首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To study the role of p38 mitogen-activated protein kinase (p38) activity during the process of metastasis, p38alpha(+/-) mice were subjected to an in vivo metastasis assay. The number of lung colonies of tumor cells intravenously injected in p38alpha(+/-) mice was markedly decreased compared with that in wild-type (WT) mice. On the other hand, the time-dependent increase in tumor volume after subcutaneous tumor cells transplantation was comparable between WT and p38alpha(+/-) mice. Platelets of p38alpha(+/-) mice were poorly bound to tumor cells in vitro and in vivo compared with those of WT mice. E- and P-selectin mRNAs were markedly induced in the lung after intravenous injection of tumor cells. However, the induction of these selectin mRNAs in p38alpha(+/-) mice was weaker than that in WT mice. Furthermore, the resting expression levels of E-selectin in lung endothelial cells and P-selectin in platelets of p38alpha(+/-) mice were suppressed compared with those of WT mice. The number of tumor cells attached on lung endothelial cells of p38alpha(+/-) mice was significantly reduced compared with that of WT mice. The transmigrating activity of tumor cells through lung endothelial cells of p38alpha(+/-) mice was similar to that of WT mice. These results suggest that p38alpha plays an important role in extravasation of tumor cells, possibly through regulating the formation of tumor-platelet aggregates and their interaction with the endothelium involved in a step of hematogenous metastasis.  相似文献   

2.
A mutual relationship exists between metastasizing tumor cells and components of the coagulation cascade. The exact mechanisms as to how platelets influence blood-borne metastasis, however, remain poorly understood. Here, we used murine B16 melanoma cells to observe functional aspects of how platelets contribute to the process of hematogenous metastasis. We found that platelets interfere with a distinct step of the metastasis cascade, as they promote adhesion of melanoma cells to the endothelium in vitro under shear conditions. Constitutively active platelet receptor GPIIb/IIIa (integrin αIIbβ3) expressed on Chinese hamster ovary cells promoted melanoma cell adhesion in the presence of fibrinogen, whereas blocking antibodies to aνβ3 integrin on melanoma cells or to GPIIb/IIIa significantly reduced melanoma cell adhesion to platelets. Furthermore, using intravital microscopy, we observed functional platelet-melanoma cell interactions, as platelet depletion resulted in significantly reduced melanoma cell adhesion to the injured vascular wall in vivo. Using a mouse model of hematogenous metastasis to the lung, we observed decreased metastasis of B16 melanoma cells to the lung by treatment with a mAb blocking the aν subunit of aνβ3 integrin. This effect was significantly reduced when platelets were depleted in vivo. Thus, the engagement of GPIIb/IIIa with aνβ3 integrin interaction mediates tumor cell-platelet interactions and highlights how this interaction is involved in hematogenous tumor metastasis.  相似文献   

3.
Flavonoids comprise a class of low molecular weight compounds displaying a variety of biological activities including inhibition of tumor growth and metastasis. To gain insight into the mechanisms underlying metastasis inhibition, we have employed the B16-BL6 murine melanoma metastasis model. B57BL/6N mice were injected i.v. with tumor cells and Apigenin, Quercetin, or Tamoxifen, each at 50 mg/kg given i.p., and lung tumor cell colonies counted 14-6 days thereafter. Three different injection schedules were used for each drug: (a) daily injection, starting 24 h before injection of the tumor cells; (b) single dose, 24 h preceding tumor challenge; (c) daily injection, starting 24 h after the injection of the tumor cells. All three compounds significantly reduced tumor lung deposits (Apigenin = Quercetin > Tamoxifen). However, when treatment was delayed by 24 h after tumor cells (schedule c), multiple daily doses of Apigenin or Quercetin were less effective that a single dose of the same compound given 24 h before tumor challenge (schedule b). Apigenin and Quercetin, but not Tamoxifen, were found to inhibit VCAM-1 expression in a dose-dependent manner in HUVEC and in murine pulmonary endothelial cells. In ex vivo experiments, the number of tumor cells adhering to lung vessels was significantly diminished in animals treated with a single dose of Apigenin and Quercetin. These findings indicate that the inhibition of tumor cell metastasis by Apigenin or Quercetin may significantly depend on the ability of these compounds to alter the host's microenvironment, further substantiating the role of the intravascular processes in the metastatic cascade.  相似文献   

