首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of phytohormones on plant regeneration in callus culture of Iris ensata Thunb. was studied. 2,4-Dichlorophenoxyacetic acid (2,4-D) proved to be the most suitable auxin for the induction and subculturing of morphogenic callus. Organogenic calluses were induced from isolated embryos at the waxphase in MS medium supplemented with 2,4-D (1.0–2.0 mg/l) and kinetin (0.2–0.5 mg/l). Changes in the medium hormonal composition favor the development of adventitious structures. The setting of adventitious shoot buds took place in the presence of 6-benzylaminopurine, while the development of shoots and root primordia was observed after 2,4-D replacement with indoleacetic acid (2.0 mg/l). The root initiation in regenerating plants required a hormone-free medium. The development of intact seedling and regenerated plants of I. ensata were studied. Analysis of the shoot structure demonstrated that in vitro cultured plants are at the juvenile stage.  相似文献   

2.
Trichosanthes kirilowii Maxim. is a climbing herb with considerable medicinal value. In this study, efficient protocols for callus-mediated regeneration and in vitro tuberization of this plant were developed. Sterilized stem and leaf tissues were cultured on Murashige and Skoog (MS) medium with plant growth regulators (PGRs), and additives that promoted callus induction and regeneration. Both stem and leaf tissues showed the best response (100%) for callus initiation on MS medium supplemented with 4.5-μM 2,4-dichlorophenoxyacetic acid (2,4-D). Efficient shoot organogenesis was obtained by exposing the callus tissue to 4.6-μM kinetin, 2.2-μM 6-benzylaminopurine, and 2.7-μM 1-naphthylacetic acid (NAA) along with 12.6-μM copper sulfate, which yielded a shoot regeneration rate of 85.5% and 28 shoots derived from each callus. In vitro shoots were best rooted on half-strength (1/2) MS medium with 2.7-μM NAA. Tuberous roots were efficiently induced on rooting medium with 5% (w/v) sucrose under short illumination conditions (8 h photoperiod). Rooted plantlets were successfully acclimatized in pots with a >?90% survival rate. This protocol provides an effective method for callus-mediated regeneration and in vitro root tuberization.  相似文献   

3.
Unfertilized ovaries isolated from immature female flowers of coconut (Cocos nucifera L.) were tested as a source of explants for callogenesis and somatic embryogenesis. The correct developmental stage of ovary explants and suitable in vitro culture conditions for consistent callus production were identified. The concentration of 2,4-dichlorophenoxyacetic acid (2,4-D) and activated charcoal was found to be critical for callogenesis. When cultured in a medium containing 100 μM 2,4-D and 0.1% activated charcoal, ovary explants gave rise to 41% callusing. Embryogenic calli were sub-cultured into somatic embryogenesis induction medium containing 5 μM abscisic acid, followed by plant regeneration medium (with 5 μM 6-benzylaminopurine). Many of the somatic embryos formed were complete with shoot and root poles and upon germination they gave rise to normal shoots. However, some abnormal developments were also observed. Flow cytometric analysis revealed that all the calli tested were diploid. Through histological studies, it was possible to study the sequence of the events that take place during somatic embryogenesis including orientation, polarization and elongation of the embryos.  相似文献   

4.
Guar (Cyamopsis tetragonoloba L. Taub) is a drought tolerant and multipurpose grain legume cash crop grown primarily under rainfed conditions in several countries. The effect of various growth regulators and their combinations on a variety of explants, namely the embryo, cotyledons, cotyledonary nodes, shoot tip and hypocotyle, has been studied and an efficient system for callus induction and regeneration from callus has been developed. It was established that Murashige and Skoogs culture medium containing 2,4-dichlorophenoxyacetic acid (10.0M) in combination with 6-benzylaminopurine (5.0M) with embryo or cotyledon explants is most suitable for induction of green and friable morphogenic callus, with a range of 82.5–95% of cultured explants responding to callus induction. Efficient de novo shoot regeneration was achieved by culturing the callus obtained on this medium on Murashige and Skoogs medium containing 1-naphthlenacetic acid (13.0M) in combination with 6-benzylaminopurine (5.0M) with a range of 82.1–88.4% of callus clumps producing 20–25 shoots. In vitro rooting of cultured shoots was obtained on half-salt concentration of Murashige and Skoogs culture medium supplied with indole-3-butyric acid (5.0M) on which 82–90% of cultured shoots produced healthy roots. The in vitro regenerated plants were grown to pod setting and subsequent maturity under greenhouse conditions.  相似文献   

