nuclear membrane-associated enzyme, showed parallel variations with mRNA transport. It is concluded that nuclear PLA(2) plays a regulatory role in RNA transport, which can be antagonized by exogenous PC. These might be pathophysiologically significance, although the mechanisms by which this effect takes place remain to be clarified.  相似文献   

15.
Secreted phospholipase A2 group X (sPLA(2)-X) is one of the most potent enzymes of the phospholipase A(2) lipolytic enzyme superfamily. Its high catalytic activity toward phosphatidylcholine (PC), the major phospholipid of cell membranes and low-density lipoproteins (LDL), has implicated sPLA(2)-X in chronic inflammatory conditions such as atherogenesis. We studied the role of sPLA(2)-X enzyme activity in vitro and in vivo, by generating sPLA(2)-X-overexpressing macrophages and transgenic macrophage-specific sPLA(2)-X mice. Our results show that sPLA(2)-X expression inhibits macrophage activation and inflammatory responses upon stimulation, characterized by reduced cell adhesion and nitric oxide production, a decrease in tumor necrosis factor (TNF), and an increase in interleukin (IL)-10. These effects were mediated by an increase in IL-6, and enhanced production of prostaglandin E(2) (PGE(2)) and 15-deoxy-Delta12,14-prostaglandin J(2) (PGJ(2)). Moreover, we found that overexpression of active sPLA(2)-X in macrophages strongly increases foam cell formation upon incubation with native LDL but also oxidized LDL (oxLDL), which is mediated by enhanced expression of scavenger receptor CD36. Transgenic sPLA(2)-X mice died neonatally because of severe lung pathology characterized by interstitial pneumonia with massive granulocyte and surfactant-laden macrophage infiltration. We conclude that overexpression of the active sPLA(2)-X enzyme results in enhanced foam cell formation but reduced activation and inflammatory responses in macrophages in vitro. Interestingly, enhanced sPLA(2)-X activity in macrophages in vivo leads to fatal pulmonary defects, suggesting a crucial role for sPLA(2)-X in inflammatory lung disease.  相似文献   

16.
17.
18.
We and others have previously demonstrated the existence of an autonomous nuclear polyphosphoinositide cycle that generates second messengers such as diacylglycerol (DAG), capable of attracting to the nucleus specific protein kinase C (PKC) isoforms (Neri et al. (1998) J. Biol. Chem. 273, 29738-29744). Recently, however, nuclei have also been shown to contain the enzymes responsible for the synthesis of the non-canonical 3-phosphorylated inositides. To clarify a possible role of this peculiar class of inositol lipids we have examined the question of whether nerve growth factor (NGF) induces PKC-zeta nuclear translocation in PC12 cells and whether this translocation is dependent on nuclear phosphatidylinositol 3-kinase (PI 3-K) activity and its product, phosphatidylinositol 3,4, 5-trisphosphate [PtdIns(3,4,5)P(3)]. NGF increased both the amount and the enzyme activity of immunoprecipitable PI 3-K in PC12 cell nuclei. Activation of the enzyme, but not its translocation, was blocked by PI 3-K inhibitors wortmannin and LY294002. Treatment of PC12 cells for 9 min with NGF led to an increase in the nuclear levels of PtdIns(3,4,5)P(3). Maximal translocation of PKC-zeta from the cytoplasm to the nucleus (as evaluated by immunoblotting, enzyme activity, and confocal microscopy) occurred after 12 min of exposure to NGF and was completely abrogated by either wortmannin or LY294002. In contrast, these two inhibitors did not block nuclear translocation of the conventional, DAG-sensitive, PKC-alpha. On the other hand, the specific phosphatidylinositol phospholipase C inhibitor, 1-O-octadeyl-2-O-methyl-sn-glycero-3-phosphocholine, was unable to abrogate nuclear translocation of the DAG-insensitive PKC-zeta. These data suggest that a nuclear increase in PI 3-K activity and PtdIns(3,4,5)P(3) production are necessary for the subsequent nuclear translocation of PKC-zeta. Furthermore, they point to the likelihood that PKC-zeta is a putative nuclear downstream target of PI 3-K during NGF-promoted neural differentiation.-Neri, L. M., Martelli, A. M., Borgatti, P., Colamussi, M. L., Marchisio, M., Capitani, S. Increase in nuclear phosphatidylinositol 3-kinase activity and phosphatidylinositol (3,4, 5) trisphosphate synthesis precede PKC-zeta translocation to the nucleus of NGF-treated PC12 cells.  相似文献   

19.
20.
Regulation of pyrimidine nucleotide biosynthesis in Pseudomonas synxantha ATCC 9890 was investigated and the pyrimidine biosynthetic pathway enzyme activities were affected by pyrimidine supplementation in cells grown on glucose or succinate as a carbon source. In pyrimidine-grown ATCC 9890 cells, the activities of four de novo enzymes could be depressed which indicated possible repression of enzyme synthesis. To learn whether the pathway was repressible, pyrimidine limitation experiments were conducted using an orotate phosphoribosyltransferase (pyrE) mutant strain identified in this study. Compared to excess uracil growth conditions for the succinate-grown mutant strain cells, pyrimidine limitation of this strain caused dihydroorotase activity to increase about 3-fold while dihydroorotate dehydrogenase and orotidine 5'-monophosphate decarboxylase activities rose about 2-fold. Regulation of de novo pathway enzyme synthesis by pyrimidines appeared to be occurring. At the level of enzyme activity, aspartate transcarbamoylase activity in P. synxantha ATCC 9890 was strongly inhibited in vitro by pyrophosphate, UTP, ADP, ATP, CTP and GTP under saturating substrate concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号