4.
 We examined the influence of surgical stress on hematogenous metastasis of malignant tumor cells. The study was performed by focusing on the involvement of inflammatory cytokines in the serum, raised acutely after surgery, and endothelial adhesion molecules in the metastatic process. Surgical stress, given to C57BL/6 mice before B16-BL6 melanoma inoculation, significantly enhanced the pulmonary metastasis. This enhancement was seen when the surgery lasted for more than 2 h. After the 2-h surgery, the enhancement of pulmonary metastasis was seen most remarkably when B16-BL6 was inoculated 24 h after surgery. The serum level of tumor necrosis factor α (TNFα) in the mice that underwent the 2-h surgery peaked 12 h after the surgery. In contrast, serum interferon γ was not detectable. Administration of an anti-TNFα mAb before the surgery inhibited the enhanced metastasis by inhibiting the increased expression of vascular cell adhesion molecule 1 (VCAM-1) on lung vascular endothelium after the surgery. Pretreatment of B16-BL6 cells with an anti-very late activation antigen 4 (anti-VLA-4) mAb completely inhibited the enhanced metastasis after surgery. Administration of an anti-VCAM-1 mAb before surgery also inhibited the enhancement. These results indicate that serum TNFα , raised by surgical stress, is critically involved in the enhanced pulmonary metastasis of mouse melanoma by inducing VCAM-1 expression on lung vascular endothelium. Received: 22 January 1996 / Accepted: 1 April 1996  相似文献   

5.
The interaction of tumor cells with platelets is a prerequisite for successful hematogenous metastatic dissemination. Upon tumor cell arrival in the blood, tumor cells immediately activate platelets to form a permissive microenvironment. Platelets protect tumor cells from shear forces and assault of NK cells, recruit myeloid cells by secretion of chemokines, and mediate an arrest of the tumor cell platelet embolus at the vascular wall. Subsequently, platelet-derived growth factors confer a mesenchymal-like phenotype to tumor cells and open the capillary endothelium to expedite extravasation in distant organs. Finally, platelet-secreted growth factors stimulate tumor cell proliferation to micrometastatic foci. This review provides a synopsis on the current literature on platelet-mediated effects in cancer metastasis and particularly focuses on platelet adhesion receptors and their role in metastasis. Immunoreceptor tyrosine-based activation motif (ITAM) and hemi ITAM (hemITAM) comprising receptors, especially, glycoprotein VI (GPVI), FcγRIIa, and C-type lectin-like-2 receptor (CLEC-2) are turned in the spotlight since several new mechanisms and contributions to metastasis have been attributed to this family of platelet receptors in the last years.  相似文献   

6.
宫亮  杨和平 《生物磁学》2009,(13):2502-2504
目的:观察肺癌患者外周血血小板对肺癌分期和血行转移的影响。方法:选择在我院呼吸科初诊的原发性肺癌患168例,分析其外周血小板计数与肺癌病理类型和分期的关系,并在模拟流体状态下,体外研究活化血小板对培养的肺癌细胞和内皮细胞相互作用的影响。结果:肺腺癌中外周血血小板计数增高现象最为明显,占37.09%(23/62)(P〈0.05),鳞癌占22.64%,小细胞癌占22.70%,其他占14.20%。其中有远处血行转移者血小板增多(20.24%)较无明显转移者(7.14%)相差显著(P〈0.01)。同时体外研究显示流体状态对肺癌细胞粘附存在影响,而活化血小板增强了肺癌细胞与内皮细胞的相互作用。结论:血小板活化与肺癌尤其是肺腺癌的血行转移密切相关;活化血小板增强了肺癌细胞与内皮细胞的相互作用是血小板促进肺癌血行转移的重要机制之一。  相似文献   

