首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
3-Hydroxypropionic acid (3-HP) is a commercially valuable platform compound. Klebsiella pneumoniae has been concerned as an appropriate host for 3-HP production because of its robust capacity to metabolize glycerol. Glycerol conversion to 3-HP in K. pneumoniae comprises two successive reactions: glycerol dehydratase catalyzes glycerol to 3-hydroxypropionaldehyde (3-HPA); aldehyde dehydrogenase catalyzes 3-HPA to 3-HP. Previous studies focusing on inducible expression of aldehyde dehydrogenase have shown defects of high cost of inducer and low catalytic activity due to inclusion body. Here we show a different strategy that a native promoter in the host K. pneumoniae was used to drive the heterologous expression of aldehyde dehydrogenase gene ald4 from Saccharomyces cerevisiae. The 3-HP yield of the recombinant reached a peak of 4.23 g/L at log phase, but it decreased during later period of fermentation. Except the validation of high activity of ald4, particularly, the 3-HP formation was uncovered to be closely coupled with cell division, and the lacking of NAD and ATP at latter fermentation phase became the bottleneck for cell growth and 3-HP accumulation. Furthermore, 3-HP is postulated to be converted to 3-HPA via feedback inhibition or other metabolite via unknown mechanism. Since glycerol dissimilation is a common mechanism in a variety of bacteria, the expression strategy using native promoter and implications may provide significant insight into the metabolic engineering for 3-HP production.  相似文献   

2.
Biosynthesis of 3-hydroxypropionic acid (3-HP) typically involves two sequential reactions catalyzed by glycerol dehydratase (DhaB) and aldehyde dehydrogenase (AldH). Although plasmid-dependent over-expression of the two enzymes is common, systematic investigation of gene arrangement in vector has not been reported. Here we show that gene arrangements have a noticeable influence on 3-HP production. Using Klebsiella pneumoniae as a host, three AldH-coding genes: ald4 from Saccharomyces cerevisiae, aldh from Escherichia coli, and puuC from host K. pneumoniae, were respectively ligated to dhaB. The recombinant Kp/pET-pk-ald4-dhaB (Kp refers to as K. pneumoniae, pk is a native promoter) produced the highest yield of 3-HP in comparison to both Kp/pET-pk-dhaB-ald4 and Kp/pET-pk-dhaB-pk-ald4, suggesting that the preferential expression of AldH can increase 3-HP production. Additionally, when different AldH-coding genes were respectively ligated downstream of dhaB, the recombinant Kp/pET-pk-dhaB-puuC produced more 3-HP than that by Kp/pET-pk-dhaB-aldh or Kp/pET-pk-dhaB-ald4, implying the intrinsic compatibility of native gene puuC with its host. These findings indicate the applicability of native AldH-coding gene and provide insights into strategies for metabolic engineering of multiple genes.  相似文献   

3.
Klebsiella pneumoniae produces 3-hydroxypropionic acid (3-HP) from glycerol with oxidation of 3-hydroxypropionaldehyde (3-HPA) to 3-HP in a reaction catalyzed by aldehyde dehydrogenase (ALDH). In the present study, two putative ALDHs of K. pneumoniae, YneI and YdcW were identified and characterized. Recombinant YneI was specifically active on 3-HPA and preferred NAD+ as a cofactor, whereas YdcW exhibited broad substrate specificity and preferred NADP+ as a cofactor. Overexpression of ALDHs in the glycerol oxidative pathway-deficient mutant K. pneumoniae AK resulted in a significant increase in 3-HP production upon shake-flask culture. The final titers of 3-HP were 2.4 and 1.8 g L?1 by recombinants overexpressing YneI and YdcW, respectively. Deletion of the ALDH gene from K. pneumoniae did not affect the extent of 3-HP synthesis, implying non-specific activity of ALDHs on 3-HPA. The ALDHs might play major roles in detoxifying the aldehyde generated in glycerol metabolism.  相似文献   

