首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Renal and cardiac benefits of renin-angiotensin system inhibition exceed blood pressure (BP) reduction and seem to involve mitochondrial function. It has been shown that RAS inhibition prevented mitochondrial dysfunction in spontaneously hypertensive rats (SHR) kidneys. Here, it is investigated whether a non-antihypertensive enalapril dose protects cardiac tissue and mitochondria function. Three-month-old SHR received water containing enalapril (10 mg/kg/day, SHR+Enal) or no additions (SHR-C) for 5 months. Wistar-Kyoto rats (WKY) were normotensive controls. At month 5, BP was similar in SHR+Enal and SHR-C. In SHR+Enal and WKY, heart weight and myocardial fibrosis were lower than in SHR-C. Matrix metalloprotease-2 activity was lower in SHR+Enal with respect to SHR-C and WKY. In SHR+Enal and WKY, NADH/cytochrome c oxidoreductase activity, eNOS protein and activity and mtNOS activity were higher and Mn-SOD activity was lower than in SHR-C. In summary, enalapril at a non-antihypertensive dose prevented cardiac hypertrophy and modifies parameters of cardiac mitochondrial dysfunction in SHR.  相似文献   

2.
The capacity of isolated porcine heart mitochondria to produce nitric oxide (NO) via mitochondrial NO synthase (NOS) was evaluated. The mitochondrial NOS content and activity (0.2 nmol NO x mg mitochondrial protein(-1) x min(-1)) were approximately 10 times lower than previously reported for the rat liver. No evidence for mitochondrial NOS-generated NO was found in mitochondrial suspensions based on the lack of NO production and the lack of effect of either L-arginine or NOS inhibitors on the rate of respiration. The reason that even the low mitochondrial NOS activity did not result in net NO production and metabolic effects is because the mitochondrial metabolic breakdown of NO (1-4 nmol NO x mg mitochondrial protein(-1) x min(-1)) was greater than the maximum rate of NO production measured in homogenates. These data suggest that NO production at the mitochondria via NOS is not a significant source of NO in the intact heart and does not regulate cardiac oxidative phosphorylation.  相似文献   

3.
We investigated the renal structural and functional consequences of nitric oxide (NO) deficiency co-treated with angiotensin-converting enzyme inhibitor (ACEi) in 20 adult male Wistar rats and 20 spontaneously hypertensive rats (SHR). The animals were separated into eight groups (n = 5) and treated for 30 days: Control, L-NAME (NO deficient group), Enalapril, L-NAME + Enalapril. The elevated blood pressure in NO deficient rats was partially reduced by enalapril. Serum creatinine was elevated in L-NAME-SHRs and effectively treated with enalapril. The proteinuria was significantly higher only in L-NAME-SHRs, and this was reduced by treatment with ACEi. The glomerular volume density (Vv(gl)) in L-NAME rats, both Wistar and SHR, was greater than in matched control rats, and enalapril treatment effectively prevented this Vv(gl) increase. No significant differences were observed in tubular volume density, Vv(tub), or tubular surface density, Sv(tub), in all Wistar groups. The Vv(tub) was smaller in L-NAME-SHRs than in control SHRs, and this tubular alteration was not prevented by enalapril. The Sv(tub) was not different among the SHR groups. In Wistar rats no changes were seen in vascular surface density, but a greatly increased cortical vascular volume density was seen in the enalapril treated rats. The vascular length density was greatly diminished in NO deficient rats that was effectively prevented with enalapril treatment. The vascular cortical renal stereological indices are normally reduced in SHRs. Administration of enalapril, but not L-NAME, changed this tendency. However, enalapril was not totally effective in preventing vascular damage in SHR NO deficient animals.  相似文献   