7.
Arrest of circulating tumor cells in distant organs is required for hematogenous metastasis, but the tumor cell surface molecules responsible have not been identified. Here, we show that the tumor cell alpha3beta1 integrin makes an important contribution to arrest in the lung and to early colony formation. These analyses indicated that pulmonary arrest does not occur merely due to size restriction, and raised the question of how the tumor cell alpha3beta1 integrin contacts its best-defined ligand, laminin (LN)-5, a basement membrane (BM) component. Further analyses revealed that LN-5 is available to the tumor cell in preexisting patches of exposed BM in the pulmonary vasculature. The early arrest of tumor cells in the pulmonary vasculature through interaction of alpha3beta1 integrin with LN-5 in exposed BM provides both a molecular and a structural basis for cell arrest during pulmonary metastasis.  相似文献   

8.
We previously described an inverse correlation between galectin-9 (Gal-9) expression and metastasis in patients with malignant melanoma and breast cancer. This study verified the ability of Gal-9 to inhibit lung metastasis in experimental mouse models using highly metastatic B16F10 melanoma and Colon26 colon cancer cells. B16F10 cells transfected with a secreted form of Gal-9 lost their metastatic potential. Intravenous Gal-9 administration reduced the number of metastases of both B16F10 and Colon26 cells in the lung, indicating that secreted Gal-9 suppresses metastasis. Analysis of adhesive molecule expression revealed that B16F10 cells highly express CD44, integrin alpha1, alpha 4, alpha V, and beta1, and that Colon26 cells express CD44, integrin alpha2, alpha 5, alpha V, and beta1, suggesting that Gal-9 may inhibit the adhesion of tumor cells to vascular endothelium and the extracellular matrix (ECM) by binding to such adhesive molecules. Indeed, Gal-9 suppressed the binding of hyaluronic acid to CD44 on both B16F10 and Colon26 cells, and also suppressed the binding of vascular cell adhesion molecule-1 to very late antigen-4 on B16F10 cells. Furthermore, Gal-9 inhibited the binding of tumor cells to ECM components, resulting in the suppression of tumor cell migration. The present results suggest that Gal-9 suppresses both attachment and invasion of tumor cells by inhibiting the binding of adhesive molecules on tumor cells to ligands on vascular endothelium and ECM.  相似文献   

9.
Hou Y  Zou Q  Ge R  Shen F  Wang Y 《Cell research》2012,22(1):259-272
Metastatic hepatocellular carcinoma (HCC) is one of the most lethal cancers worldwide. However, the cell population responsible for its metastasis remains largely unknown. Here, we reported that CD133(+)CD44(+/high) defined a subgroup of tumor cells that was responsible for hematogenous metastasis of liver cancers. Immunohistochemical investigation of human HCC specimens revealed that the number of CD133(+) and CD44(+) HCC cells was increased and was associated with portal vein invasion. Purified CD133(+) or CD44(high) HCC cells were superior in clonogenic growth and vascular invasion, respectively. Thus, the combination of CD133 and CD44 was used to define a novel HCC sub-population. CD133(+)CD44(high), but not CD133(+)CD44(low/-), CD133(-)CD44(high) or CD133(-)CD44(low/-) xenografts, produced intrahepatic or lung metastasis in nude mice. Further analysis of human HCC samples by flow cytometry showed that the number of CD133(+)CD44(+) tumor cells was associated with portal vein metastasis. The cDNA microarray analysis of CD133(+)CD44(+) and CD133(+)CD44(-) tumor cells isolated from metastatic HCC patients revealed that these cells comprised of two different populations possessing distinct gene expression profiles. Our results suggest that CD133(+)CD44(+) tumor cells are a particular population responsible for hematogenous metastasis in liver cancers and that these cells might be targets for treatment of HCC metastasis.  相似文献   

