首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Low density lipoprotein (LDL) and beta-very low density lipoprotein (beta-VLDL) are internalized by the same receptor in mouse peritoneal macrophages and yet their endocytic patterns differ; beta-VLDL is targeted to both widely distributed and perinuclear vesicles, whereas LDL is targeted almost entirely to perinuclear lysosomes. This endocytic divergence may have important metabolic consequences since beta-VLDL is catabolized slower than LDL and is a more potent stimulator of acyl-CoA/cholesterol acyl transferase (ACAT) than LDL. The goal of this study was to explore the determinants of beta-VLDL responsible for its pattern of endocytic targeting. Fluorescence microscopy experiments revealed that large, intestinally derived, apoprotein (Apo) E-rich beta-VLDL was targeted mostly to widely distributed vesicles, whereas small, hepatically derived beta-VLDL was targeted more centrally (like LDL). Furthermore, the large beta-VLDL had a higher ACAT-stimulatory potential than the smaller beta-VLDL. The basis for these differences was not due to fundamental differences in the means of uptake; both large and small beta-VLDL were internalized by receptor-mediated endocytosis (i.e., not phagocytosis) involving the interaction of Apo E of the beta-VLDL with the macrophage LDL receptor. However, large beta-VLDL was much more resistant to acid-mediated release from LDL receptors than small beta-VLDL. Furthermore, partial neutralization of the multiple Apo Es on these particles by immunotitration resulted in a more perinuclear endocytic pattern, a lower ACAT-stimulatory potential, and an increased sensitivity to acid-mediated receptor release. These data are consistent with the hypothesis that the interaction of the multivalent Apo Es of large beta-VLDL with multiple macrophage LDL receptors leads to a diminished or retarded release of the beta-VLDL from its receptor in the acidic sorting endosome which, in turn, may lead to the widely distributed endocytic pattern of large beta-VLDL. These findings may represent a physiologically relevant example of a previously described laboratory phenomenon whereby receptor cross-linking by multivalent ligands leads to a change in receptor targeting.  相似文献   

2.
The regulation of lipoprotein secretion in the cell line HepG2 was studied. HepG2 cells were preincubated with chylomicron remnants (triglyceride- and cholesterol-rich) or with beta very low density lipoproteins (beta-VLDL) (cholesterol-rich). The medium was removed and the cells were incubated for and additional 24 hr in a lipoprotein-free medium that contained either [2-3H]glycerol or DL-[2-3H]mevalonate. Cells and media were harvested, and lipoproteins were separated and fractionated. The mass and radioactivity of the lipids in cells and in the lipoproteins were measured. The activities of cellular acyl-CoA:cholesterol acyltransferase (ACAT) and 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase were also determined. Preincubation with chylomicron remnants induced an increase in cellular triglyceride and stimulated both HMG-CoA reductase and ACAT. Preincubation with beta-VLDL induced an increase in cellular free and esterified cholesterol, inhibited HMG-CoA reductase and stimulated ACAT. Although the absolute amount of VLDL is small, chylomicron remnants induced large relative increases in the amount of triglyceride and phospholipid secreted in VLDL and decreases in the amount of triglyceride secreted in low density (LDL) and high density (HDL) lipoproteins as well as a decrease in the amount of phospholipid secreted in HDL. In contrast, preincubation with beta-VLDL did not affect triglyceride secretion, but markedly stimulated the amount of phospholipid secreted in HDL. Comparison of the mass of glycerolipid actually secreted with that calculated from the cellular specific activity suggested that glycerolipids are secreted from single, rapidly equilibrating pools. Cholesterol and cholesteryl ester secretion were affected differently. Preincubation with chylomicron remnants increased the amount of free cholesterol secreted in both VLDL and LDL, but did not alter cholesteryl ester secretion. Preincubation with beta-VLDL increased free cholesterol secretion in all lipoprotein fractions and increased cholesteryl ester secretion in VLDL and LDL, but not HDL. Comparison of isotope and mass data suggested that the cholesteryl ester secreted came primarily from a preformed, rather than an newly synthesized, pool. In summary, these data provide insight to the mechanism whereby a liver cell regulates the deposition of exogenous lipid.  相似文献   