5.
Sternbergia fischeriana is an endangered geophyte and therefore in vitro micropropagation of this plant will have great importance for germplasm conservation and commercial production. Bulb scale and immature embryo explants of S. fischeriana were cultured on different nutrient media supplemented with various concentrations of plant growth regulators. Immature embryos produced higher number of bulblets than bulb scales. Large numbers of bulblets were regenerated (over 80 bulblets/explants) from immature embryos on Murashige and Skoog (MS) medium supplemented with 4 mg l–1 6-benzylaminopurine (BA) and 0.25 mg l–1 -naphthaleneacetic (NAA) or 2 mg l–12,4-dichlorophenoxyacetic acid (2,4-D) after 14 months of culture initiation. Regenerated bulblets were kept at 5 °C for 5 weeks and then transplanted to a potting mixture.  相似文献   

6.
An effective protocol was developed for in vitro regeneration of the Melothria maderaspatana via indirect organogenesis in liquid and solid culture systems. Organogenesis was achieved from liquid culture calluses derived from leaf and petiole explants of mature plants. Organogenic calluses (98.2?±?0.36 and 94.8?±?0.71%) were induced from both leaf and petiole explants on Murashige and Skoog (MS) liquid medium containing 6.0 µM 2,4-dichlorophenoxyacetic acid (2,4-D) and 0.5 µM thidiazuron (TDZ); and 6.0 µM 2,4-D and 1.0 µM benzyladenine (BA) combinations, respectively. Adventitious shoot regeneration (68.2?±?0.06 shoots per explant) was achieved on MS medium supplemented with 2.0 µM BA, 4.0 µM TDZ, 10% v/v coconut water and 0.06 mM glutamine from leaf-derived calluses. Petiole-derived calluses produced adventitious shoots (45.4?±?0.09 shoots per explant) on MS medium fortified with 2.0 µM BA, 4.0 µM TDZ, 10% v/v coconut water, and 0.08 mM glutamine. Elongation of shoots occurred in MS medium with 2.0 µM gibberellic acid (GA3). Regenerated shoots (2–3 cm in length) rooted (74.2?±?0.38%) and hardened (85?±?1.24%) when they were transferred to 1/2-MS medium supplemented with 3.0 µM indole-3-butyric acid (IBA) followed by garden soil, vermiculate, and sand (2:1:1 ratio) mixture. The elongated shoots (4–5 cm in length) were exposed simultaneously for rooting as well as hardening (100%) in moistened [(1/8-MS basal salt solution with 5 µM IBA and 100 mg l?1 Bavistin® (BVN)] garden soil, vermiculate, and sand (2:1:1 ratio) mixture. Subsequently, the plants were successfully established in the field. The survival percentage differed with seasonal variations.  相似文献   

7.
The effect of various hormonal combinations on callus formation and regeneration of shoot and root from leaf derived callus of Acanthophyllum sordidum Bunge ex Boiss. has been studied. Proteins and activity of antioxidant enzymes were also evaluated during shoot and root organogenesis from callus. Calli were induced from leaf explants excised from 30-d-old seedlings grown on Murashige and Skoog medium containing 4.52 μM 2,4-dichlorophenoxyacetic acid + 4.65 μM kinetin. Maximum growth of calli and the most efficient regeneration of shoots and roots occurred with 2.69 μM 1-naphthalene acetic acid (NAA), 2.69 μM NAA + 4.54 μM thidiazuron and 2.46 μM indole-3-butyric acid. Protein content decreased in calli and increased significantly during regeneration of shoots from callus. Superoxide dismutase activity decreased in calli comparing to that of seedlings, then increased in regenerated shoots and roots. High catalase activity was detected in seedlings and regenerated shoots, whereas high peroxidase activity was observed in calli and regenerated roots.  相似文献   