4.
The possible existence of a mitochondrially localized nitric oxide (NO) synthase (mtNOS) is controversial. To clarify this, we studied the ability of intact mitochondria to generate NO and the effect of mitochondrial NO on respiration. Respiratory rates and oxygen kinetics (P(50) values) were determined by high-resolution respirometry in skeletal-muscle mitochondria from control mice and mice injected with Escherichia coli lipopolysaccharide (LPS). In the presence of the NOS substrate L-arginine, mitochondria from LPS-treated mice had lower respiration rates and higher P(50) values than control animals. These effects were prevented by the NOS inhibitor L-NMMA. Our results suggest that mitochondrially derived NO is generated by an LPS-inducible NOS protein other than iNOS and modulates oxygen consumption in mouse skeletal muscle.  相似文献   

5.
Nitric oxide production, nitric oxide synthase (NOS) and mitochondrial nitrite-reducing activities in roots, leaves and stems of different developmental stages were investigated, using potted 3-year-old apple (Malus domestica Borkh.) trees. The arginine-dependent NOS activity is sensitive to NOS inhibitor L-NAME and aminoguanidine (AG), with L-NAME being more effective than AG. Endogenous NO production, NOS and mitochondrial nitrite-reducing activities are predominately presented in young leaves and especially in young white roots and young stems. Root and stem mitochondria can reduce nitrite to nitric oxide at the expense of NADH, however, this mitochondrial nitrite-reducing activity is absent in leaves.  相似文献   

6.
Heparin and nitric oxide (NO) attenuate changes to the pulmonary vasculature caused by prolonged hypoxia. Heparin may increase NO; therefore, we hypothesized that heparin may attenuate hypoxia-induced pulmonary vascular remodeling via a NO-mediated mechanism. In vivo, rats were exposed to normoxia (N) or hypoxia (H; 10% O(2)) with or without heparin (1,200 U x kg-1 x day-1) and/or the NO synthase (NOS) inhibitor Nomega-nitro-L-arginine methyl ester (L-NAME; 20 mg x kg-1 x day-1) for 3 days or 3 wk. Heparin attenuated increases in pulmonary arterial pressure, the percentage of muscular pulmonary vessels, and their medial thickness induced by 3 wk of H. Importantly, although L-NAME alone had no effect, it prevented these effects of heparin on vascular remodeling. In H lungs, heparin increased NOS activity and cGMP levels at 3 days and 3 wk and endothelial NOS protein expression at 3 days but not at 3 wk. In vitro, heparin (10 and 100 U x kg-1 x ml-1) increased cGMP levels after 10 min and 24 h in N and anoxic (0% O2) endothelial cell-smooth muscle cell (SMC) coculture. SMC proliferation, assessed by 5-bromo-2'-deoxyuridine incorporation during a 3-h incubation period, was decreased by heparin under N, but not anoxic, conditions. The antiproliferative effects of heparin were not altered by L-NAME. In conclusion, the in vivo results suggest that attenuation of hypoxia-induced pulmonary vascular remodeling by heparin is NO mediated. Heparin increases cGMP in vitro; however, the heparin-induced decrease in SMC proliferation in the coculture model appears to be NO independent.  相似文献   

7.
Cortical nitric oxide (NO) production increases during hypoxia/ischemia in the immature brain and is associated with both neurotoxicity and mitochondrial dysfunction. Mitochondrial redistribution within the cell is critical to normal neuronal function, however, the effects of hypoxia on mitochondrial dynamics are not known. This study tested the hypothesis that hypoxia impairs mitochondrial movement via NO-mediated pathways. Fluorescently labeled mitochondria were studied using time-lapse digital video microscopy in cultured cortical neurons exposed either to hypoxia/re-oxygenation or to diethyleneamine/nitric oxide adduct, DETA-NO (100-500 microm). Two NO synthase inhibitors, were used to determine NO specificity. Mitochondrial mean velocity, the percentage of movement (i.e. the time spent moving) and mitochondrial morphology were analyzed. Exposure to hypoxia reduced mitochondrial movement to 10.4 +/- 1.3% at 0 h and 7.4 +/- 1.7% at 1 h of re-oxygenation, versus 25.6 +/- 1.4% in controls (p < 0.05). Mean mitochondrial velocity (microm s(-1)) decreased from 0.374 +/- 0.01 in controls to 0.146 +/- 0.01 at 0 h and 0.177 +/- 0.02 at 1 h of re-oxygenation (p < 0.001). Exposure to DETA-NO resulted in a significant decrease in mean mitochondrial velocity at all tested time points. Treatment with NG-nitro-L-arginine methyl ester (L-NAME) prevented the hypoxia-induced decrease in mitochondrial movement at 0 h (30.1 +/- 1.6%) and at 1 h (26.1 +/- 9%) of re-oxygenation. Exposure to either hypoxia/re-oxygenation or NO also resulted in the rapid decrease in mitochondrial size. Both hypoxia and NO exposure result in impaired mitochondrial movement and morphology in cultured cortical neurons. As the effect of hypoxia on mitochondrial movement and morphology can be partially prevented by a nitric oxide synthase (NOS) inhibitor, these data suggest that an NO-mediated pathway is at least partially involved.  相似文献   