10.
During hematogenous cancer metastasis, tumor cells separate from a primary mass, enter the bloodstream, disperse throughout the body, migrate across vessel walls, and generate distant colonies. The later steps of metastasis superficially resemble leukocyte extravasation, a process initiated by selectin-mediated cell tethering to the blood vessel wall followed by integrin-mediated arrest and transendothelial migration. Some cancer cells express P-selectin ligands and attach to immobilized P-selectin, suggesting that these cells can arrest in blood vessels using sequential selectin- and integrin-mediated adhesion, as do leukocytes. We hypothesize that selectin binding may regulate subsequent integrin-mediated steps in metastasis. Using a model system of cultured Colo 320 human colon adenocarcinoma cells incubated with soluble P-selectin-IgG chimeric protein, we have found that P-selectin can stimulate activation of the alpha(5)beta(1) integrin resulting in a specific increase of adhesion and spreading of these cells on fibronectin substrates. P-selectin binding also induced activation of p38 mitogen-activated protein kinase (p38 MAPK) and phosphatidylinositol 3-kinase (PI3-K). PI3-K inhibitors blocked P-selectin-mediated integrin activation, cell attachment, and cell spreading. Inhibition of p38 MAPK activation blocked cell spreading, but not cell attachment. P-selectin binding also resulted in formation of a signaling complex containing PI3-K and p38 MAPK. These results suggest that P-selectin binding to tumor cells can activate alpha(5)beta(1) integrin via PI3-K and p38 MAPK signaling pathways leading to increased cell adhesion. We propose that P-selectin ligands are important tumor cell signaling molecules that modulate integrin-mediated cell adhesion in the metastatic process.  相似文献   

11.
The carbohydrate determinants, sialyl Lewis A and sialyl Lewis X, which are frequently expressed on human cancer cells, serve as ligands for a cell adhesion molecule of the selectin family, E-selectin, which is expressed on vascular endothelial cells. These carbohydrate determinants are involved in the adhesion of cancer cells to vascular endothelium and thus contribute to hematogenous metastasis of cancer. The initial adhesion mediated by these molecules triggers activation of integrin molecules through the action of several cytokines and leads to the extravasation of cancer cells. Cancer cells also produce humoral factors that facilitate E-selectin expression on endothelial cells. The degree of expression of the carbohydrate ligands at the surface of cancer cells is well correlated with the frequency of hematogenous metastasis and prognostic outcome of patients with cancers. The alteration of glycosyltransferase activities that leads to the enhanced expression of these carbohydrate ligands on cancer cell surface are currently being investigated. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

12.
Heparanases and tumor metastasis   总被引:19,自引:0,他引:19  
The successful penetration of endothelial basement membranes is an important process in the formation of hematogenous tumor metastases. Heparan sulfate (HS) proteoglycan is a major constituent of endothelial basement membranes, and we have found that HS-degradative activities of metastatic B16 melanoma sublines correlate with their lung-colonizing potentials. The melanoma HS-degrading enzyme is a unique endo-beta-D-glucuronidase (heparanase) that cleaves HS at specific intrachain sites and is detectable in a variety of cultured human malignant melanomas. The treatment of B16 melanoma cells with heparanase inhibitors that have few other biological activities, such as N-acetylated N-desulfated heparin, results in significant reductions in the numbers of experimental lung metastases in syngeneic mice, indicating that heparanase plays an important role in melanoma metastasis. HS-degrading endoglycosidases are not tumor-specific and have been found in several normal tissues and cells. There are at least three types of endo-beta-D-glucuronidases based on their substrate specificities. Melanoma heparanase, an Mr approximately 96,000 enzyme with specificity for beta-D-glucuronosyl-N-acetylglucosaminyl linkages in HS, is different from platelet and mastocytoma endoglucuronidases. Elevated levels of heparanase have been detected in sera from metastatic tumor-bearing animals and malignant melanoma patients, and a correlation exists between serum heparanase activity and extent of metastases. The results suggest that heparanase is potentially a useful marker for tumor metastasis.  相似文献   