8.
Summary The types of auxin in Murashige and Skoog (MS) medium containing N 6-benzyladenine (BA) determined indirect morphogenesis, i.e. development to bipolar somatic embryos or monopolar shoots in Euphorbia nivulia Buch.-Ham. Indirect in vitro morphogenesis depended on growth regulators, explant excision period, and light. Calli induced from explants collected in March–April were superior in the induction of indirect morphogenesis to those collected in July–August. Light enforced in vitro morphogenesis, while darkness was inhibitory. The presence of kinetin in the medium also inhibited morphogenesis. Calli developed on explants collected in March–April grown on MS medium fortified with α-naphthaleneacetic acid (NAA) and BA facilitated indirect organogenesis, while those developed on medium containing 2,4-dichlorophenoxyacetic acid (2,4-D) and BA underwent somatic embryogenesis. MS medium with 13.3 μM BA and 2.69 μM NAA was the best for induction of shoots from callus, which developed a mean of 15.7 shoots. Shoots were best rooted on half-strength MS medium enriched with 2.46 μM indole-3-butyric acid with a mean of 5.1 roots per shoot. MS medium supplemented with 2.26 μM 2,4-D and 4.44 μM BA induced the highest number (mean of 13.4) of somatic embryos. Of the embryos transferred on half-strength MS medium containing 2.89 μM gibberellic acid, 78% of embryos developed to the cotyledonary stage. Most cotyledonary embryos (80%) underwent conversion to plantlets upon being transferred to half-strength MS basal medium in light. The survival rate of organogenesis and embryo-derived plants was 80 and 90%, respectively. Calli transformed with Agrobacterium tumefaciens showed expression of the gusA transgene and resistance to kanamycin, but did not undergo morphogenesis.  相似文献   

9.
Summary Shoot tips and leaves excised from in vitro shoot cultures of Salvia nemorosa were evaluated for their organogenic capacity under in vitro conditions. The best shoot proliferation from shoot tips was obtained on Murashige and Skoog (MS) medium supplemented with 8.9 μM 6-benzylaminopurine (BA) and 2.9 μM indole-3-acetic acid (IAA). Leaf lamina and petiole explants formed shoots through organogenesis via callus stage and/or directly from explant tissue. The highest values for shoot regeneration were obtained with 0.9 μM BA and 2.9 μM IAA for lamina explants. No shoot organogenesis was obtained on leaf explants cultured on MS medium supplemented with α-naphthaleneacetic acid (NAA). The regenerated shoots rooted the best on MS medium containing 0.6 μM IAA or 0.5 μM NAA. In vitro-propagated plants were transferred to soil with a survival rate of 85% after 3 mo.  相似文献   

10.
We have developed a protocol for the in vitro propagation of the genus Clivia. Shoots were regenerated when fragments of the peduncle-pedicel junction (PP junction) from young inflorescences were used as explants. The optimal media for PP junction were Murashige and Skoog (MS)-based medium containing 10 M of 6-benzyladenine (BA) and 10 M of 2,4-dichlorophenoxyacetic acid (2,4-D) or MS supplemented with 5 M BA, 10 M -naphthaleneacetic acid (NAA), 250 mg l-1 glutamine and 500 mg l–1 casein hydrolysate and their usage depended on the breeding lines. Multiplication from initiations and in vitro seedlings was the best when the explants were cut longitudinally through the meristem and placed on MS plus 44 M BA. Plantlets were transferred on to hormone -free MS medium with charcoal for rooting.  相似文献   

