首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The molecular basis for the transport of manganese across membranes in plant cells is poorly understood. We have found that IRT1, an Arabidopsis thaliana metal ion transporter, can complement a mutant Saccharomyces cerevisiae strain defective in high-affinity manganese uptake (smf1). The IRT1 protein has previously been identified as an iron transporter. The current studies demonstrated that IRT1, when expressed in yeast, can transport manganese as well. This manganese uptake activity was inhibited by cadmium, iron(II) and zinc, suggesting that IRT1 can transport these metals. The IRT1 cDNA also complements a zinc uptake-deficient yeast mutant strain (zrt1zrt2), and IRT1-dependent zinc transport in yeast cells is inhibited by cadmium, copper, cobalt and iron(III). However, IRT1 did not complement a copper uptake-deficient yeast mutant (ctr1), implying that this transporter is not involved in the uptake of copper in plant cells. The expression of IRT1 is enhanced in A. thaliana plants grown under iron deficiency. Under these conditions, there were increased levels of root-associated manganese, zinc and cobalt, suggesting that, in addition to iron, IRT1 mediates uptake of these metals into plant cells. Taken together, these data indicate that the IRT1 protein is a broad-range metal ion transporter in plants.  相似文献   

2.
Response of Schizosaccharomyces pombe to zinc deficiency   总被引:1,自引:0,他引:1  
  相似文献   

3.
Iron is an important nutrient in N2-fixing legume root nodules. Iron supplied to the nodule is used by the plant for the synthesis of leghemoglobin, while in the bacteroid fraction, it is used as an essential cofactor for the bacterial N2-fixing enzyme, nitrogenase, and iron-containing proteins of the electron transport chain. The supply of iron to the bacteroids requires initial transport across the plant-derived peribacteroid membrane, which physically separates bacteroids from the infected plant cell cytosol. In this study, we have identified Glycine max divalent metal transporter 1 (GmDmt1), a soybean homologue of the NRAMP/Dmt1 family of divalent metal ion transporters. GmDmt1 shows enhanced expression in soybean root nodules and is most highly expressed at the onset of nitrogen fixation in developing nodules. Antibodies raised against a partial fragment of GmDmt1 confirmed its presence on the peribacteroid membrane (PBM) of soybean root nodules. GmDmt1 was able to both rescue growth and enhance 55Fe(II) uptake in the ferrous iron transport deficient yeast strain (fet3fet4). The results indicate that GmDmt1 is a nodule-enhanced transporter capable of ferrous iron transport across the PBM of soybean root nodules. Its role in nodule iron homeostasis to support bacterial nitrogen fixation is discussed.  相似文献   

4.
Experiments were carried out to investigate if drought stressaffects the ability of bacteroids from soybean (Glycine maxL.) root nodules to utilize proline and malate to support nitrogenaseactivity. The bacteroids were isolated in sub-ambient oxygenand nitrogenase activity was measured by acetylene reduction.Nitrogenase activity supported by proline was 8-fold higherin bacteroids from drought-stressed nodules than in bacteroidsfrom control nodules. In contrast to the results with prolinethere was no significant response to drought stress in the rateof bacteroid nitrogenase activity supported by malate. The effectof drought stress on transport of proline and malate acrossthe symbiosome membrane was investigated by incubation of symbiosomesisolated in sub-ambient oxygen with radioactive tracers. Droughtstress tended to increase the rate of proline uptake relativeto a minor decrease in malate uptake into symbiosomes in responseto drought. There was no indication of a saturable camer inthe symbiosome membrane for either substrate at concentrationsin the range 0.1-2 mM. The rate of malate uptake into symbiosomeswas twice as high as the rate of proline uptake at all substratelevels tested. The protein composition of the symbiosome membranewas altered in response to drought stress and these changesmay relate .to the permeability of the symbiosome membrane. Key words: Drought stress, nitrogenase activity, proline, soybean nodules, symbiosome membrane, transport  相似文献   