3.
The receptor on mouse peritoneal macrophages that mediates the uptake of canine beta-very low density lipoproteins (beta-VLDL) has been identified in this study as an unusual apolipoprotein (apo-) B,E(LDL) receptor. Ligand blots of Triton X-100 extracts of mouse peritoneal macrophages using 125I-beta-VLDL identified a single protein. This protein cross-reacted with antibodies against bovine apo-B,E(LDL) receptors, but its apparent Mr was approximately 5,000 less than that of the human apo-B,E(LDL) receptor. Binding studies at 4 degrees C demonstrated specific and saturable binding of low density lipoproteins (LDL), beta-VLDL, and cholesterol-induced high density lipoproteins in plasma that contain apo-E as their only protein constituent (apo-E HDLc) to mouse macrophages. Apolipoprotein E-containing lipoproteins (beta-VLDL and apo-E HDLc) bound to mouse macrophages and human fibroblasts with the same high affinity. However, LDL bound to mouse macrophages with an 18-fold lower affinity than to human fibroblasts. Mouse fibroblasts also bound LDL with a similar low affinity. Compared with the apo-B,E(LDL) receptors on human fibroblasts, the apo-B,E(LDL) receptors on mouse macrophages were resistant to down-regulation by incubation of the cells with LDL or beta-VLDL. There are three lines of evidence that an unusual apo-B,E(LDL) receptor on mouse peritoneal macrophages mediates the binding and uptake of beta-VLDL: LDL with residual apo-E removed displaced completely the 125I-beta-VLDL binding to mouse macrophages, preincubation of the mouse macrophages with apo-B,E(LDL) receptor antibody inhibited both the binding of beta-VLDL and LDL to the cells and the formation of beta-VLDL- and LDL-induced cholesteryl esters, and binding of 125I-beta-VLDL to the cells after down-regulation correlated directly with the amount of mouse macrophage apo-B,E(LDL) receptor as determined on immunoblots. This unusual receptor binds LDL poorly, but binds apo-E-containing lipoproteins with normal very high affinity and is resistant to down-regulation by extracellular cholesterol.  相似文献   

4.
Previous studies have examined lipoprotein metabolism by macrophages following prolonged exposure (>24 h) to macrophage colony-stimulating factor (M-CSF). Because M-CSF activates several signaling pathways that could rapidly affect lipoprotein metabolism, we examined whether acute exposure of macrophages to M-CSF alters the metabolism of either native or modified lipoproteins. Acute incubation of cultured J774 macrophages and resident mouse peritoneal macrophages with M-CSF markedly enhanced low density lipoproteins (LDL) and beta-migrating very low density lipoproteins (beta-VLDL) stimulated cholesteryl [(3)H]oleate deposition. In parallel, M-CSF treatment increased the association and degradation of (125)I-labeled LDL or beta-VLDL without altering the amount of lipoprotein bound to the cell surface. The increase in LDL and beta-VLDL metabolism did not reflect a generalized effect on lipoprotein endocytosis and metabolism because M-CSF did not alter cholesterol deposition during incubation with acetylated LDL. Moreover, M-CSF did not augment beta-VLDL cholesterol deposition in macrophages from LDL receptor (-/-) mice, indicating that the effect of M-CSF was mediated by the LDL receptor. Incubation of macrophages with pertussis toxin, a specific inhibitor of G(i/o) protein signaling, had no effect on cholesterol deposition during incubation with beta-VLDL alone, but completely blocked the augmented response promoted by M-CSF. In addition, incubation of macrophages with the direct G(i/o) protein activator, mastoparan, mimicked the effect of M-CSF by enhancing cholesterol deposition in cells incubated with beta-VLDL, but not acetylated LDL. In summary, M-CSF rapidly enhances LDL receptor-mediated metabolism of native lipoproteins by macrophages through activation of a G(i/o) protein signaling pathway. Together, these findings describe a novel pathway for regulating lipoprotein metabolism.  相似文献   