4.
3-Hydroxypropionic acid (3-HP) can be produced from glycerol via two enzymatic reactions catalyzed by a coenzyme B12-dependent glycerol dehydratase (GDHt) and aldehyde dehydrogenase (ALDH) in Klebsiella pneumoniae. As the intracellular GDHt activity in K. pneumoniae is high, the overall rate of 3-HP production is controlled by the ALDH activity. To examine the effect of different ALDH activity on 3-HP production, three different ALDHs, AldH from Escherichia coli (EaldH), PuuC from K. pneumoniae (PuuC) and KGSADH from Azospirillum brasilense (KGSADH), were overexpressed and compared in various recombinant K. pneumoniae strains. In addition, the genes encoding DhaT and YqhD, which are responsible for the conversion of 3-hydroxypropionaldehyde (3-HPA) to 1,3-propanediol (1,3-PDO), were disrupted individually from K. pneumoniae to enhance the carbon flux from 3-HPA to 3-HP. When the ALDH activity was measured in various recombinant K. pneumoniae, KGSADH showed the highest crude cell activity of 8.0 U/mg protein, which was 2 and 4 times higher than that of PuuC and EaldH, respectively. The different ALDH activities had a significant effect on 3-HP production in a flask culture containing 100 mM glycerol, and K. pneumoniae ΔdhaT (KGSADH) resulted in the highest titer (64 mM) among the nine recombinant strains (three ALDH × three host strains; one wild type and two mutants). In glycerol fed-batch bioreactor cultivation, K. pneumoniae ΔdhaT (KGSADH) exhibited 3-HP production at >16 g/L in 48 h with a glycerol carbon yield of >40%. In comparison, K. pneumoniae ΔdhaT (PuuC) produced only 11 g/L 3-HP in 48 h with a yield of >23%. This study demonstrates that a high ALDH activity is essential for the effective production of 3-HP from glycerol with recombinant K. pneumoniae.  相似文献   

5.
3-Hydroxypropionic acid (3-HP), an industrially important platform chemical, is used as a precursor during the production of many commercially important chemicals. Recently, recombinant strains of K. pneumoniae overexpressing an NAD+-dependent γ-glutamyl-γ-aminobutyraldehyde dehydrogenase (PuuC) enzyme of K. pneumoniae DSM 2026 were shown to produce 3-HP from glycerol without the addition coenzyme B12, which is expensive. However, 3-HP production in K. pneumoniae is accompanied with NADH generation, and this always results in large accumulation of 1,3-propanediol (1,3-PDO) and lactic acid. In this study, we investigated the potential use of nitrate as an electron acceptor both to regenerate NAD+ and to prevent the formation of byproducts during anaerobic production of 3-HP from glycerol. Nitrate addition could improve NAD+ regeneration, but decreased glycerol flux towards 3-HP production. To divert more glycerol towards 3-HP, a novel recombinant strain K. pneumoniae ΔglpKΔdhaT (puuC) was developed by disrupting the glpK gene, which encodes glycerol kinase, and the dhaT gene, which encodes 1,3-propanediol oxidoreductase. This strain showed improved cellular NAD+ concentrations and a high carbon flux towards 3-HP production. Through anaerobic cultivation in the presence of nitrate, this recombinant strain produced more than 40±3 mM 3-HP with more than 50% yield on glycerol in shake flasks and 250±10 mM 3-HP with approximately 30% yield on glycerol in a fed-batch bioreactor.  相似文献   

6.
3-Hydroxypropionic acid (3-HP) is a commercially valuable platform chemical from which an array of C3 compounds can be generated. Klebsiella pneumoniae has been considered a promising species for biological production of 3-HP. Despite a wealth of reports related to 3-HP biosynthesis in K. pneumoniae, its commercialization is still in infancy. The major hurdle hindering 3-HP overproduction lies in the poor understanding of glycerol dissimilation in K. pneumoniae. To surmount this problem, this review aims to portray a picture of 3-HP biosynthesis, involving 3-HP-synthesizing strains, biochemical attributes, metabolic pathways and key enzymes. Inspired by the state-of-the-art advances in metabolic engineering and synthetic biology, here we advocate protocols for overproducing 3-HP in K. pneumoniae. These protocols range from cofactor regeneration, alleviation of metabolite toxicity, genome editing, remodeling of transport system, to carbon flux partition via logic gate. The feasibility for these protocols was also discussed.