11.
In vitro regeneration from leaf, cotyledon and hypocotyl explants of six cultivars belonging to three species of Capsicum was achieved by direct organogenesis. The cultivar Umorok showed the best response while Meiteimorok, Haomorok, Mashingkha and Uchithi showed intermediate response and the cultivar Chiengpi was the least responsive. Leaf and cotyledon explants regenerated more shoots than hypocotyl explants and the maximum number of shoots were produced on Murashige and Skoog (1962) medium containing 8.8 μM 6-benzylaminopurine (BAP) with 11.4 μM indole-3-acetic acid (IAA). Elongation of shoot buds derived from different explants was achieved on medium containing 2.8 μM IAA and the elongated shoots were rooted on medium containing 2.8 or 5.7 μM IAA and 2.4 or 4.9 μM indole-3-butyric acid (IBA). Four-week old rooted plantlets were hardened and transplanted to the soil. The plantlets showed 90 % survival during transplantation.  相似文献   

12.
In vitro shoot regeneration from sunflower cotyledonary explants can be obtained in the presence of kinetin and indole-3-acetic acid. In contrast, callus proliferation is obtained in the presence of 2,4-dichlorophenoxyacetic acid on culture medium. The purpose of this study was to investigate changes in protein profiles during callus and shoot development from cotyledonary explants and to correlate them with ontogenic stages during in vitro culture. Cotyledons cultured in the presence of 2,4-dichlorophenoxyacetic acid produced friable callus as a result of early division of parenchymatic cells associated with the vascular bundles of the explant. The callogenic ability was independent of the cotyledonary region used as starting explant. Direct shoot organogenesis was observed from the same type of cells growing in culture media supplemented with kinetin and indole-3-acetic acid. In this case, the regeneration potential varied among regions from which the explants were obtained. Protein profiles revealed differences associated with shoots or callus developmental programs. A 27-kDa polypeptide was uniquely detected in the explants undergoing shoot organogenesis. The amount of this polypeptide during the first 4 d of culture increased and was followed by the appearance of meristematic centers in histologically analyzed samples. This polypeptide could be used as a specific marker for in vitro shoot development in this species.  相似文献   

13.
An efficient protocol for direct and indirect shoot regeneration and proliferation from bulb scales of Shirui lily (Lilium mackliniae Sealy), an endangered Asiatic lily species endemic to the Shirui hill peak, Manipur, India, has been developed. Bulb scales were isolated from mature bulbs and cultured on Murashige and Skoog (MS) basal medium supplemented with different concentrations of 6-benzylaminopurine (BAP), kinetin (KIN), or thidiazuron (TDZ). For direct shoot regeneration from bulb scale explants, 0.5 mg L?1 BAP yielded the highest shoot induction (3.5 shoots per scale; a 96.7% response). For indirect de novo organogenesis, optimum callus induction was achieved with 2.0 mg L?1 2,4-dichlorophenoxyacetic acid (2,4-D), and shoot organogenesis was higher (16.2) when subcultured onto 0.5 mg L?1 BAP medium. Multiple shoot regeneration and pseudo-bulb formation protocols were assessed; the highest shoot proliferation (10.1) occurred with 0.5 mg L?1 BAP and 1.0 mg L?1 gibberellic acid (GA3). Rooting response was 96% with 0.5 mg L?1 1-naphthalene acetic acid (NAA), with multiple roots per shootlet. Plantlet survival was increased to 92.5% during the hardening-off process by using hydroponics with Hoagland’s solution in a mist chamber. Clonal fidelity was assessed through random amplified polymorphic DNA (RAPD) analysis comparing the mother plant and regenerated plantlets. After confirming genetic uniformity, the pseudo-bulblets with four to six leaves and three to four roots were successfully established at the Shirui hills peak. This in vitro regeneration and ex vitro conservation approach could be helpful to save this rare endangered species in a sustainable way.  相似文献   

14.
A protocol for in vitro regeneration via indirect organogenesis for Phaseolus vulgaris cv. Negro Jamapa was established. The explants used were apical meristems and cotyledonary nodes dissected from the embryonic axes of germinating seeds. Several auxin/cytokinin combinations were tested for callus induction. The best callus production was obtained with medium containing 1.5 μM 2,4-dichlorophenoxyacetic acid. After 2 weeks of growth calli were transferred to shooting medium containing 22.2 μM 6-benzylaminopurine. Shoots regenerated with a frequency of approximately 0.5 shoots per callus, and upon transfer to rooting medium these shoots produced roots with 100% efficiency. Histological analyses of the regeneration process confirmed the indirect organogenesis pattern. Greenhouse grown regenerated plants showed normal development and were fertile. The protocol was reproducible for other nine P. vulgaris cultivars tested, suggesting a genotype independent procedure.  相似文献   