5.
Apoprotein E mediates the interaction of beta-VLDL with macrophages   总被引:4,自引:0,他引:4  
beta-Very low density lipoproteins (beta-VLDL) isolated from cholesterol-fed rhesus monkeys stimulated cholesteryl ester synthesis and accumulation in mouse peritoneal macrophages. The apoprotein specificity and requirement for the cell surface uptake of beta-VLDL was investigated by treating the beta-VLDL with trypsin (beta-VLDL (T], incubating the beta-VLDL (T) with other lipoproteins or apoproteins, reisolating the beta-VLDL (T) and measuring its biological activity which, for this study, is defined as the ability of the lipoprotein to stimulate cholesterol esterification in the macrophages. Trypsin treatment of beta-VLDL abolished its biological activity. Apoprotein analysis of the beta-VLDL (T) demonstrated the absence of intact apoproteins B-100, B-48, and E. The J774 macrophage-like cell line and mouse peritoneal macrophages responded similarly with respect to cholesterol esterification following incubation with inactive and treated beta-VLDL. The J774 macrophage-like cell line was used to establish the conditions necessary for the restoration of biologic activity to the trypsinized beta-VLDL. The loss of biological activity of beta-VLDL (T) could be reversed by restoring apoprotein E-containing LDL from hyperlipemic monkeys or purified apoprotein E. Apoprotein A-I had no such effect. The restored biological activity of the beta-VLDL (T) was proportional to the amount of apoprotein E acquired by the lipoprotein. beta-VLDL particles composed of apoprotein E and either intact or degraded apoprotein B-100 had comparable biological activity. Thus, intact apoprotein E, without intact apoprotein B, is a sufficient mediator for the biological activity and metabolism of beta-VLDL by macrophages and plays a major role in receptor-lipoprotein interaction.  相似文献   

6.
We investigated the mechanism of beta-very low density lipoprotein (beta-VLDL)-induced foam cell formation derived from peritoneal macrophages from control mice and low density lipoprotein (LDL) receptor-deficient mice to elucidate the role of the LDL receptor in this process. The LDL receptor appeared to be of major importance for beta-VLDL metabolism. Consequently, the accumulation of cholesteryl esters in LDL receptor(-)(/)- macrophages is 2.5-fold lower than in LDL receptor(+)(/)(+) macrophages. In the absence of the LDL receptor, however, beta-VLDL was still able to induce cholesteryl ester accumulation and subsequently we characterized the properties of this residual beta-VLDL recognition site(s) of LDL receptor(-)(/)- macrophages. Although the LDL receptor-related protein is expressed on LDL receptor(-)(/)- macrophages, the cell association of beta-VLDL is not influenced by the receptor-associated protein, and treatment of the macrophages with heparinase and chondroitinase was also ineffective. In contrast, both oxidized LDL (OxLDL) and anionic liposomes were able to inhibit the cell association of (125)I-labeled beta-VLDL in LDL receptor(-)(/)- macrophages by 65%. These properties suggest a role for scavenger receptor class B (SR-B), and indeed, in the LDL receptor(-)(/)- macrophages the selective uptake of cholesteryl esters from beta-VLDL was 2.2-fold higher than that of apolipoproteins, a process that could be inhibited by OxLDL, high density lipoprotein (HDL), and beta-VLDL.In conclusion, the LDL receptor on peritoneal macrophages is directly involved in the metabolism of beta-VLDL and the subsequent foam cell formation. When the LDL receptor is absent, SR-B appears to mediate the remaining metabolism of cholesteryl esters from beta-VLDL.  相似文献   

7.
Mouse peritoneal macrophages were incubated with abnormal lipoproteins (LP-X, HDL-E, VLDL-p, IDl-p and LDL-p) from a patient with secondary deficiency in phosphatidylcholine-sterol acyltransferase, or with phosphatidylcholine/cholesterol liposomes, and the stimulation of cholesteryl ester formation was studied. Acetylated low density lipoproteins served as a control. It was found that macrophages incubated with LP-X, the other pathological lipoproteins or with liposomes did not show an enhanced cholesterol esterification. Also HDL-E had no effect despite of its high apoE content and the fact that apoE has been postulated to be the agonist in beta-VLDL binding to macrophages.  相似文献   

8.
Cholesteryl ester accumulation in arterial wall macrophages (foam cells) is a prominent feature of atherosclerotic lesions. We have previously shown that J774 macrophages accumulate large amounts of cholesteryl ester when incubated with unmodified low density lipoprotein (LDL) and that this is related to sluggish down-regulation of the J774 LDL receptor and 3-hydroxy-3-methylglutaryl-coenzyme A reductase. To further explore intracellular cholesterol metabolism and regulatory events in J774 macrophages, we studied the effect of inhibitors of acyl-CoA:cholesterol acyl transferase (ACAT) on the cells' ability to accumulate cholesterol and to down-regulate receptor and reductase. Treatment of J774 cells with LDL in the presence of ACAT inhibitor 58-035 (Sandoz) prevented both cholesteryl ester and total cholesterol accumulation. Furthermore, 58-035 markedly enhanced down-regulation of the J774 LDL receptor and 3-hydroxy-3-methylglutaryl-CoA reductase in the presence of LDL. In dose-response studies, down-regulation of the receptor by 58-035 paralleled its inhibition of ACAT activity. Compound 58-035 also increased the down-regulation of the J774 LDL receptor in the presence of 25-hydroxycholesterol and acetyl-LDL but not in the presence of cholesteryl hemisuccinate, which is not an ACAT substrate. The ability of 58-035 to enhance LDL receptor down-regulation was negated when cells were simultaneously incubated with recombinant high density lipoprotein3 discs, which promote cellular cholesterol efflux. In contrast to the findings with J774 macrophages, down-regulation of the human fibroblast LDL receptor was not enhanced by 58-035. These data suggest that in J774 macrophages, but not in fibroblasts, ACAT competes for a regulatory pool of intracellular cholesterol, contributing to diminished receptor and reductase down-regulation, LDL-cholesterol accumulation, and foam cell formation.  相似文献   

