首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Malondialdehyde, the end product of lipid peroxidation, has been shown to stimulate collagen alpha1(I) (Col1a1) gene expression. However, mechanisms of this effect are unclear. The purpose of this study was to clarify these mechanisms. Rat hepatic stellate cells were cultured in the presence of 200 microm malondialdehyde, and the effects on collagen gene expression and the binding of nuclear proteins to the col1a1 promoter were analyzed. Malondialdehyde treatment induced an increase in the cellular levels of col1a1 mRNA that was abrogated by pretreating cells with cycloheximide, p-hydroxymercuribenzoate, pyridoxal 5'-phosphate, and mithramycin. Transient transfections showed that malondialdehyde exerted its effect through regulatory elements located between -220 and -110 bp of the col1a1 promoter. Gel retardation assays demonstrated that malondialdehyde increased the binding of nuclear proteins to two elements located between -161 and -110 bp of the col1a1 promoter. These bindings were supershifted with Sp1 and Sp3 antibodies. Finally, malondialdehyde increased cellular levels of the Sp1 and Sp3 proteins and Sp1 mRNA. Our data indicated that treatment of hepatic stellate cells with malondialdehyde stimulated col1a1 gene expression by inducing the synthesis of Sp1 and Sp3 and their binding to two regulatory elements located between -161 and -110 bp of the col1a1 promoter.  相似文献   

3.
4.
Activation of type I collagen genes in cultured scleroderma fibroblasts   总被引:2,自引:0,他引:2  
Fibroblasts cultured from affected skin areas of five patients with cutaneous scleroderma were found to produce increased amounts of collagen when compared with nonaffected control cells. Total RNA was isolated from the cultures and analyzed for its level of pro alpha 1 (I)collagen mRNA by hybridization of RNA blots with a cloned cDNA probe. The levels of pro alpha 1 (I)collagen mRNAs relative to total RNA were two- to sixfold higher in the samples from affected cells, accounting for the increased synthesis of type I collagen. Cytoplasmic dot hybridizations were performed to measure the cellular content of pro alpha 1 (I)collagen mRNA: up to ninefold increases in the level of this mRNA per cell were found. Upon subculturing, scleroderma fibroblasts were found to reduce gradually the increased synthesis of collagen to the level of nonaffected controls by the tenth passage. The levels of type I collagen mRNAs were also reduced, but more slowly. The results suggest that in scleroderma fibroblasts the genes for type I collagen are activated at procollagen mRNA level or that they are more stable and that the activating factors are lost during prolonged cell culture because cells from affected areas lose their activated state.  相似文献   

5.
6.
TGF-beta is implicated in the pathogenesis of fibrotic disorders. It has been shown that Smad3 promotes the human alpha2(I) collagen (COL1A2) gene expression by TGF-beta1 in human dermal fibroblasts. Here, we investigated the role of phosphatidylinositol 3-kinase (PI3K) in the COL1A2 gene expression in normal and scleroderma fibroblasts. In normal fibroblasts, the PI3K inhibitor, LY294002, significantly decreased the basal and the TGF-beta1-induced increased stability of COL1A2 mRNA. The TGF-beta1-induced COL1A2 promoter activity, but not the basal activity, was significantly attenuated by LY294002 or the dominant negative mutant of p85 subunit of PI3K, while the constitutive active mutant of p110 subunit of PI3K did not affect the basal or the TGF-beta1-induced COL1A2 promoter activity. LY294002 significantly decreased the phosphorylation of Smad3 induced by TGF-beta1. Furthermore, the transient overexpression of 2xFYVE, which induces the mislocalization of FYVE domain proteins, decreased the TGF-beta1-induced Smad3 phosphorylation to a similar extent to LY294002. In scleroderma fibroblasts, the blockade of PI3K significantly decreased the mRNA stability and the promoter activity of the COL1A2 gene. Furthermore, LY294002 and the transient overexpression of 2xFYVE completely diminished the constitutive phosphorylation of Smad3. These results indicate that 1) the basal activity of PI3K is necessary for the COL1A2 mRNA stabilization in normal and scleroderma fibroblasts, 2) there is an unidentified FYVE domain protein specifically interacting with Smad3, and 3) the basal activity of PI3K and the FYVE domain protein are indispensable for the efficient TGF-beta/Smad3 signaling in normal fibroblasts and for the establishment of the constitutive activation of TGF-beta/Smad3 signaling in scleroderma fibroblasts.  相似文献   

