首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Under the conditions of nitrogen starvation, illumination by blue light of wc-1 and wc-2 mutants of the ascomycete Neurospora crassa failed to stimulate the formation of protoperithecia and inhibit conidiation (contrary to what was observed in the mycelium of the wild-type fungus). The data obtained indicate that wc-1 and wc-2 genes of N. crassa are involved in light-dependent formation of protoperithecia and conidia. The effects of 5-azacytidine (an inhibitor of DNA methylation) under the same experimental conditions suggest that the balance between the formation of sexual and asexual reproductive structures, maintained in N. crassa, depends on genome methylation processes sensitive to the action of light, which is mediated by the photoreceptor complex of WC proteins.  相似文献   

2.
3.
4.
5.
6.
Under nitrogen starvation conditions, illumination by blue light of wc-1 and wc-2 mutants of the ascomycete Neurospora crassa failed to stimulate the formation of protoperithecia and inhibit condition (contrary to what was observed in the mycelium of the wild-type fungus). The data obtained indicate that wc-1 and wc-2 genes of N. crassa are involved in the light-dependent formation of protoperithecia and conidia. The effects of 5-azacytidine (an inhibitor of DNA methylation) under the same experimental conditions suggest that the balance between the formation of sexual and asexual reproductive structures, maintained in N. crassa, depends on genome methylation processes sensitive to the action of light, which is mediated by the photoreceptor complex of WC proteins.  相似文献   

7.
8.
The effect of stress factors (changes in oxygen content, temperature, and illumination) on superoxide dismutase (SOD) and catalase activity, as well as on the content of thiol and disulfide groups in low-molecular-weight compounds and proteins of Neurospora crassa mycelium was studied in the wild type strain and white collar-1 (wc-1) and white collar-2 (wc-2) mutants. Environmental stress factors induced the activation of both SOD and catalase, as well as an increase in the thiol level in the wild type strain of Neurospora crassa. In the wc-1 and wc-2 mutants, an increase in catalase activity and in the total thiol level was revealed; however, activation of superoxide dismutase was not observed. A decrease in the formation of disulfide bonds in the proteins of wc-1 and wc-2 mutants (as compared with the wild type strain) was recorded. These results indicate disrupted transduction in the WCC mutants of stress factor signals that promote ROS (reactive oxygen species) formation.  相似文献   

9.
10.
11.
White collar (wc) mutants of Neurospora crassa are thought to be regulatory mutants blocked in the photoinduction of carotenogenesis. Eight new wc mutants have been isolated after UV mutagenesis; their morphology and linear growth rate are not altered, although blue light-induced carotenogenesis is completely blocked. All of the wc mutations fall into two complementation groups corresponding to the already-known wc-1 and wc-2 loci. It is shown that the wc mutations impair another blue light effect, the photoinduction of protoperithecia formation, as well as the low constitutive production of protoperithecia in the dark. These effects are not due to the lack of carotenoids since the albino mutants show a normal sexual development. The pleiotropic effects of the mutations in the wc genes indicate that they play a key role in the mechanisms of regulation of the blue light-induced responses of N. crassa.  相似文献   

12.
Cryptococcus neoformans is a heterothallic basidiomycetous yeast that primarily infects immunocompromised individuals. Dikaryotic hyphae resulting from the fusion of the MATa and MATalpha mating type strains represent the filamentous stage in the sexual life cycle of C. neoformans. In this study we demonstrate that the production of dikaryotic filaments is inhibited by blue light. To study blue light photoresponse in C. neoformans, we have identified and characterized two genes, CWC1 and CWC2, which are homologous to Neurospora crassa wc-1 and wc-2 genes. Conserved domain analyses indicate that the functions of Cwc1 and Cwc2 proteins may be evolutionally conserved. To dissect their roles in the light response, the CWC1 gene deletion mutants are created in both mating type strains. Mating filamentation in the bilateral cross of cwc1 MATa and MATalpha strains is not sensitive to light. The results indicate that Cwc1 may be an essential regulator of light responses in C. neoformans. Furthermore, overexpression of the CWC1 or CWC2 gene requires light activation to inhibit sexual filamentation, suggesting both genes may function together in the early step of blue light signalling. Taken together, our findings illustrate blue light negatively regulates the sexual filamentation via the Cwc1 and Cwc2 proteins in C. neoformans.  相似文献   