13.
Summary Using a series of immunologically cross-reactive metastatic tumor variants, we demonstrate that serum from animals bearing pulmonary tumor colonies possesses enhancing properties in the experimental metastasis (lung colony) assay. Enhancement is produced by chronic serum administration and promotes the growth of tumor cells arrested in the lungs which would not otherwise proliferate to form grossly detectable lung nodules. Tumor-bearer serum from animals with lung colonies derived from the most highly metastatic variant examined is shown to possess enhancing properties in both BD-IX(H-1d) and BD-IV(H-1d) rat strains, while tumor-bearer serum from animals with lung colonies derived from the less metastatic parent tumor cell line possesses enhancing properties in the BD-IX rat strain only. Removal of immunoglobulin from enhancing serum by affinity column chromatography simultaneously removes the enhancing factor(s), and enhancing activity correlates with the presence of increased levels of Clq-binding immune complexes in the serum. Serum levels of immune complexes are shown to be more elevated in serum from animals bearing lung colonies derived from the most highly metastatic variant. The enhancing moieties are shown to bind to concanavalin A, but not to staphylococcal protein A, and the active fraction elutes from concanavalin A-Sepharose with -methyl-mannoside. Consideration of immunoprecipitation studies on whole and fractionated enhancing sera, along with studies on affinity purified isotype fractions reveals that the activity resides with antibodies of IgG2b subclass. Abbreviations used: NK, natural killer cell; CIC, circulating immune complex; RhC, rheumatoid-Clq protein complex; Ig, immunoglobulin  相似文献   

14.
RING finger protein 13 (RNF13) is a novel E3 ubiquitin ligase whose expression is associated with cancer development. However, its specific role in cancer progression and metastasis remains unclear. Here, a B16F10/LLC experimental pulmonary metastatic model was developed to examine the formation of metastatic foci in the lung. A greater number of tumor colonies were observed in the lungs of RNF13-knockout (KO) mice than in their wild-type (WT) littermates, whereas no significant differences in tumor size were observed between the two groups. In short-term experiments, the number of fluorescently-labeled B16F10 cells increased remarkably in RNF13-KO lungs at early time points, whereas clearance of tumor cells from the blood was not affected. These results indicated that RNF13 may inhibit the colonization of B16F10 cells in the lung. Assessment of the concentration of various cytokines in tumor bearing lungs and blood did not detect significant differences between the blood of RNF13-KO and WT mice; however the levels of GM-CSF were significantly reduced in RNF13-KO tumor bearing lungs, which may have guided more B16F10 cells to migrate to the lungs. This was confirmed by lower GM-CSF concentrations in conditioned media from the culture of RNF13-KO lung slices. Collectively, our results suggest that host RNF13 affects the concentration of GM-CSF in tumor-bearing lungs, leading to a reduction in the colonization of metastatic tumor cells in the lung.  相似文献   