9.
Isolated mouse peritoneal macrophages that had been stimulated with thioglycolate were shown to take up and degrade normal human 125I-very low density lipoproteins (VLDL). Uptake occurred via a specific cell surface receptor which was shown to be 1) temperature-dependent, 2) calcium-dependent, and 3) susceptible to proteolytic digestion. The receptor-mediated uptake and degradation of VLDL markedly stimulated the synthesis and accumulation of triglyceride and cholesteryl ester within macrophages. The degradation of the protein and lipid portions of VLDL occurred within lysosomes. Competition studies showed that the binding site for VLDL was different from the receptor for normal low density lipoproteins or for acetylated low density lipoproteins but that there was cross competition with beta-VLDL. In addition, positive charges appeared to play an important role in the recognition of VLDL by their receptors since polyamines were able to markedly inhibit VLDL binding, degradation, and lipid accumulation while negatively charged compounds were without effects. These studies indicate that 1) stimulated mouse peritoneal macrophages possess specific receptors which recognize normal human VLDL and 2) the receptor-mediated uptake of VLDL results in the accumulation of triglyceride and cholesteryl ester within macrophages.  相似文献   

10.
The uptake of LDL and acetylated LDL and the ability of cholesteryl ester accumulation by cells of a human monocytic cell line, U937, has been characterized by flow cytometric assay using a fluorescent probe, DiI, and by high-performance liquid chromatography (HPLC). The increase of mean fluorescence intensity of U937 incubated with DiI-labeled lipoproteins demonstrates that this cell line could incorporate DiI-AcLDL, as well as DiI-labeled LDL. Competition and saturation studies indicate that the manner of taking up DiI-AcLDL is receptor-mediated. While differentiated U937 incubated with 16 nM phorbol myristate acetate for 24 h took up little DiI-AcLDL, HPLC analysis confirmed that intracellular free and esterified cholesterols significantly increase in the U937 cells incubated with AcLDL or LDL. The ability of mouse peritoneal macrophage to abundantly accumulate at least five kinds of cholesteryl ester were also shown in this analysis. In contrast, in U937 cells, free fatty acids are incorporated into various substances rather than into cholesteryl esters (as revealed by HPLC analysis), so that the cholesterol in AcLDL taken up by U937 cells is not synthesized into cholesteryl esters to any great extent.  相似文献   

11.
Cholesterol esterification by acyl CoA:cholesterol acyl transferase (ACAT) in macrophages is a key process in atheroma foam cell formation. However, the process of cholesterol substrate delivery to ACAT is not well defined. In this study, J774 macrophages, which form foam cells with native low density lipoprotein (LDL), were labeled with [3H]cholesterol-containing liposomes. Most (80-90%) of the cholesterol label could be converted by cholesterol oxidase to cholestenone, suggesting plasma membrane localization; only 0.6% of the label was in cholesteryl ester (CE). In cells chased for 6 h in medium lacking LDL, the distribution of label was essentially unchanged, whereas in cells chased with LDL, 28% of the label was incorporated into CE concomitant with a decrease in cholestenone label to 50%. [3H]Cholesterol-labeled mouse peritoneal macrophages incubated with acetyl-LDL, and both J774 and mouse peritoneal macrophages incubated with 25-hydroxy-cholesterol, also showed a shift of label from cholestenone to CE. Similar results were found when cellular cholesterol was biosynthetically labeled with [3H]mevalonate. The percentage of cholesterol substrate for ACAT in LDL-treated J774 macrophages which originates from endogenous cellular pools (versus that originating from LDL itself) is approximately 50%. We conclude that upon activation of ACAT in macrophages, there is a novel process whereby a cholesterol oxidase-accessible pool of cellular cholesterol, presumably plasma membrane cholesterol, is translocated to ACAT in the endoplasmic reticulum.  相似文献   