5.
6.
Nitrogen-fixing symbiosis of legume plants with Rhizobium bacteria is established through complex interactions between two symbiotic partners. Similar to the mutual recognition and interactions at the initial stages of symbiosis, nitrogen fixation activity of rhizobia inside root nodules of the host legume is also controlled by specific interactions during later stages of nodule development. We isolated a novel Fix(-) mutant, ineffective greenish nodules 1 (ign1), of Lotus japonicus, which forms apparently normal nodules containing endosymbiotic bacteria, but does not develop nitrogen fixation activity. Map-based cloning of the mutated gene allowed us to identify the IGN1 gene, which encodes a novel ankyrin-repeat protein with transmembrane regions. IGN1 expression was detected in all organs of L. japonicus and not enhanced in the nodulation process. Immunoanalysis, together with expression analysis of a green fluorescent protein-IGN1 fusion construct, demonstrated localization of the IGN1 protein in the plasma membrane. The ign1 nodules showed extremely rapid premature senescence. Irregularly enlarged symbiosomes with multiple bacteroids were observed at early stages (8-9 d post inoculation) of nodule formation, followed by disruption of the symbiosomes and disintegration of nodule infected cell cytoplasm with aggregation of the bacteroids. Although the exact biochemical functions of the IGN1 gene are still to be elucidated, these results indicate that IGN1 is required for differentiation and/or persistence of bacteroids and symbiosomes, thus being essential for functional symbiosis.  相似文献   

7.
Localization of H+-ATPases in soybean root nodules   总被引:1,自引:0,他引:1  
The localization of H+-ATPases in soybean (Glycine max L. cv. Stevens) nodules was investigated using antibodies against both P-type and V-type enzymes. Immunoblots of peribacteroid membrane (PBM) proteins using antibodies against tobacco and Arabidopsis H+-ATPases detected a single immunoreactive band at approximately 100 kDa. These antibodies recognized a protein of similar relative molecular mass in the crude microsomal fraction from soybean nodules and uninoculated roots. The amount of this protein was greater in PBM from mature nodules than in younger nodules. Immunolocalization of P-type ATPases using silver enhancement of colloidal-gold labelling at the light-microscopy level showed signal distributed around the periphery of non-infected cells in both the nodule cortex and nodule parenchyma. In the central nitrogen-fixing zone of the nodule, staining was present in both the infected and uninfected cells. Examination of nodule sections using confocal microscopy and fluorescence staining showed an immunofluorescent signal clearly visible around the periphery of individual symbiosomes which appeared as vesicles distributed throughout the infected cells of the central zone. Electron-microscopic examination of immunogold-labelled sections shows that P-type ATPase antigens were present on the PBM of both newly formed, single-bacteroid symbiosomes just released from infection threads, and on the PBM of mature symbiosomes containing two to four bacteroids. Immunogold labelling using antibody against the B-subunit of V-type ATPase from oat failed to detect this protein on symbiosome membranes. Only a very faint signal with this antibody was detected on Western blots of purified PBM. During nodule development, fusion of small symbiosomes to form larger ones containing multiple bacteroids was observed. Fusion was preceded by the formation of cone-like extensions of the PBM, allowing the membrane to make contact with the adjoining membrane of another symbiosome. We conclude that the major H+-ATPase on the PBM of soybean is a P-type enzyme with homology to other such enzymes in plants. In vivo, this enzyme is likely to play a critical role in the regulation of nutrient exchange between legume and bacteroids. Received: 25 November 1998 / Accepted: 6 January 1999  相似文献   

8.
9.
It has been suggested that ZIP7 (Ke4, Slc39a7) belongs to the ZIP family of zinc transporters. Transient expression of the V5-tagged human ZIP7 fusion protein in CHO cells led to elevation of the cytoplasmic zinc level. However, the precise function of ZIP7 in cellular zinc homeostasis is not clear. Here we report that the ZIP7 gene is ubiquitously expressed in human and mouse tissues. The endogenous ZIP7 was associated with the Golgi apparatus and was capable of transporting zinc from the Golgi apparatus into the cytoplasm of the cell. Moreover, by using the yeast mutant strain Deltazrt3 that was defective in release of stored zinc from vacuoles, we found that ZIP7 was able to decrease the level of accumulated zinc and in the meantime to increase the nuclear/cytoplasmic labile zinc level in the ZIP7-expressing zrt3 mutant. We showed that the protein expression of ZIP7 was repressed under zinc-rich condition, whereas there were no effects of zinc on ZIP7 gene expression and intracellular localization. Neither did zinc deficiency affect the intracellular distribution of ZIP7 in mammalian cells. Our study demonstrates that ZIP7 is a functional zinc transporter that acts by transporting zinc from the Golgi apparatus to the cytoplasm of the cell.  相似文献   