15.
Yamaura T  Doki Y  Murakami K  Saiki I 《Human cell》1999,12(4):197-204
This study is designed to establish a pulmonary tumor model to investigate the biology and therapy of lung cancer in mice. Current methods for forming a solitary intrapulmonary nodule and subsequent metastasis to mediastinal lymph nodes are not well defined. Lewis lung carcinoma cell (LLC) suspensions were orthotopically introduced into the lung parenchyma of C57/BL6 mice via a limited skin incision without thoracotomy followed by direct puncture through the intercostal space. The implantation process was performed within approximately 50 sec per mouse, and the operative mortality was less than 5%. Single pulmonary nodules developed at the implanted site in 93% of animals and subsequent mediastinal lymph nodes metastasis were observed in all mice that were succeeded to form a lung nodule after intrapulmonary implantation. The size of tumor nodule and the weight of mediastinal lymph node increased in a time-dependent manner. The mean survival time of mice implanted successfully with LLC cells was 21 +/- 2 days (range; 19-24 days). Histopathological analysis revealed that no metastatic tumor was detectable in the mediastinal lymph nodes on day 11, but metastatic foci at mediastinal lymph nodes were clearly observed on days 17 and 21 after implantation. Other metastases in distant organs or lymph nodes were not observed at 21 days after the implantation. Comparative studies with intrapleural and intravenous injections of LLC cells suggest that the mediastinal lymph node metastasis by intrapulmonary implantation is due to the release of tumor cells from the primary nodule, and not due to extrapulmonary leakage of cells. An intravenous administration of CDDP on day 1 after tumor implantation tended to suppress the primary tumor nodule and significantly inhibited the lymph node metastasis. Thus, a solitary pulmonary tumor nodule model with lymph node metastasis approximates clinical lung cancer, and may provide a useful basis for lung cancer research.  相似文献   

16.
Padua D  Zhang XH  Wang Q  Nadal C  Gerald WL  Gomis RR  Massagué J 《Cell》2008,133(1):66-77
Cells released from primary tumors seed metastases to specific organs by a nonrandom process, implying the involvement of biologically selective mechanisms. Based on clinical, functional, and molecular evidence, we show that the cytokine TGFbeta in the breast tumor microenvironment primes cancer cells for metastasis to the lungs. Central to this process is the induction of angiopoietin-like 4 (ANGPTL4) by TGFbeta via the Smad signaling pathway. TGFbeta induction of Angptl4 in cancer cells that are about to enter the circulation enhances their subsequent retention in the lungs, but not in the bone. Tumor cell-derived Angptl4 disrupts vascular endothelial cell-cell junctions, increases the permeability of lung capillaries, and facilitates the trans-endothelial passage of tumor cells. These results suggest a mechanism for metastasis whereby a cytokine in the primary tumor microenvironment induces the expression of another cytokine in departing tumor cells, empowering these cells to disrupt lung capillary walls and seed pulmonary metastases.  相似文献   

17.
Ohyama C  Tsuboi S  Fukuda M 《The EMBO journal》1999,18(6):1516-1525
Aberrant expression of cell surface carbohydrates such as sialyl Lewis X is associated with tumor formation and metastasis. In order to determine the roles of sialyl Lewis X in tumor metastasis, mouse melanoma B16-F1 cells were stably transfected with alpha1, 3-fucosyltransferase III to express sialyl Lewis X structures. The transfected B16-F1 cells, B16-FTIII, were separated by cell sorting into three different groups based on the expression levels of sialyl Lewis X. When these transfected cells were injected into tail veins of C57BL/6 mice, B16-FTIII.M cells expressing moderate amounts of sialyl Lewis X in poly-N-acetyllactosamines produced large numbers of lung tumor nodules. Surprisingly, B16-FTIII.H cells expressing the highest amount of sialyl Lewis X in shorter N-glycans died in lung blood vessels, producing as few lung nodules as B16-FTIII.N cells which lack sialyl Lewis X. In contrast, B16-FIII.H cells formed more tumors in beige mice and NK cell-depleted C57BL/6 mice than did B16-FTIII.M cells. B16-FTIII.H cells bound to E-selectin better than did B16-FTIII.M cells, but both cells grew at the same rate. These results indicate that excessive expression of sialyl Lewis X in tumor cells leads to rejection by NK cells rather than tumor formation facilitated by attachment to endothelial cells.  相似文献   

18.

Background

The ability to properly model intravascular steps in metastasis is essential in identifying key physical, cellular, and molecular determinants that can be targeted therapeutically to prevent metastatic disease. Research on the vascular microenvironment has been hindered by challenges in studying this compartment in metastasis under conditions that reproduce in vivo physiology while allowing facile experimental manipulation.