8.
The mitochondrial metabolic state regulates the rate of NO release from coupled mitochondria: NO release by heart, liver and kidney mitochondria was about 40-45% lower in state 3 (1.2, 0.7 and 0.4 nmol/min mg protein) than in state 4 (2.2, 1.3 and 0.7 nmol/min mg protein). The activity of mtNOS, responsible for NO release, appears driven by the membrane potential component and not by intramitochondrial pH of the proton motive force. The intramitochondrial concentrations of the NOS substrates, L-arginine (about 310 microM) and NADPH (1.04-1.78 mM) are 60-1000 times higher than their KM values. Moreover, the changes in their concentrations in the state 4-state 3 transition are not enough to explain the changes in NO release. Nitric oxide release was exponentially dependent on membrane potential as reported for mitochondrial H2O2 production [S.S. Korshunov, V.P. Skulachev, A.A. Satarkov, High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett. 416 (1997) 15-18.]. Agents that decrease or abolish membrane potential minimize NO release while the addition of oligomycin that produces mitochondrial hyperpolarization generates the maximal NO release. The regulation of mtNOS activity, an apparently voltage-dependent enzyme, by membrane potential is marked at the physiological range of membrane potentials.  相似文献   

9.
Recent studies have shown that nitric oxide (NO) biosynthesis increases in pregnancy and that inhibition of nitric oxide synthase (NOS) induces some pathological processes characteristic of preeclampsia. The current project sought to study the effect of the NOS inhibitor Nomega-nitro-L-arginine methyl ester (L-NAME, 10 microg x min(-1), sc for 7 days) on plasma volume, plasma atrial natriuretic factor (ANF), plasma endothelin-1 (ET), and plasma renin activity (PRA) during gestation in conscious rats. NOS inhibition caused mean arterial pressure to increase in both virgin and 21-day pregnant rats. Plasma volume fell in the pregnant rats [L-NAME, 4.5 +/- 0.3 mL x 100 g(-1) body wt. (n = 7) vs. D-NAME, 6.8 +/- 0.2 mL x 100 g(-1) body wt. (n = 10); P < 0.05] but not in the virgin rats [L-NAME, 4.3 +/- 0.1 mL x 100 g(-1) body wt. (n = 6) vs. D-NAME, 4.8 +/- 0.2 mL x 100 g(-1) body wt. (n = 8)]. There was no effect of NOS inhibition on plasma ANF levels or PRA in either the virgin or pregnant rats. However, L-NAME did decrease plasma ET levels in the pregnant rats [L-NAME, 19.6 +/- 1.6 pg x mL(-1) (n = 8) vs. D-NAME, 11.6 +/- 2.5 pg x mL(-1) (n = 9); P < 0.05]. Our results confirm that NO is involved in cardiovascular homeostasis in pregnancy; NOS inhibition selectively reduces plasma volume in pregnant rats, thus mimicking a major pathophysiological perturbation of preeclampsia. However, it does not induce the hormonal changes characteristic of preeclampsia, namely the decrease in PRA and increase in plasma ET and ANF levels.  相似文献   