7.
8.
The purpose of this study was to identify the cis-acting elements and the trans-acting factors involved in the iron-induced expression of the collagen alpha1(I) (COL1aI) gene. Rat hepatic stellate cells were cultured in the presence of 50 microM ferric chloride, 50 microM ascorbic acid, and 250 microM citric acid (Fe/AA/CA), and the effects on collagen gene expression and the binding of nuclear proteins to the COL1aI promoter were measured. The Fe/AA/CA treatment induced a time- and dose-dependent increase in the cellular levels of COL1aI mRNA that was abrogate by pretreating cells with cycloheximide, antioxidants, and inhibitors of aldehyde-protein adduct formation. Transient transfection experiments showed that Fe/AA/CA exerted its effect through regulatory elements located between -220 and -110 bp of the COL1aI promoter. Gel retardation assays showed that Fe/AA/CA increased the binding of nuclear proteins to two elements located between -161 and -110 bp of the COL1aI promoter. These bindings were blocked by unlabeled consensus Sp1 oligonucleotide and supershifted with Sp1 and Sp3 antibodies. Finally, Fe/AA/CA increased cellular levels of the Sp1 and Sp3 proteins and Sp1 mRNA. Treatment with Fe/AA/CA stimulates COL1aI gene expression by inducing the synthesis of Sp1 and Sp3 and their binding to two regulatory elements located between -161 and -110 bp of the COL1aI promoter.  相似文献   

9.
Nitric oxide ((.-)NO) is an important physiological signaling molecule and potent vasodilator. Recently, we have shown abnormal (.-)NO metabolism in the plasma of patients with systemic sclerosis (SSc), a disease that features excessive collagen overproduction as well as vascular dysfunction. The current study investigates the effects of (.-)NO and peroxynitrite (ONOO(-)) on secretion of type I collagen by SSc dermal fibroblasts, compared with those from normal dermal fibroblasts (CON) and a dermal fibroblast cell line (AG). Dermal fibroblasts were incubated with (.-)NO donors (SNP, DETA-NONOate) with or without the antioxidant ascorbic acid, or ONOO(-) for 24-72 h. In CON and AG fibroblasts, type I collagen was dose dependently decreased by SNP or DETA-NONOate. However, (.-)NO had no effect in SSc fibroblasts. Furthermore, the inhibition of collagen synthesis by (.-)NO was reversed by ascorbic acid and was not affected by 1H-[1,2,4]oxadiazole[4,3-a]quinoxalin-1-one, an inhibitor of soluble guanyl cyclase, or 8-bromoguanosine cyclic 3',5'-monophosphate, a cGMP agonist. SNP also showed a significant up-regulation of matrix metalloproteinase-1 (MMP-1) protein and activity levels, an essential collagenase involved in collagen degradation, in the AG fibroblasts. Additionally, (.-)NO-treated fibroblasts had lower prolyl hydroxylase activity, an enzyme important in the post-translational processing of collagen, while there was no effect on total protein levels. There were no significant effects on type I collagen levels when dermal fibroblasts were treated with ONOO(-). Taken together, ()NO inhibits collagen secretion in normal dermal fibroblasts but regulation is lost in SSc fibroblasts, while ONOO(-) itself is ineffective. (.-)NO inhibition of collagen was by cGMP-independent regulatory mechanisms and in part may be due to up-regulation of MMP-1 and/or inhibition of prolyl hydroxylase. These differences may contribute to the observed pathology of SSc.  相似文献   

10.
11.
Fibrosis is characterized by the excessive deposition of extracellular matrix (ECM), especially collagen. Because Ets factors are implicated in physiological and pathological ECM remodeling, the aim of this study was to investigate the role of Ets factors in collagen production. We demonstrate that the expression of collagenous proteins and collagen alpha2(I) (COL1A2) mRNA was inhibited following stable transfection of Fli-1 in dermal fibroblasts. Subsequent analysis of the COL1A2 promoter identified a critical Ets binding site that mediates Fli-1 inhibition. In contrast, Ets-1 stimulates COL1A2 promoter activity. In vitro binding assays demonstrate that both Fli-1 and Ets-1 form DNA-protein complexes with sequences present in COL1A2 promoter. Furthermore, Fli-1 binding to the COL1A2 is enhanced via Sp1-dependent interaction. Studies using Fli-1 dominant interference and DNA binding mutants indicate that Fli-1 inhibition is mediated by both direct (DNA binding) and indirect (via protein-protein interaction) mechanisms and that Sp1 is an important mediator of the Fli-1 function. Furthermore, experiments using the Gal4 system in the context of different cell types as well as experiments with the COL1A2 promoter in different cell lines demonstrate that the direction and magnitude of the effect of Fli-1 is promoter- and cell context-specific. We propose that Fli-1 inhibits COL1A2 promoter activity by competition with Ets-1. In addition, we postulate that another factor (co-repressor) may be required for maximal inhibition after recruitment to the Fli-1-Sp1 complex. We conclude that the ratio of Fli-1 to Ets-1 and the presence of co-regulatory proteins ultimately control ECM production in fibroblasts.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号