12.
Activation of acyl-CoA:cholesterol actyltransferase (ACAT) in macrophages by lipoproteins is a key event in atheroma foam cell formation. To help elucidate the mechanisms whereby lipoproteins stimulate ACAT, the early cellular events of lipoprotein-induced ACAT stimulation were studied in mouse peritoneal macrophages. As a function of increasing lipoprotein-cholesterol influx to the cell during the first few hours of incubation, ACAT activity was markedly stimulated by beta-very low density lipoprotein (beta-VLDL) and acetyl-low density lipoprotein (acetyl-LDL) only after lipoprotein-cholesterol influx reached a threshold level of approximately 25% above the basal cell cholesterol content. In contrast, LDL stimulated ACAT only minimally at this level of lipoprotein-cholesterol influx. In further experiments, the source of ACAT cholesterol substrate during the initial stimulation of ACAT was shown to be a mixture of cellular (approximately 75%) and lipoprotein-cholesterol (approximately 25%) in proportions that approximated the proportions of originally cellular and lipoprotein-cholesterol in the cell. Thus, lipoprotein-cholesterol rapidly mixed with most or all of cellular cholesterol before ACAT esterification. Additional studies showed that LDL caused significant efflux of cellular cholesterol, thus providing at least a partial explanation for the relatively weak ACAT stimulatory potential of LDL. To support this idea, LDL that was modified to decrease its ability to induce net cellular cholesterol efflux stimulated ACAT 2-fold greater than control LDL when matched for lysosomal LDL-cholesterol influx. Moreover, when the effective efflux potentials of beta-VLDL and acetyl-LDL were increased, ACAT stimulation was markedly decreased despite unchanged lipoprotein-cholesterol influx. Thus, macrophage ACAT is stimulated not directly by the influx of newly hydrolyzed lipoprotein-cholesterol but rather by net expansion of cellular cholesterol pools to a particular threshold level. This scheme has potentially important implications regarding the cellular and molecular mechanisms of foam cell formation.  相似文献   

13.
反义adipophilin寡核苷酸降低ACAT活性(英)   总被引:4,自引:1,他引:4  
已经发现,随着细胞内胆固醇酯的积聚,adipophilin的表达明显增加.在此基础上,为了寻找adipophilin在细胞内胆固醇代谢的作用点.小鼠腹腔巨噬细胞与80 mg/L OxLDL或80 mg/L OxLDL加1 mmol/L adipophilin反义寡核苷酸共孵育,在不同的时间点取样,使用免疫荧光染色,流式细胞仪分析和细胞内胆固醇测定.结果显示,72 h后,反义寡核苷酸处理组细胞内胆固醇酯显著下降到(19.9±1.9)mg/g,油红O染色显示,该组细胞质内红色脂滴明显减少.96 h的观察期间内,两组细胞adipophilin蛋白的表达量都增加.从12 h开始,未用反义寡核苷酸处理组adipophilin蛋白的表达量开始大于反义寡核苷酸处理组.在96 h时间点,统计学处理,未用反义寡核苷酸处理组明显高于反义寡核苷酸处理组,差别有显著性.使用Ox-r[CL-3H]LDL观察两组细胞摄入OxLDL的量,实验发现,两组细胞摄入Ox-r[CL-3H]LDL的量逐渐增加.但是,反义寡核苷酸处理组摄入Ox-r[CL-3H]LDL的量从24 h后明显低于未用反义寡核苷酸处理组,在48 h和96 h时间点,统计学处理,两组差别有显著性.观察ACAT的活性发现,ACAT相对活性从6 h到48 h表现为增加,但从48 h到96 h,ACAT相对活性趋于稳定.在48 h时间点,两组比较差别有显著性,反义寡核苷酸处理组的活性明显低于未用反义寡核苷酸处理组.相关分析发现,ACAT的活性与adipophilin蛋白的表达量有一定的联系,但不是直线相关.结果表明,adipophilin表达的高低与细胞摄入外源性脂蛋白,与ACAT的活性有一定的联系.提示adipophilin与脂滴的代谢功能密切相关,且ACAT有可能是其潜在的位点.  相似文献   