10.
The role of nitric oxide (NO) in microvascular permeability remains unclear because both increases and decreases in permeability by NO synthase (NOS) inhibitors have been reported. We sought to determine whether blood-borne constituents modify venular permeability responses to the NOS inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME). We assessed hydraulic conductivity (L(p)) of pipette-perfused rat mesenteric venules before and after exposure to 10(-4) M L-NAME. In the absence of blood-borne constituents, L-NAME reduced L(p) by nearly 50% (from a median of 2.4 x 10(-7) cm x s(-1) x cmH(2)O(-1), n = 17, P < 0.001). The reduction in L(p) by L-NAME was inhibited by a 10-fold molar excess of L-arginine but not D-arginine (n = 6). In a separate group of venules, blood flow was allowed to resume during exposure to L-NAME. In vessels perfused by blood during L-NAME exposure, L(p) increased by 78% (from 1.4 x 10(-7) cm x s(-1) x cmH(2)O(-1), n = 10, P < 0.01). N(G)-nitro-D-arginine methyl ester did not affect L(p) in either of the two groups. These data imply that NO has direct vascular effects on permeability that are opposed by secondary changes in permeability mediated by blood-borne constituents.  相似文献   

11.
The rapid non-genomic stimulatory action of progesterone (Pg) and estradiol (E2) on nitric oxide synthase (NOS) activity of endothelium intact aortic rings and its effect on platelet aggregation was investigated. First we measured the effect of the hormones on platelet aggregation when added to rat aortic strips (RAS) incubated in a PRP. RAS induced an antiaggregatory activity, which was enhanced by the presence of the hormones. The inhibitory action induced by the hormones was evoked in a dose dependent manner (10 pM-100 nM). These effects are specific for progesterone and 17-beta-estradiol, since either testosterone and 17-alpha-estradiol were devoid of activity. The hormones induced rapid responses, producing significant inhibition within 1 to 5 minutes of hormonal exposure. The addition of 10(-5) M L-NAME suppressed the antiaggregatory effect of 1 nM E2 or 10 nM Pg. Furthermore, we specifically quantified the NO generation by the 3H-citrulline technique. 10(-8) M E2 induced 2-fold increase of RAS citrulline production, while the increment induced by 10(-7) M Pg was 55% over control. Preincubation with 10(-5) M L-NAME completely suppressed the stimulatory action of 10(-9) M E2 or 10(-8) M Pg, confirming that the antiaggregatory factor released from the aortic tissue was NO. Preincubation with cycloheximide did not block the increment in NO induced by the hormones. In conclusion the present study provides for the first time evidence of acute, non-genomic effects of Pg on rat aorta NOS activity and platelet aggregation in coincidence with the results obtained with estradiol treatment.  相似文献   

12.
We examined modulation by nitric oxide (NO) of sympathetic neurotransmitter release and vasoconstriction in the isolated pump-perfused rat kidney. Electrical renal nerve stimulation (RNS; 1 and 2 Hz) increased renal perfusion pressure and renal norepinephrine (NE) efflux. Nonselective NO synthase (NOS) inhibitors [N(omega)-nitro-L-arginine methyl ester (L-NAME) or N(omega)-nitro-L-arginine], but not a selective neuronal NO synthase inhibitor (7-nitroindazole sodium salt), suppressed the NE efflux response and enhanced the perfusion pressure response. Pretreatment with L-arginine prevented the effects of L-NAME on the RNS-induced responses. 2-(4-Carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (carboxy-PTIO), which eliminates NO by oxidizing it to NO(2), suppressed the NE efflux response, whereas the perfusion pressure response was less susceptible to carboxy-PTIO. 8-Bromoguanosine cGMP suppressed and a guanylate cyclase inhibitor [4H-8-bromo-1,2,4-oxadiazolo(3,4-d)benz(b)(1,4)oxazin-1-one] enhanced the RNS-induced perfusion pressure response, but neither of these drugs affected the NE efflux response. These results suggest that endogenous NO facilitates the NE release through cGMP-independent mechanisms, NO metabolites formed after NO(2) rather than NO itself counteract the vasoconstriction, and neuronal NOS does not contribute to these modulatory mechanisms in the sympathetic nervous system of the rat kidney.  相似文献   