Electronic supplementary material

The online version of this article (doi:10.1007/s12088-015-0513-0) contains supplementary material, which is available to authorized users.  相似文献   

7.
As climate change is an important environmental issue, the conventional petrochemical-based processes to produce valuable chemicals are being shifted toward eco-friendly biological-based processes. In this study, 3-hydroxypropionic acid (3-HP), an industrially important three carbon (C3) chemical, was overproduced by metabolically engineered Escherichia coli using glycerol as a sole carbon source. As the first step to construct a glycerol-dependent 3-HP biosynthetic pathway, the dhaB1234 and gdrAB genes from Klebsiella pneumoniae encoding glycerol dehydratase and glycerol reactivase, respectively, were introduced into E. coli to convert glycerol into 3-hydroxypropionaldehyde (3-HPA). In addition, the ydcW gene from K. pneumoniae encoding γ-aminobutyraldehyde dehydrogenase, among five aldehyde dehydrogenases examined, was selected to further convert 3-HPA to 3-HP. Increasing the expression level of the ydcW gene enhanced 3-HP production titer and reduced 1,3-propanediol production. To enhance 3-HP production, fed-batch fermentation conditions were optimized by controlling dissolved oxygen (DO) level and employing different feeding strategies including intermittent feeding, pH-stat feeding, and continuous feeding strategies. Fed-batch culture of the final engineered E. coli strain with DO control and continuous feeding strategy produced 76.2 g/L of 3-HP with the yield and productivity of 0.457 g/g glycerol and 1.89 g·L−1·h−1, respectively. To the best of our knowledge, this is the highest 3-HP productivity achieved by any microorganism reported to date.  相似文献   

8.
In this study, an aldehyde dehydrogenase (ALDH) was over-expressed in Klebsiella pneumoniae for simultaneous production of 3-hydroxypropionic acid (3-HP) and 1,3-propanediol (1,3-PDO). Various genes encoding ALDH were cloned and expressed in K. pneumoniae, and expression of Escherichia colialdH resulted in the highest 3-HP titer in anaerobic cultures in shake flasks. Anaerobic fed-batch culture of this recombinant strain was further performed in a 5-L reactor. The 3-HP concentration and yield reached 24.4 g/L and 0.18 mol/mol glycerol, respectively, and at the same time 1,3-PDO achieved 49.3 g/L with a yield of 0.43 mol/mol in 24 h. The overall yield of 3-HP plus 1,3-PDO was 0.61 mol/mol. Over-expression of the E. coli AldH also reduced the yields of by-products except for lactate. This study demonstrated the possibility of simultaneous production of 3-HP and 1,3-PDO by K. pneumoniae under anaerobic conditions without supply of vitamin B12.  相似文献   

9.
The pduP gene encodes a propionaldehyde dehydrogenase (PduP) was investigated for the role in 3-hydroxypropionic acid (3-HP) glycerol metabolism in Klebsiella pneumoniae. The enzyme assay showed that cell extracts from a pduP mutant strain lacked measurable dehydrogenase activity. Additionally, the mutant strain accumulated the cytotoxic intermediate metabolite 3-hydroxypropionaldehyde (3-HPA), causing both cell death and a lower final 3-HP titer. Ectopic expression of pduP restored normal cell growth to mutant. The enzymatic property of recombinant protein from Escherichia coli was examined, exhibiting a broad substrate specificity, being active on 3-HPA. The present work is thus the first to demonstrate the role of PduP in glycerol metabolism and biosynthesis of 3-HP.  相似文献   

10.
Klebsiella pneumoniae converts glycerol to the specialty chemical 1,3-propanediol (1,3-PDO), which is used for the production of polytrimethylene terepthalate (PTT). In this study, an NAD+-dependent gamma-glutamyl-gamma-aminobutyraldehyde dehydrogenase (PuuC) of K. pneumoniae DSM 2026, which oxidizes 3-hydroxypropionaldehyde to a platform chemical 3-hydroxypropionic acid (3-HP), was cloned and overexpressed in K. pneumoniae DSM 2026 for the co-production of 3-HP and 1,3-PDO from glycerol. In addition, the gene dhaT, encoding NADH-dependent 1,3-propanediol oxidoreductase (1,3-PDOR), was deleted from the chromosome for the balanced production of 3-HP and 1,3-PDO. The recombinant K. pneumoniae ∆dhaT, expressing puuC, produced 3.6 g 3-HP and 3.0 g 1,3-PDO per liter with an average yield of 81% on glycerol carbon in shake flask culture under microaerobic conditions. When a fed-batch culture was carried out under microaerobic conditions at pH 7.0 in a 5-l bioreactor, the recombinant K. pneumoniae ∆dhaT (puuC) strain produced 16.0 g 3-HP and 16.8 g 1,3-PDO per liter with a cumulative yield of 51% on glycerol carbon in 24 h. The production of 1,3-PDO in the dhaT-deletion mutant was attributed to the expression of NAD(P)H-dependent hypothetical oxidoreductase. This study demonstrates the feasibility of obtaining two commercially valuable chemicals, 3-HP and 1,3-PDO, at a significant scale.  相似文献   