10.
Symbiosomes and bacteroids isolated from soybean (Glycine max Merr.) nodules are able to take up ferrous iron. This uptake activity was completely abolished in the presence of ferrous-iron chelators. The kinetics of uptake were characterized by initially high rates of iron internalization, but no saturation was observed with increasing iron concentration. This process does not appear to involve the ferric reductase of the peribacteroid membrane. The transport of ferrous iron was inhibited by other transition metals, particularly copper. Ferrous iron was taken up by symbiosomes more efficiently than the ferric form. This indicates that the iron transport from the plant host cell to the microsymbiont in vivo may occur mainly as the ferrous form. Received: 11 February 1998 / Accepted: 29 May 1998  相似文献   

11.
Previously, we determined the N-terminal amino acid sequences of a number of putative peribacteroid membrane proteins from soybean. Here, we report the cloning of a gene, GmN6L, that encodes one of these proteins. The protein encoded by GmN6L is similar in sequence to MtN6, an early nodulin expressed in Medicago truncatula roots in response to infection by Sinorhizobium meliloti. The GmN6L gene was strongly expressed in mature nodules but not in other plant organs. GmN6L protein was first detected 2 weeks after inoculation with Bradyrhizobium japonicum and was limited to the infected zone of nodules. GmN6L protein was found in symbiosomes isolated from mature soybean nodules, both as a soluble protein and as a peripheral membrane protein bound to the peribacteroid membrane. These data indicate that GmN6L is a late nodulin, which is not involved in the infection process. Homology between GmN6L and FluG, a protein involved in signaling in Aspergillus nidulans, suggests that GmN6L may play a role in communication between the host and microsymbionts during symbiotic nitrogen fixation.  相似文献   

12.
Zinc is an essential micronutrient, and yet it can be toxic when present in excess. Zinc acquisition and distribution are dependent on tightly controlled transport of Zn2+ ions. Schizosaccharomyces pombe represents a second eukaryotic model to study cellular metal homeostasis. In several ways its micronutrient metabolism is fundamentally different from Saccharomyces cerevisiae . We identified the first Zn2+-uptake system in S. pombe and named it SpZrt1. Knock-out strains for all three ZIP (Zrt, Irt-like protein) transporters in fission yeast were constructed. Only zrt1 Δ cells were unable to grow at low Zn2+ and showed reduced 65Zn2+ uptake. Elemental profiles revealed a strong decrease in zinc accumulation. Cd2+ ions inhibited uptake but Fe2+ or Mn2+ did not. Both mRNA abundance and protein amount are tightly regulated. Zrt1 activity is rapidly shut down upon transfer of zinc-deficient cells to zinc-replete conditions. In cells lacking Zhf, a transporter mediating endoplasmic reticulum storage of zinc, this response is about 100-fold more sensitive. Thus, removal of excess of zinc from the cytosol is largely Zhf dependent. Moreover, cells deficient for both transporters are no longer able to adjust to changing external Zn2+ concentrations. Optimal growth is restricted to a narrow range of Zn2+ concentrations, illustrating the fine balance between micronutrient deficiency and toxicity.  相似文献   

13.
In Medicago truncatula nodules, the soil bacterium Sinorhizobium meliloti reduces atmospheric dinitrogen into nitrogenous compounds that the legume uses for its own growth. In nitrogen-fixing nodules, each infected cell contains symbiosomes, which include the rhizobial cell, the symbiosome membrane surrounding it, and the matrix between the bacterium and the symbiosome membrane, termed the symbiosome space. Here, we describe the localization of ENOD8, a nodule-specific esterase. The onset of ENOD8 expression occurs at 4 to 5 days postinoculation, before the genes that support the nitrogen fixation capabilities of the nodule. Expression of an ENOD8 promoter-gusA fusion in nodulated hairy roots of composite transformed M. truncatula plants indicated that ENOD8 is expressed from the proximal end of interzone II to III to the proximal end of the nodules. Confocal immunomicroscopy using an ENOD8-specific antibody showed that the ENOD8 protein was detected in the same zones. ENOD8 protein was localized in the symbiosome membrane or symbiosome space around the bacteroids in the infected nodule cells. Immunoblot analysis of fractionated symbiosomes strongly suggested that ENOD8 protein was found in the symbiosome membrane and symbiosome space, but not in the bacteroid. Determining the localization of ENOD8 protein in the symbiosome is a first step in understanding its role in symbiosome membrane and space during nodule formation and function.  相似文献   