13.
In the present study, we examined the effects of L-nitroarginine methylester (L-NAME), a non-selective nitric oxide synthase (NOS) inhibitor, indomethacin (IND), a non-selective COX inhibitor and a combination of these agents (L-NAME+IND) on carrageenan-induced pleurisy in rats. Exudate volume, albumin leakage, leukocyte influx, exudate and plasma nitrite/nitrate (NO(x)) levels and exudate PGE(2) levels increased markedly 6 h after an intrapleural injection of 2% carrageenan. First, the effects of L-NAME and IND alone were investigated. L-NAME non-significantly reduced exudate volume by 26% at 10 mg/kg (i.p.), and significantly by 45% at 30 mg/kg. IND dose-dependently decreased the exudate volume at 0.3-10 mg/kg (p.o.) and the effect reached the maximal level at 1 mg/kg (33%). Second, the effects of L-NAME (10 mg/kg, i.p.), IND (1 mg/kg, p.o.) and L-NAME+IND were examined. L-NAME and IND alone at the dose employed significantly reduced the exudate volume and albumin levels by 21-26%. L-NAME but not IND tended to reduce the increased exudate and plasma NO(x) by 18% and 19%, respectively. IND but not L-NAME significantly reduced leukocyte numbers and PGE(2) levels in the exudates by 25% and 77%, respectively. L-NAME+IND significantly reduced exudate volume, albumin leakage, leukocyte number, PGE(2) and NO(x) by 43%, 41%, 31%, 80% and 37%, respectively. The inhibitory effects of L-NAME+IND on exudate volume, albumin leakage and NO(x) levels were greater than those of L-NAME and IND alone. In conclusion, a non-selective NOS inhibitor and COX inhibitor showed anti-inflammatory effects at the early phase of carrageenan-induced pleurisy, and a combination of both inhibitors had a greater effect than each alone probably via the potentiation of NOS inhibition. The simultaneous inhibition of NOS and COX could be a useful approach in therapy for acute inflammation.  相似文献   

14.
Although nitric oxide (NO) is a known modulator of cell respiration in vascular endothelium, the presence of a mitochondria-specific nitric oxide synthase (mtNOS) in these cells is still a controversial issue. We have used laser scanning confocal microscopy in combination with the NO-sensitive fluorescent dye DAF-2 to monitor changes in NO production by mitochondria of calf vascular endothelial (CPAE) cells. Cells were loaded with the membrane-permeant NO-sensitive dye 4,5-diaminofluorescein (DAF-2) diacetate and subsequently permeabilized with digitonin to remove cytosolic DAF-2 to allow measurements of NO production in mitochondria ([NO]mt). Stimulation of mitochondrial Ca2+ uptake by exposure to different cytoplasmic Ca2+ concentrations (1, 2, and 5 µM) resulted in a dose-dependent increase of NO production by mitochondria. This increase of [NO]mt was sensitive to the NOS antagonist L-N5-(1-iminoethyl)ornithine and the calmodulin antagonist calmidazolium (R-24571), demonstrating the endogenous origin of NO synthesis and its calmodulin dependence. Collapsing the mitochondrial membrane potential with the protonophore FCCP or blocking the mitochondrial Ca2+ uniporter with ruthenium red, as well as blocking the respiratory chain with antimycin A in combination with oligomycin, inhibited mitochondrial NO production. Addition of the NO donor spermine NONOate caused a profound increase in DAF-2 fluorescence that was not affected by either of these treatments. The mitochondrial origin of the DAF-2 signals was confirmed by colocalization with the mitochondrial marker MitoTracker Red and by the observation that disruption of caveolae (where cytoplasmic NOS is localized) formation with methyl--cyclodextrin did not prevent the increase of DAF-2 fluorescence. The activation of mitochondrial calcium uptake stimulates mtNOS phosphorylation (at Ser-1177) which was prevented by FCCP. The data demonstrate that stimulation of mitochondrial Ca2+ uptake activates NO production in mitochondria of CPAE cells. This indicates the presence of a mitochondria-specific NOS that can provide a fast local modulatory effect of NO on cell respiration, membrane potential, and apoptosis. nitric oxide; nitric oxide synthase; calcium; endothelium; mitochondria  相似文献   