11.
12.
Construction and Characterization of a 1,3-Propanediol Operon   总被引:19,自引:0,他引:19       下载免费PDF全文
The genes for the production of 1,3-propanediol (1,3-PD) in Klebsiella pneumoniae, dhaB, which encodes glycerol dehydratase, and dhaT, which encodes 1,3-PD oxidoreductase, are naturally under the control of two different promoters and are transcribed in different directions. These genes were reconfigured into an operon containing dhaB followed by dhaT under the control of a single promoter. The operon contains unique restriction sites to facilitate replacement of the promoter and other modifications. In a fed-batch cofermentation of glycerol and glucose, Escherichia coli containing the operon consumed 9.3 g of glycerol per liter and produced 6.3 g of 1,3-PD per liter. The fermentation had two distinct phases. In the first phase, significant cell growth occurred and the products were mainly 1,3-PD and acetate. In the second phase, very little growth occurred and the main products were 1,3-PD and pyruvate. The first enzyme in the 1,3-PD pathway, glycerol dehydratase, requires coenzyme B12, which must be provided in E. coli fermentations. However, the amount of coenzyme B12 needed was quite small, with 10 nM sufficient for good 1,3-PD production in batch cofermentations. 1,3-PD is a useful intermediate in the production of polyesters. The 1,3-PD operon was designed so that it can be readily modified for expression in other prokaryotic hosts; therefore, it is useful for metabolic engineering of 1,3-PD pathways from glycerol and other substrates such as glucose.  相似文献   

13.
Pyrroloquinoline quinone (PQQ) is a versatile quinone cofactor participating in numerous biological processes. Klebsiella pneumoniae can naturally synthesize PQQ for harboring intact PQQ synthesis genes. Previous metabolic engineering of K. pneumoniae failed to overproduce PQQ due to the employment of strong promoter in expression vector. Here we report that a moderate rather than strong promoter is efficient for PQQ production. To screen an appropriate promoter, a total of four distinct promoters—lac promoter, pk promoter of glycerol dehydratase gene (dhaB1), promoter of kanamycin resistance gene, and T7 promoter (as the control)—were individually used for overexpressing the endogenous PQQ genes in K. pneumoniae along with heterologous expression in Escherichia coli. We found that all recombinant K. pneumoniae strains produced more PQQ than recombinant E. coli strains that carried corresponding vectors, indicating that K. pneumoniae is superior to E. coli for the production of PQQ. Particularly, the recombinant K. pneumoniae recruiting the promoter of kanamycin resistance gene produced the highest PQQ (1,700 nmol), revealing that a moderate rather than strong promoter is efficient for PQQ production. Furthermore, PQQ production was roughly proportional to glucose concentration increasing from 0.5 to 1.5 g/L, implying the synergism between PQQ biosynthesis and glucose utilization. This study not only provides a feasible strategy for production of PQQ in K. pneumoniae, but also reveals the exquisite synchronization among PQQ biosynthesis, glucose metabolism, and cell proliferation.  相似文献   

14.
15.
16.
Klebsiella pneumoniae is a Gram-negative facultative anaerobe that metabolizes glycerol efficiently under both aerobic and anaerobic conditions. This microbe is considered an outstanding biocatalyst for transforming glycerol into a variety of value-added products. Crude glycerol is a cheap carbon source and can be converted by K. pneumoniae into useful compounds such as lactic acid, 3-hydroxypropionic acid, ethanol, 1,3-propanediol, 2,3-butanediol, and succinic acid. This review summarizes glycerol metabolism in K. pneumoniae and its potential as a microbial cell factory for the production of commercially important acids and alcohols. Although many challenges remain, K. pneumoniae is a promising workhorse when glycerol is used as the carbon source.  相似文献   