14.
The rat hepatoma cell line Fu5AH has the unusual property of accumulating massive amounts of cholesteryl ester upon incubation with hypercholesterolemic serum, and especially when incubated with beta-very low density lipoproteins (beta-VLDL) from cholesterol-fed dogs. The present study was designed to identify and characterize the lipoprotein receptors that mediate the cholesteryl ester accumulation. The beta-VLDL and cholesterol-induced apolipoprotein (apo) E-containing high density lipoproteins (apoE HDLc) bound to Fu5AH cells with very high affinity (Kd approximately equal to 10(-10) M), whereas low density lipoproteins (LDL) bound with unusually low affinity (Kd approximately equal to 10(-8) M). Receptor binding activity of 125I-labeled beta-VLDL, 125I-labeled apoE HDLc, and 125I-labeled LDL was abolished by incubation in the presence of an excess of unlabeled LDL or of a polyclonal antibody to the bovine adrenal apoB,E(LDL) receptor. The receptors were completely down-regulated by preincubating Fu5AH cells with beta-VLDL, but much higher levels of beta-VLDL were required than for down-regulation of fibroblast apoB,E(LDL) receptors. Receptor binding was abolished by reductive methylation of the lysyl residues of the apolipoprotein of the beta-VLDL and by an apoE monoclonal antibody (1D7) that blocks receptor binding. The Fu5AH receptor was further characterized by using the bovine adrenal apoB,E(LDL) receptor antibody. A single protein (Mr approximately equal to 130,000) was identified in Triton extracts of whole cells, and two proteins (Mr approximately equal to 130,000 and 115,000) were found in Fu5AH cell membranes disrupted by homogenization. The Mr approximately equal to 115,000 protein was released from the membranes and did not react with an antibody to the carboxyl-terminal (cytoplasmic) domain of the apoB,E(LDL) receptors. These studies indicate that Fu5AH cells express apoB,E(LDL) receptors that have unusually low affinity for apoB-continuing lipoproteins, require large amounts of cholesterol to induce down-regulation, and are susceptible to specific proteolysis in cell homogenates. These apoB,E(LDL) receptors are responsible for the receptor-mediated uptake of beta-VLDL and chylomicron remnants by Fu5AH cells.  相似文献   

15.
The lipoprotein-mediated regulation of 3-hydroxy-3-methylglutaryl-(HMG-) CoA reductase in cultured mouse peritoneal macrophages has been investigated. In contrast to what has been reported for other cells, HMG-CoA reductase activity is not suppressed by normal serum or by normal low density lipoproteins (LDL) from humans or dogs. Suppression of reductase activity occurred when cells were cultured in the presence of beta-migrating very low density lipoproteins (beta-VLDL) or LDL from hypercholesterolaemic dogs, or LDL modified by acetoacetylation. Human beta-VLDL from an atypical type III hyperlipoproteinaemic patient was also effective, as was apolipoprotein (apo) E-containing high density lipoproteins (HDL) from cholesterol-fed dogs (apo-E HDLc). The results indicate that cholesterol biosynthesis in mouse peritoneal macrophages is regulated by lipoprotein cholesterol entering via receptor-mediated endocytosis. Normal LDL were not effective because of the poor binding and uptake of these lipoproteins by the apo-B, E (LDL) receptor. Only beta-VLDL, apo-E HDLc, and hypercholesterolaemic LDL were avidly taken up by this receptor and were able to suppress HMG-CoA reductase. Acetoacetylated LDL were internalized via the acetyl-LDL (scavenger) receptor. Thus, mouse macrophages differ from human fibroblasts and smooth muscle cells in their physiological regulation of cholesterogenesis.  相似文献   