15.
An in vitro plant regeneration protocol of Cymbidium faberi from immature seeds was established. The immature seeds of 50 days old started to form rhizomes 4 months after they were cultured on hormone free medium. The rhizomes multiplied 5 times when subcultured on the medium containing 1.0 mg l–1 -naphthalene acetic acid (NAA) for 40 days and more than 90% of the rhizomes initiated shoots within 60 days on the media containing 0.5 or 1.0 mg l–1 NAA plus 2.0 or 5.0 mg l–1N6-benzylaminopurine (BA). Plantlets were regenerated when the shoots were planted on the basal medium amended with 1 g l–1 activated charcoal for 50 days and the plantlets grew normally after transplanting.  相似文献   

16.
Summary Somatic embryo (bipolar) or shoot (monopolar) morphogenesis in mesophyll cells of Euphorbia nivulia Buch.-Ham in vitro was dependent on the type of auxin supplementing Murashige and Skoog (MS) medium containing benzyladenine. Direct in vitro morphogenesis, i.e., organogenesis, and somatic embryogenesis were significantly influenced by seasonal growth of the donor plant, explant position (proximal, mid, and distal), and light. Explants collected in march/April were superior to July/August material. Proximal explants underwent morphogenesis more readily than mid- and tip-derived explants. Incubation in the light favored morphogenesis while darkness was inhibitory. Kinetin (Kn) was also inhibitory to morphogenesis. MS medium enriched with different levels of N6-benzyladenine (BA) alone, or in combination with α-naphthaleneacetic acid (NAA) or indole-3-acetic acid (IAA), induced adventitious shoots directly. Explants collected in March/April cultured on medium with 13.3 μM BA and 2.69 μM NAA developed the highest number of shoots, a mean of 15.2 shoots per proximal explant. Developed shoots rooted the best on half-strength MS medium with 2.46 μM indole-3-butyric acid, which developed a mean of 5.2 roots per shoot. Rooted healthy shoots could be transplanted to small pots, with an 80% survival rate. Addition of 2,4-dichlorophenoxyacetic acid (2.4-D) to BA-supplemented medium was obligatory to develop somatic embryos. MS medium containing 2.26 μM 2,4-D and 4.44 μM BA induced a mean of 44.8 somatic embryos per proximal explant. The embryos passed through distinct stages of embryogenesis, namely globular, heart, torpedo, and early cotyledonary. The embryos (88%) underwent maturation on half-strength MS medium with 2.89 μM gibberellic acid (GA3), and its subsequent transfer on half-strength MS basal medium in light conditions facilitated 80% conversion of embryos to plantlets. Direct shoots or embryos were originated from the mesophyll cells. Somatic embryo development was concurrent with the independent origin of vasculature in the bulbous basal portion. The survival rate of embryo-derived plants was 90%.  相似文献   

17.
In vitro regeneration through somatic embryogenesis as well as organogenesis using cotyledon of a woody medicinal legume, Cassia angustifolia is reported. The cotyledons dissected from semi-mature seeds, if inoculated on Murashige and Skoog’s medium (MS) supplemented with auxin alone or in combination with cytokinin, produced direct and indirect somatic embryos. A maximum of 14.36 ± 2.26 somatic embryos per 20 mg of explants including callus were produced in 70% cultures on MS medium with 2.5 μM benzyladenine (BA) + 10 μM 2,4-dichlorophenoxyacetic acid (2,4-D). Although the percentage of embryogenic cultures was higher (83.33%) at 10 μM 2,4-D + 1 μM BA, the average number of somatic embryos was much less (7.6 ± 0.85) at this level, whereas at 2.5 μM BA and 5 μM 2,4-D, there was a simultaneous formation of both somatic embryos and shoots. The somatic embryos, although started germinating on the same medium, developed into full plantlets only if transferred to MS basal with 2% sucrose. Cytokinins alone did not induce somatic embryogenesis, but formed multiple shoots. Five micromolar BA proved optimum for recurrently inducing shoots in the competent callus with a maximum average of 12.04 ± 2.10 shoots and shoot length of 2.26 ± 0.03 cm. Nearly 91.6% shoots (2–2.5 cm in size) organized an average of 5.12 ± 0.58 roots on half strength MS + 10 μM indole-3-butyric acid. All the plantlets have been transferred successfully to soil. Types of auxin and its interaction with cytokinin significantly influenced somatic embryogenesis.  相似文献   