15.
16.
The mitochondrial metabolic state regulates the rate of NO release from coupled mitochondria: NO release by heart, liver and kidney mitochondria was about 40-45% lower in state 3 (1.2, 0.7 and 0.4 nmol/min mg protein) than in state 4 (2.2, 1.3 and 0.7 nmol/min mg protein). The activity of mtNOS, responsible for NO release, appears driven by the membrane potential component and not by intramitochondrial pH of the proton motive force. The intramitochondrial concentrations of the NOS substrates, l-arginine (about 310 μM) and NADPH (1.04-1.78 mM) are 60-1000 times higher than their KM values. Moreover, the changes in their concentrations in the state 4-state 3 transition are not enough to explain the changes in NO release. Nitric oxide release was exponentially dependent on membrane potential as reported for mitochondrial H2O2 production [S.S. Korshunov, V.P. Skulachev, A.A. Satarkov, High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett. 416 (1997) 15-18.]. Agents that decrease or abolish membrane potential minimize NO release while the addition of oligomycin that produces mitochondrial hyperpolarization generates the maximal NO release. The regulation of mtNOS activity, an apparently voltage-dependent enzyme, by membrane potential is marked at the physiological range of membrane potentials.  相似文献   

17.
大鼠脑线粒体NOS及L—Arg转运的生化特性   总被引:4,自引:0,他引:4  
Cao J  Wang L  Zhao BL  Chen QT  Qi YF  Tang CS 《生理学报》2001,53(4):261-264
测定分离纯化的大鼠脑线粒体(mitochondria,Mt)L-精氨酸(L-arginine,L-Arg)/一氧化氮合酶(nitricoxidesynthase,NOS)/NO系统,L-Arg转运和NOS的活性。结果显示正常大鼠脑Mt膜上存在高亲和、低转运、可饱和的L-Arg转运体。最大转运速率Vmax为5.87±0.46nmol/mgpro·min  相似文献   

18.
In autonomic-blocked rats treated with NG-nitro-L-arginine methyl ester (L-NAME, 7.5 mg/kg), heart rate increased 18% and mean arterial pressure increased 48%. Thyroidectomy, along with autonomic blockade, hampered the chronotropic response but did not modify the effect on blood pressure. After 150 min of autonomic blockade, the experimental end point, total nitric oxide (NO) production by heart NO synthases (NOS) decreased 61%: from 54 to 21 nmol NO.min-1.g heart-1. Mitochondrial NOS (mtNOS) and sarcoplasmic reticulum endothelial NOS activities decreased 74% and 52%, respectively. Mitochondria isolated from whole heart showed a well-coupled oxidative phosphorylation with high respiratory control and ADP-to-O ratios, decreased mtNOS activity (55-60%), and decreased mtNOS protein expression (70%). Immunohistochemistry with anti-inducible NOS antibody linked to gold particles localized mtNOS at the inner mitochondrial membranes. Histochemical right atrial NOS (NADPH-diaphorase) decreased 55% after heart denervation. The effects of autonomic denervation on the NO system were partially prevented by thyroidectomy performed simultaneously with autonomic blockade. Western blot analysis indicated a very rapid mtNOS protein turnover (half time=120 min) with a process of protein expression that was upregulated by thyroidectomy and a degradation process that was downregulated by the autonomic nervous system. The observations suggest that NO-mediated pathways contribute to pacemaker heart activity, likely through the NO steady-state levels in the right atrium and the whole heart.  相似文献   