Methodology/Principal Findings

We present a microfluidic vasculature system to model interactions between circulating breast cancer cells with microvascular endothelium at potential sites of metastasis. The microfluidic vasculature produces spatially-restricted stimulation from the basal side of the endothelium that models both organ-specific localization and polarization of chemokines and many other signaling molecules under variable flow conditions. We used this microfluidic system to produce site-specific stimulation of microvascular endothelium with CXCL12, a chemokine strongly implicated in metastasis.

Conclusions/Significance

When added from the basal side, CXCL12 acts through receptor CXCR4 on endothelium to promote adhesion of circulating breast cancer cells, independent of CXCL12 receptors CXCR4 or CXCR7 on tumor cells. These studies suggest that targeting CXCL12-CXCR4 signaling in endothelium may limit metastases in breast and other cancers and highlight the unique capabilities of our microfluidic device to advance studies of the intravascular microenvironment in metastasis.  相似文献   

19.
Rho family proteins regulate multiple cellular functions including motility and invasion through regulation of the actin cytoskeleton and gene expression. Activation of Rho proteins is controlled precisely by multiple regulators in a spatiotemporal manner. RhoA and/or RhoC are key players that regulate the metastatic activity of malignant tumor cells, and it is therefore of particular interest to understand how activation of these Rho proteins is controlled. We recently identified an upstream regulator of RhoA activation, p27RF-Rho (p27(kip1) releasing factor from RhoA) that acts by freeing RhoA from inhibition by p27(kip1). p27(kip1) is a cell cycle regulator when it is localized to the nucleus, but it binds RhoA and inhibits activation of the latter when it is localized to the cytoplasm. Here, we show that a metastatic variant of mouse melanoma B16 cells (F10) exhibits greater expression of p27RF-Rho, RhoA, and RhoC than the nonmetastatic parental cells (F0). Injection of F10 cells into mouse tail vein resulted in the formation of metastatic lung colonies, whereas prior knockdown of expression of either one of the three proteins using specific shRNA sequences decreased metastasis markedly. p27RF-Rho regulated the activation of RhoA and RhoC and thereby modulated cellular adhesion and motility, in addition to pericellular proteolysis. The Rho activities enhanced by p27RF-Rho had a marked effect upon efficiency of lodging of F10 cells in the lung, which represents an early step of metastasis. p27RF-Rho also regulated metastasis of human melanoma and fibrosarcoma cells. Thus, p27RF-Rho is a key upstream regulator of RhoA and RhoC that controls spreading of tumor cells.  相似文献   

20.
Early metastatic growth occurs at sites of vascular arrest of blood-borne cancer cells and is entirely intravascular. Here we show that lung colonization by B16-F10 cells is licensed by beta(4) integrin adhesion to the mouse lung endothelial Ca(2+)-activated chloride channel protein mCLCA1. In a manner independent of Met, beta(4) integrin-mCLCA1-ligation leads to complexing with and activation of focal adhesion kinase (FAK) and downstream signaling to extracellular signal-regulated kinase (ERK). FAK/ERK signaling is Src-dependent and is interrupted by adhesion blocking antibodies and by dominant-negative (dn)-FAK mutants. Levels of ERK activation in B16-F10 cells transfected with wild-type or mutant FAK are closely associated with rates of proliferation and bromodeoxyuridine (BrdUrd) incorporation of tumor cells grown in mCLCA1-coated dishes, the ability to form tumor cell colonies on CLCA-expressing endothelial cell monolayers, and the extent of pulmonary metastatic growth. Parallel with the transfection rates, B16-F10 cells transfected with dn-FAK mutants and injected intravenously into syngeneic mice generate approximately half the number and size of lung colonies that vector-transfected B16-F10 cells produce. For the first time, beta(4) integrin ligation to its novel CLCA-adhesion partner is shown to be associated with FAK complexing, activation, and signaling to promote early, intravascular, metastatic growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号