16.
Triglyceride-rich lipoproteins derived from ten normo- and hyperlipidemic apoE-2 homozygotes were analyzed for their composition, beta-VLDL content, and their ability to induce cholesteryl ester storage in macrophages. In six of these probands apoE sequence analysis revealed that the cysteine residues were at positions 112 and 158 of the amino acid sequence (Rall et al. 1983. J. Clin. Invest. 71: 1023-1031). ApoE-2 of these six and the other four patients was further analyzed by SDS electrophoresis to exclude the presence of apoE-2* (Rall et al. 1982. Proc. Natl. Acad. Sci. USA. 79: 4696-4700). The relative serum concentrations of free and esterified cholesterol transported in the d less than 1.006 g/ml and d 1.006-1.019 g/ml lipoproteins of the apoE-2 homozygotes was significantly higher as compared to controls. Compositional analysis of these lipoproteins revealed a relative reduction of triglycerides and a relative increase of cholesteryl esters as compared to controls. In most patients, with increasing serum triglyceride levels the cholesteryl ester concentration increased in d less than 1.006 g/ml and d 1.006-1.019 g/ml lipoproteins. However, in three patients with a low content of beta-VLDL, the increase in the d less than 1.006 g/ml fraction cholesterol was mostly due to free cholesterol and not due to cholesteryl esters. The degree of the macrophage cholesteryl ester accumulation induced by d less than 1.006 g/ml lipoproteins was mostly dependent on the concentration of the beta-migrating fraction (beta-VLDL). The amount of beta-VLDL and pre-beta-VLDL contained in the d less than 1.006 g/ml fraction was determined densitometrically after electrophoretic separation. It could be demonstrated that the beta-VLDL content in the d less than 1.006 g/ml fraction of the apoE-2 homozygous patients was largely independent of serum triglyceride and serum cholesterol levels. When macrophages were incubated with the IDL fraction (d 1.006-1.019 g/ml) from the apoE-2 patients, no significant increase in cellular cholesteryl esters above control levels was observed. Studies with purified lipoprotein lipase (LPL) and hepatic triglyceride lipase (HTGL) clearly revealed that both enzymes interacted with apoE-2 VLDL (binding, hydrolysis) to a lesser degree compared to control preparations. However, the apoE-2 VLDL preparations containing a low content of beta-VLDL were better substrates for LPL and HTGL than those containing a high beta-VLDL content. It is concluded from our studies that the plasma beta-VLDL content in apoE-2 homozygotes is a major determinant for cholesteryl ester accumulation in macrophages.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
To characterize lipoprotein uptake by macrophages, we studied J774 murine macrophage-derived cells. Uptake of 125I-labeled beta-VLDL and 125I-labeled chylomicron remnants was saturable, specific, and of high affinity. Maximal specific uptake and the concentration at which half-maximal uptake occurred were similar for both beta-VLDL and chylomicron remnants. Specific uptake of 125I-labeled chylomicrons was only 1/5 that of the other two lipoproteins. Cholesterol loading decreased 125I-labeled chylomicron remnant and 125I-labeled beta-VLDL uptake by 25%. Chylomicron remnants and beta-VLDL were equipotent in cross-competition studies; acetyl-LDL did not compete, and human LDL was a poor competitor. Although the amounts of cell-associated lipoproteins were similar, beta-VLDL and chylomicron remnants had different effects on cellular lipid metabolism. beta-VLDL produced a threefold stimulation while chylomicron remnants caused a decrease in [3H]oleate incorporation into cholesteryl ester. beta-VLDL had no effect while chylomicron remnants caused a threefold increase in [3H]oleate incorporation into triacylglycerol. beta-VLDL produced a 44% suppression and chylomicron remnants produced a 78% increase in HMG-CoA reductase activity. In summary, J774 macrophages express a receptor site that recognizes both beta-VLDL and chylomicron remnants; however, these lipoproteins exhibit strikingly different effects on intracellular lipid metabolism.  相似文献   

18.
Earlier, we (Vijayagopal, P., et al. (1985) Biochim. Biophys. Acta 837-251) have shown that complexes of plasma low-density lipoproteins (LDL) and arterial chondroitin sulfate-dermatan sulfate proteoglycan aggregate promote LDL degradation and cholesteryl ester accumulation in mouse peritoneal macrophages. Further studies were conducted to determine whether LDL-proteoglycan complex is metabolized by a receptor-mediated process. Native proteoglycan aggregate was isolated from bovine aorta by associative CsCl isopycnic centrifugation. Complex of 125I-labeled LDL and proteoglycan aggregate formed in the presence of 30 mM Ca2+ was incubated with macrophages, and the binding at 4 degrees C and degradation at 37 degrees C of 125I-labeled LDL in the complex was monitored. Both binding and degradation of the complex were specific and saturable, suggesting that the processes are receptor mediated. The Kd for binding was 23 micrograms LDL protein per ml in the complex. Degradation of 125I-labeled LDL-proteoglycan complex was not suppressed by preincubation of macrophages with excess unlabeled complex, suggesting that the receptor for the complex is not subject to down regulation. Both binding and degradation of the complex and the resultant stimulation of cholesteryl ester synthesis were inhibited by limited treatment of cells with low doses of trypsin and pronase, indicating that the binding sites are protein or glycoprotein in nature. Binding was not inhibited by an excess of native LDL and beta-VLDL and exhibited only partial competition by excess unlabeled acetyl-LDL; however, polyinosinic acid, fucoidin and dextran sulfate, known inhibitors of acetyl-LDL binding and degradation in macrophages, did not affect LDL-proteoglycan complex binding and degradation. Similarly, excess unlabeled LDL-proteoglycan complex produced only partial inhibition of the binding and degradation of 125I-labeled acetyl-LDL by macrophages, suggesting that the binding sites for acetyl-LDL and LDL-proteoglycan complex are probably not identical. These studies provide evidence for a receptor-mediated pathway for the metabolism of LDL-proteoglycan complex in macrophages.  相似文献   