14.
Voltage-dependent anion channels (VDACs) are generally considered as the main pathway for metabolite transport across the mitochondrial outer membrane. Recent proteomic studies on isolated symbiosome membranes from legume nodules indicated that VDACs might also be involved in transport of nutrients between plants and rhizobia. In an attempt to substantiate this, we carried out a detailed molecular and cellular characterization of VDACs in Lotus japonicus and soybean (Glycine max). Database searches revealed at least five genes encoding putative VDACs in each of the legumes L. japonicus, Medicago truncatula, and soybean. We obtained and sequenced cDNA clones from L. japonicus encoding five full-length VDAC proteins (LjVDAC1.1-1.3, LjVDAC2.1, and LjVDAC3.1). Complementation of a yeast (Saccharomyces cerevisiae) mutant impaired in VDAC1, a porin of the mitochondrial outer membrane, showed that LjVDAC1.1, LjVDAC1.2, LjVDAC2.1, and LjVDAC3.1, but not LjVDAC1.3, are functional and targeted to the mitochondrial outer membrane in yeast. Studies of the expression pattern of the five L. japonicus VDAC genes revealed largely constitutive expression of each throughout the plant, including nodules. Antibodies to LjVDAC1.1 of L. japonicus and the related POM36 protein of potato (Solanum tuberosum) recognized several proteins between 30 and 36 kD on western blots, including LjVDAC1.1, LjVDAC1.2, LjVDAC1.3, and LjVDAC2.1. Immunolocalization of VDACs in L. japonicus and soybean root nodules demonstrated their presence on not only mitochondria but also on numerous, small vesicles at the cell periphery. No evidence was found for the presence of VDACs on the symbiosome membrane. Nonetheless, the data indicate that VDACs may play more diverse roles in plants than suspected previously.  相似文献   

15.
Arabidopsis IRT2 gene encodes a root-periphery iron transporter   总被引:19,自引:0,他引:19  
Iron uptake from the soil is a tightly controlled process in plant roots, involving specialized transporters. One such transporter, IRT1, was identified in Arabidopsis thaliana and shown to function as a broad-range metal ion transporter in yeast. Here we report the cloning and characterization of the IRT2 cDNA, a member of the ZIP family of metal transporters, highly similar to IRT1 at the amino-acid level. IRT2 expression in yeast suppresses the growth defect of iron and zinc transport yeast mutants and enhances iron uptake and accumulation. However, unlike IRT1, IRT2 does not transport manganese or cadmium in yeast. IRT2 expression is detected only in roots of A. thaliana plants, and is upregulated by iron deficiency. By fusing the IRT2 promoter to the uidA reporter gene, we show that the IRT2 promoter is mainly active in the external cell layers of the root subapical zone, and therefore provide the first tissue localization of a plant metal transporter. Altogether, these data support a role for the IRT2 transporter in iron and zinc uptake from the soil in response to iron-limited conditions.  相似文献   

16.
Siderophore-bound iron in the peribacteriod space of soybean root nodules   总被引:2,自引:0,他引:2  
Water-soluble, non-leghemoglobin iron (125 µmol kg-1 wet weight nodule) is found in extracts of soybean root nodules. This iron is probably confined to the peribacteroid space of the symbiosome, where its estimated concentration is 0.5 – 2.5 mM. This iron is bound by siderophores (compounds binding ferric iron strongly) which are different for each of the three strains of Bradyrhizobium japonicum with which the plants were inoculated. One of these, that from nodules inoculated with strain CC 705, is tentatively identified as a member of the pseudobactin family of siderophores. Leghemoglobin is present in only very small amounts in the peribacteroid space of symbiosomes isolated from soybean root nodules, and may be absent from the peribacteroid space of the intact nodule.  相似文献   