13.
Fast light-regulated genes of Neurospora crassa.   总被引:6,自引:1,他引:5       下载免费PDF全文
  相似文献   

14.
15.
16.
17.
Shalitin D  Yu X  Maymon M  Mockler T  Lin C 《The Plant cell》2003,15(10):2421-2429
Cryptochromes are photolyase-like blue/UV-A light receptors that regulate various light responses in animals and plants. Arabidopsis cryptochrome 1 (cry1) is the major photoreceptor mediating blue light inhibition of hypocotyl elongation. The initial photochemistry underlying cryptochrome function and regulation remain poorly understood. We report here a study of the blue light-dependent phosphorylation of Arabidopsis cry1. Cry1 is detected primarily as unphosphorylated protein in etiolated seedlings, but it is phosphorylated in plants exposed to blue light. Cry1 phosphorylation increases in response to increased fluence of blue light, whereas the phosphorylated cry1 disappears rapidly when plants are transferred from light to dark. Light-dependent cry1 phosphorylation appears specific to blue light, because little cry1 phosphorylation is detected in seedlings treated with red light or far-red light, and it is largely independent from phytochrome actions, because no phytochrome mutants tested significantly affect cry1 phosphorylation. The Arabidopsis cry1 protein expressed and purified from insect cells is phosphorylated in vitro in a blue light-dependent manner, consistent with cry1 undergoing autophosphorylation. To determine whether cry1 phosphorylation is associated with its function or regulation, we isolated and characterized missense cry1 mutants that express full-length CRY1 apoprotein. Mutant residues are found throughout the CRY1 coding sequence, but none of these inactive cry1 mutant proteins shows blue light-induced phosphorylation. These results demonstrate that blue light-dependent cry1 phosphorylation is closely associated with the function or regulation of the photoreceptor and that the overall structure of cry1 is critical to its phosphorylation.  相似文献   

18.
The action mechanisms of plant cryptochromes   总被引:1,自引:0,他引:1  
  相似文献   

19.
G Arpaia  J J Loros  J C Dunlap  G Morelli    G Macino 《Plant physiology》1993,102(4):1299-1305
Ambient light is the major agent mediating entrainment of circadian rhythms and is also a major factor influencing development and morphogenesis. We show that in Neurospora crassa the expression of clock-controlled gene 2 (ccg-2), a gene under the control of the circadian clock and allelic to the developmental gene easy wettable (eas), is regulated by light in wild-type strains. Light elicits a direct and important physiological effect on ccg-2(eas) expression as demonstrated using several mutant Neurospora strains. In white collar mutants (wc-1 and wc-2) that are "blind" to blue light, ccg-2(eas) mRNA shows no variation following illumination with saturating light. By contrast, ccg-2(eas) mRNA is photoinduced in clock-null strains such as frequency (bd;frq). The results in the clock mutants show that an intact circadian oscillator is not required for light induction of ccg-2(eas). Thus, ccg-2(eas) is subject to a dual regulation that involves separable regulation by light and circadian rhythm.  相似文献   

20.
We have previously demonstrated that blue light induces the phosphorylation of a 15-kDa protein in crude membrane fractions of Neurospora crassa mycelia. Here we report the isolation and characterization of a mutant (?psp; phosphorylation of small proteins) that is completely defective for phosphorylation of that protein, as assayed in both crude membrane and soluble fractions. This mutation defines a unique locus that maps to linkage group VR between al-3 and his-6. To elucidate the photobiological significance of the phosphorylation of the protein, we analyzed known photobiological phenomena and discovered that the positioning of beaks on the perithecia, defined as perithecial polarity, was light-dependent in the wild type. In the psp mutant, beaks were phototropic as in the wild type, but their position was random. In a wc-1 mutant, however, beaks were positioned at random and were not phototropic. Thus light-induced perithecial polarity and phototropism of perithecial beaks are controlled differently. A psp; wc-1 double mutant showed the same phenotype as that of wc-1 with respect to these two photomorphogenetic characters. These results indicate that the wc-1 gene is epistatic to psp in the light-signal transduction pathway that controls both phototropism and perithecial polarity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号