18.
Using in vitro-grown needles of Sequoia sempervirens (D. Don.) Endl., direct shoot organogenesis was induced. The effects of three genotypes and two cytokinins, N6-benzyladenine (BA) and N-benzyl-9 (2-tetrahydropyranl) adenine (BPA), in combination with 2,4-D were investigated. Among tested cytokinins, BPA produced the highest frequency of shoot organogenesis from all three genotypes tested. Adventitious shoots were induced directly from explants without intervening callus within 5weeks following incubation. Shoots were elongated on a 1/2 Wolter and Skoog (WS) medium supplemented with activated charcoal but without growth regulators. Later, elongated shoots were transferred to a 1/4 WS medium, but without activated charcoal and free of plant growth regulators to promote continued shoot growth. These shoots rooted spontaneously.  相似文献   

19.
Shoot organogenesis and plant establishment has been achieved for Phellodendron amurense Rupr. from excised leaf explants. Young leaf explants were collected from in vitro established shoot cultures and used for the induction of direct shoot regeneration, callus and subsequent differentiation into shoots on MS medium. Direct shoot regeneration was achieved by culturing 1 cm2 sections of about 10-day-old leaves on MS medium enriched with 4.4 M BAP and 1.0 M NAA after 4 weeks of culture. The leaf explants produced callus from their cut margins within 3 weeks of incubation on medium supplemented with 2.0 M TDZ and 4.0 M 2,4-D or 4.0 M NAA. The maximum number of adventitious shoots was regenerated from the leaf-derived callus within 4 weeks of culture on MS medium containing 1.5 M BAP and 1.0 M NAA. The highest rate of shoot multiplication was achieved at the third subculture, and more than 65 shoots were produced per callus clump. For rooting, the in vitro proliferated and elongated shoots were excised into 2–4 cm long microcuttings, which were planted individually on a root-induction MS medium containing 2.0 M IBA. Within 3 weeks of transfer to the rooting medium, all the cultured microcuttings produced 2–6 roots. The in vitro regenerated plantlets were transferred to Kanuma soil, and the survival rate ex vitro was 90%.  相似文献   

20.
An effective in vitro protocol for rapid clonal propagation of Echinacea purpurea (L.) Moench through tissue culture was described. The in vitro propagation procedure consisted of four stages: 1) an initial stage - obtaining seedlings on Murashige and Skoog (MS) basal medium with 0.1 mg L−1 6-benzylaminopurine, 0.1 mg L−1 α-naphthalene acetic acid and 0.2 mg L−1 gibberellic acid; 2) a propagation stage — shoot formation on MS medium supplemented with 1 mg L−1 6-benzylaminopurine alone resulted in 9.8 shoots per explant and in combination with 0.1 mg L−1 α-naphthalene acetic acid resulted in 16.2 shoots per explant; 3) rooting stage — shoot rooting on half strength MS medium with 0.1 mg L−1 indole-3-butyric acid resulted in 90% rooted microplants; 4) ex vitro acclimatization of plants. The mix of peat and perlite was the most suitable planting substrate for hardening and ensured high survival frequency of propagated plants. Significant higher levels were observed regarding water-soluble and lipid-soluble antioxidant capacities (expressed as equivalents of ascorbate and α-tocopherol) and total pnenols content in extracts of Echinaceae flowers derived from in vitro propagated plants and adapted to field conditions in comparison with traditionally cultivated plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号