19.
Nitric oxide (NO) has been known as an important signal in plant antioxidative defense but its production and roles in water stress are less known. The present study investigated whether NO dependence on a NO synthase-lika (NOS) activity is involved in the signaling of drought-induced protective responses in maize seedlings. NOS activity, rate of NO release and drought responses were analyzed when NO donor sodium nitroprusside (SNP), NO scavenger c-PTIO (2-(4-carboxyphenyl)-4,4,5,5-tetramathylimidazoline-1-oxyl-3-oxide) and NOS inhibitor L-NAME (NG-nitro-L-arginine methyl ester) were applied to both detached maize leaves and whole plants. Both NOS activity and the rate of NO release increased substantially under dehydration stress. The high NOS activity induced by c-PTIO as NO scavenger and NO accumulation Inhibited by NOS inhibitor L-NAME In dehydration-treated maize seedlings Indicated that most NO production under water deficit stress may be generated from NOS-like activity. After dehydration stress for 3 h, detached maize leaves pretreated with NO donor SNP maintained more water content than that of control leaves pretreated with water. This result was consistent with the decrease in the transpiration rate of SNP-treated leaves subjected to drought treatment for 3 h. Membrane permeability, a cell injury index, was lower in SNP-trested maize leaves under dehydration stress for 4 h when compared with the control leaves. Also, superoxide dismutsse (SOD) activity of SNP combined drought treatment maize leaves was higher than that of drought treatment alone, indicating that exogenous NO treatment alleviated the water loss and oxidative damage of maize leaves under water deficit stress. When c-PTIO as a specific NO scavenger was applied, the effects of applied SNP were overridden. Treatment with L-NAME on leaves also led to higher membrane permeability, higher transpiration rate and lower SOD activities than those of control leaves, indicating that NOS-like activity was involved in the antioxidative defense under water stress. These results suggested that NO dependence on NOS-like activity serves as a signaling component in the induction of protective responses and is associated with drought tolerance in maize seedlings.  相似文献   

20.
We previously reported that chronic inhibition of nitric oxide (NO) synthesis with N(omega)-nitro-L-arginine methyl ester (L-NAME) induces vascular inflammation at week 1 and produces subsequent arteriosclerosis at week 4 and that cotreatment with an angiotensin-converting enzyme (ACE) inhibitor prevents such changes. In the present study, we tested the hypothesis that treatment with an ACE inhibitor after development of vascular inflammation could inhibit arteriosclerosis in rats. Wistar-Kyoto rats were randomized to four groups: the control group received no drugs, the 4wL-NAME group received L-NAME (100 mg x kg(-1) x day(-1)) for 4 wk, the 1wL + 3wNT group received L-NAME for 1 wk and no treatment for the subsequent 3 wk, and the 1wL + 3wACEI group received L-NAME for 1 wk and the ACE inhibitor imidapril (20 mg x kg(-1) x day(-1)) for the subsequent 3 wk. After 4 wk, we observed significant arteriosclerosis of the coronary artery (medial thickening and fibrosis) and increased cardiac ACE activity in the 1wL + 3wNT group as well as in the 4wL-NAME group, but not in the 1wL + 3wACEI group. In a separate study, we examined apoptosis formation and found that posttreatment with imidapril (20 mg x kg(-1) x day(-1)) or an ANG II AT1-receptor antagonist, CS-866 (5 mg x kg(-1) x day(-1)), induced apoptosis (TdT-mediated nick end-labeling) in monocytes and myofibroblasts appearing in the inflammatory lesions associated with a clear degradation in the heart (DNA electrophoresis). In conclusion, treatment with the ACE inhibitor after 1 wk of L-NAME administration inhibited arteriosclerosis by inducing apoptosis in the cells with inflammatory lesions in this study, suggesting that increased ANG II activity inhibited apoptosis of the cells with inflammatory lesions and thus contributed to the development of arteriosclerosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号