17.
Nodulin-26 (N-26) is a major peribacteroid membrane protein in soybean root nodules. The gene encoding this protein is a member of an ancient gene family conserved from bacteria to humans. N-26 is specifically expressed in root nodules, while its homolog, soybean putative channel protein, is expressed in vegetative parts of the plant, with its highest level in the root elongation zone. Analysis of the soybean N-26 gene showed that its four introns mark the boundaries between transmembrane domains and the surface peptides, suggesting that individual transmembrane domains encoded by a single exon act as functional units. The number and arrangement of introns between N-26 and its homologs differ, however. Promoter analysis of N-26 was conducted in both homologous and heterologous transgenic plants. The cis-acting elements of the N-26 gene are different from those of the other nodulin genes, and no nodule-specific cis-acting element was found in this gene. In transgenic nodules, the expression of N-26 was detected only in the infected cells; no activity was found in nodule parenchyma and uninfected cells of the symbiotic zone. The N-26 gene is expressed in root meristem of transgenic Lotus corniculatus and tobacco but not in untransformed and transgenic soybean roots, suggesting the possibility that this nodulin gene is controlled by a trans-negative regulatory mechanism in homologous plants. This study demonstrates how a preexisting gene in the root may have been recruited for symbiotic function and brought under nodule-specific developmental control.  相似文献   

18.
19.
Phosphoinositide-specific phospholipase C (PI-PLC) is a key signal transducing enzyme which generates the second messengers inositol trisphosphate and diacylglycerol in mammalian cells. A cDNA clone (PI-PLC1) encoding a phosphoinositide-specific phospholipase C was isolated from soybean by screening a cDNA expression library using an anti-(plasma membrane) serum. Genomic DNA gel blot analysis suggested that the corresponding gene is a member of a multigene family. The deduced amino acid sequence of the soybean PI-PLC1 isozyme contains the conserved X and Y regions, found in other PI-PLCs. It is closely related to mammalian δ-type PI-PLCs, Dictyostelium discoideum PI-PLC and yeast PI-PLC1 in terms of the arrangement of the conserved region. Unlike mammalian δ-type PI-PLCs and yeast PI-PLC1, the putative Ca2+-binding site of the soybean PI-PLC1 is located in the region spanning the X and Y domains, and the N-terminal region is truncated. FLAG epitope-tagged PI-PLC1 fusion protein purified from transgenic tobacco plants showed phosphoinositide-specific phospholipase C activity. Heterologous expression of the soybean PI-PLC1 cDNA in a yeast PI-PLC1 deletion mutant complemented the lethality phenotype of haploid PI-PLC1 disruptants. Immunoblot analysis of the cell fractions prepared from transgenic tobacco plants over-expressing the FLAG epitope-tagged PI-PLC1 fusion protein indicated that the protein encoded by the PI-PLC1 cDNA was localized in the cytosol and plasma membrane.  相似文献   

20.
Soybean peribacteroid membrane (PBM) proteins were isolated from nitrogen-fixing root nodules and subjected to N-terminal sequencing. Sequence data from 17 putative PBM proteins were obtained. Six of these proteins are homologous to proteins of known function. These include three chaperones (HSP60, BiP [HSP70], and PDI) and two proteases (a serine and a thiol protease), all of which are involved in some aspect of protein processing in plants. The PBM homologs of these proteins may play roles in protein translocation, folding, maturation, or degradation in symbiosomes. Two proteins are homologous to known, nodule-specific proteins from soybean, nodulin 53b and nodulin 26B. Although the function of these nodulins is unknown, nodulin 53b has independently been shown to be associated with the PBM. All of the eight proteins with identifiable homologs are likely to be peripheral rather than integral membrane proteins. Possible reasons for this apparent bias are discussed. The identification of homologs of HSP70 and HSP60 associated with the PBM is the first evidence that the molecular machinery for co- or post-translational import of cytoplasmic proteins is present in symbiosomes. This has important implications for the biogenesis of this unique, nitrogen-fixing organelle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号