19.
We studied the effect of complexes of low-density lipoproteins (LDL) and different proteoglycan preparations from bovine aorta on LDL degradation and cholesteryl ester accumulation in mouse peritoneal macrophages. Native proteoglycan aggregate containing proteoglycan monomers, hyaluronic acid and link protein was isolated by associative extraction of aortic tissue, while proteoglycan monomer was obtained by dissociative isopycnic centrifugation of the native proteoglycan aggregate. In vitro proteoglycan aggregates were prepared by reaction of the proteoglycan monomer with exogenous hyaluronic acid. 125I-labeled LDL-proteoglycan complexes were formed in the presence of 30 mM Ca2+ and incubated with macrophages. At equivalent uronic acid levels in the proteoglycans the degradation of 125I-labeled LDL contained in the native proteoglycan aggregate complex was 3.7-7.5-fold greater than the degradation of the lipoprotein in the proteoglycan monomer complex. Degradation of 125I-LDL in the in vitro aggregate complex, while higher than that in the monomer complex, was markedly less than that in the native aggregate complex. The larger size and the greater complex-forming ability of the native proteoglycan aggregate might account for the greater capacity of the aggregate to promote LDL degradation in macrophages. The proteoglycan-stimulated degradation of LDL produced a marked increase in cholesteryl ester synthesis and content in macrophages. The LDL-proteoglycan complex was degraded with saturation kinetics, suggesting that these complexes are internalized through high-affinity receptors. Degradation was inhibited by the lysosomotropic agent, chloroquine. Acetyl-LDL, but not native LDL, competitively inhibited the degradation of the 125I-LDL component of the complex. Polyanionic compounds such as polyinosinic acid and fucoidin, while completely blocking the acetyl-LDL-stimulated cholesteryl ester formation, had no effect on the proteoglycan aggregate-stimulated cholesterol esterification. This suggests that LDL-proteoglycan complex and acetyl-LDL are not entering the cells through the same receptor pathway. These results demonstrate that the interaction of LDL with arterial wall proteoglycan aggregates results in marked cholesteryl ester accumulation in macrophages, a process likely to favor foam cell formation. A role for arterial proteoglycans in atherosclerosis is obvious.  相似文献   

20.
Little or no information is available on biologically valid labeling of hypercholesterolemic plasma lipoproteins with cholesteryl ester. The esterification of labeled unesterified cholesterol in hypercholesterolemic rabbit plasma by the lecithin: cholesterol acyltransferase reaction is inefficient. The use of the d > 1.063 plasma fraction for this reaction greatly improves the efficiency, but some labeled unesterified cholesterol remains in the end products. The latter disadvantage can be avoided by the addition to whole plasma of labeled cholesteryl ester dissolved in DMSO or acetone. However, in hypercholesterolemic rabbit plasma only a small fraction of the added cholesteryl ester was associated with lipoproteins. When phosphatidylcholine/ cholesteryl ester liposomes were incubated with hypercholesterolemic rabbit plasma for 18–24 h at 37°C the labeled cholesteryl ester was quantitatively incorporated into lipoproteins. Chylomicron-like, cholesteryl ester-rich particles were removed by centrifugation (106g · min) and the subsequently isolated d < 1.019 and d = 1.019–1.063 (LDL) fractions were injected intravenously into normal and hypercholesterolemic rabbits. The disappearance of d < 1.019 and LDL cholesteryl ester and the appearance of cholesteryl ester in other lipoprotein fractions was indistinguishable from that of in vivo-labeled lipoproteins. In vivo and in vitro cholesteryl ester-labeled lipoproteins were also compared by measuring the exchangeability of their cholesteryl ester with HDL cholesteryl ester in vitro. Equal exchangeability of the two labels was observed in the d < 1.019 fraction from which the chylomicron-like particles had been removed. These findings demonstrate that when cholesteryl ester is incorporated by the liposome procedure, the distribution of labeled cholesteryl ester within the lipoprotein complex corresponds closely to that of the in vivo-incorporated labeled cholesteryl ester.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号