17.
Oh BR  Seo JW  Heo SY  Hong WK  Luo LH  Joe MH  Park DH  Kim CH 《Bioresource technology》2011,102(4):3918-3922
A mutant strain of Klebsiella pneumoniae, termed GEM167, was obtained by γ irradiation, in which glycerol metabolism was dramatically affected on exposure to γ rays. Levels of metabolites of the glycerol reductive pathway, 1,3-propanediol (1,3-PD) and 3-hydroxypropionic acid (3-HP), were decreased in the GEM167 strain compared to a control strain, whereas the levels of metabolites derived from the oxidative pathway, 2,3-butanediol (2,3-BD), ethanol, lactate, and succinate, were increased. Notably, ethanol production from glycerol was greatly enhanced upon fermentation by the mutant strain, to a maximum production level of 21.5 g/l, with a productivity of 0.93 g/l/h. Ethanol production level was further improved to 25.0 g/l upon overexpression of Zymomonas mobilispdc and adhII genes encoding pyruvate decarboxylase (Pdc) and aldehyde dehydrogenase (Adh), respectively in the mutant strain GEM167.  相似文献   

18.
Citrobacter amalonaticus Y19 (Y19) was isolated because of its ability for carbon monoxide-dependent hydrogen production (water–gas shift reaction). This paper reports the assimilation of glycerol and the production of 1,3-propanediol (1,3-PDO) by Y19. Genome sequencing revealed that Y19 contained the genes for the utilization of glycerol and 1,2-propanediol (pdu operon) along with those for the synthesis of coenzyme B12 (cob operon). On the other hand, it did not possess the genes for the fermentative metabolism of glycerol of Klebsiella pneumoniae, which consists of both the oxidative (dhaD and dhaK) and reductive (dhaB and dhaT) pathways. In shake-flask cultivation under aerobic conditions, Y19 could grow well with glycerol as the sole carbon source and produced 1,3-PDO. The level of 1,3-PDO production was improved when vitamin B12 was added to the culture medium under aerobic conditions. Under anaerobic conditions, cell growth and 1,3-PDO production on glycerol was also possible, but only when an exogenous electron acceptor, such as nitrate or fumarate, was added. This is the first report of the glycerol metabolism and 1,3-PDO production by C. amalonaticus Y19.  相似文献   

19.
Currently, 1,3-propanediol (1,3-PD) is an important chemical widely used in polymer production, but its availability is being restricted owing to its expensive chemical synthesis. A methylotrophic yeast Hansenula polymorpha was engineered by expression of dhaB1, dhaB2, dhaB3, dhaB RA1 and dhaB RA2 encoding glycerol dehydratase complex and dhaT encoding 1,3-PD oxidoreductase from Klebsiella pneumoniae under direction of promoter of glyceraldehyde-3 phosphate dehydrogenase (GAPDH). The engineered recombinant yeast strain can produce 1,3-PD from glucose (2.4 g L−1) as well as glycerol (0.8 g L−1), which might lead to a safe and cost-effective method for industrial production of 1,3-PD from various biomass resources.  相似文献   

20.
Klebsiella pneumoniae is a common strain of bacterial fermentation to produce 1, 3-propanediol (1, 3-PDO). In general, the production of 1, 3-PDO by wild-type K. pneumoniae is relatively low. Therefore, a new gene manipulation of K. pneumoniae was developed to improve the production of 1, 3-PDO by overexpressing in the reduction pathway and attenuating the by-products in the oxidation pathway. Firstly, dhaB and/or dhaT were overexpressed in the reduction pathway. Considering the cost of IPTG, the constitutive promoter P32 was selected to express the key gene. By comparing K.P. pET28a-P32-dhaT with the original strain, the production of 1, 3-PDO was increased by 19.7%, from 12.97 to 15.53 g l−1 (in a 250 ml shaker flask). Secondly, three lldD and budC regulatory sites were selected in the by-product pathway, respectively, using the CRISPR-dCas9 system, and the optimal regulatory sites were selected following the 1, 3-PDO production. As a result, the 1, 3-PDO production by K.P. L1-pRH2521 and K.P. B3-pRH2521 reached up to 19.16 and 18.74 g l−1, which was increased by 47.7% and 44.5% respectively. Overexpressing dhaT and inhibiting expression of lldD and budC were combined to further enhance the ability of K. pneumoniae to produce 1, 3-PDO. The 1, 3-PDO production by K.P. L1-B3-PRH2521-P32-dhaT reached 57.85 g l−1 in a 7.5 l fermentation tank (with Na+ neutralizer), which is higher than that of the original strain. This is the first time that the 1, 3-PDO production was improved in K. pneumoniae by overexpressing the key gene and attenuating by-product synthesis in the CRISPR-dCas9 system. This study reports an efficient approach to regulate the expression of genes in K. pneumoniae to increase the 1, 3-PDO production, and such a strategy may be useful to modify other strains to produce valuable chemicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号