首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Nitric oxide (NO) and the lipid peroxidation (LPO) product 4-hydroxynonenal (HNE) are considered to be key mediators of cartilage destruction in osteoarthritis (OA). NO is also known to be an important intermediary in LPO initiation through peroxynitrite formation. The aim of the present study was to assess the ability of the inducible NO synthase (iNOS) inhibitor N-iminoethyl-L-lysine (L-NIL) to prevent HNE generation via NO suppression in human OA chondrocytes and cartilage explants. Human OA chondrocytes and cartilage explants were treated with L-NIL and thereafter with or without interleukin-1beta (IL-1β) or HNE at cytotoxic or non-cytotoxic concentrations. Parameters related to oxidative stress, apoptosis, inflammation, and catabolism were investigated. L-NIL stifled IL-1β-induced NO release, iNOS activity, nitrated proteins, and HNE generation in a dose-dependent manner. It also blocked IL-1β-induced inactivation of the HNE-metabolizing glutathione-s-transferase (GST). L-NIL restored both HNE and GSTA4-4 levels in OA cartilage explants. Interestingly, it also abolished IL-1β-evoked reactive oxygen species (ROS) generation and p47 NADPH oxidase activation. Furthermore, L-NIL significantly attenuated cell death and markers of apoptosis elicited by exposure to a cytotoxic dose of HNE as well as the release of prostaglandin E(2) and metalloproteinase-13 induced by a non-cytotoxic dose of HNE. Altogether, our findings support a beneficial effect of L-NIL in OA by (i) preventing the LPO process and ROS production via NO-dependent and/or independent mechanisms and (ii) attenuating HNE-induced cell death and different mediators of cartilage damage.  相似文献   

3.
Oxidative stress leads to increased risk for osteoarthritis (OA) but the precise mechanism remains unclear. We undertook this study to clarify the impact of oxidative stress on the progression of OA from the viewpoint of oxygen free radical induced genomic instability, including telomere instability and resulting replicative senescence and dysfunction in human chondrocytes. Human chondrocytes and articular cartilage explants were isolated from knee joints of patients undergoing arthroplastic knee surgery for OA. Oxidative damage and antioxidative capacity in OA cartilage were investigated in donor-matched pairs of intact and degenerated regions of tissue isolated from the same cartilage explants. The results were histologically confirmed by immunohistochemistry for nitrotyrosine, which is considered to be a maker of oxidative damage. Under treatment with reactive oxygen species (ROS; 0.1 μmol/l H2O2) or an antioxidative agent (ascorbic acid: 100.0 μmol/l), cellular replicative potential, telomere instability and production of glycosaminoglycan (GAG) were assessed in cultured chondrocytes. In tissue cultures of articular cartilage explants, the presence of oxidative damage, chondrocyte telomere length and loss of GAG to the medium were analyzed in the presence or absence of ROS or ascorbic acid. Lower antioxidative capacity and stronger staining of nitrotyrosine were observed in the degenerating regions of OA cartilages as compared with the intact regions from same explants. Immunostaining for nitrotyrosine correlated with the severity of histological changes to OA cartilage, suggesting a correlation between oxidative damage and articular cartilage degeneration. During continuous culture of chondrocytes, telomere length, replicative capacity and GAG production were decreased by treatment with ROS. In contrast, treatment with an antioxidative agent resulted in a tendency to elongate telomere length and replicative lifespan in cultured chondrocytes. In tissue cultures of cartilage explants, nitrotyrosine staining, chondrocyte telomere length and GAG remaining in the cartilage tissue were lower in ROS-treated cartilages than in control groups, whereas the antioxidative agent treated group exhibited a tendency to maintain the chondrocyte telomere length and proteoglycan remaining in the cartilage explants, suggesting that oxidative stress induces chondrocyte telomere instability and catabolic changes in cartilage matrix structure and composition. Our findings clearly show that the presence of oxidative stress induces telomere genomic instability, replicative senescence and dysfunction of chondrocytes in OA cartilage, suggesting that oxidative stress, leading to chondrocyte senescence and cartilage ageing, might be responsible for the development of OA. New efforts to prevent the development and progression of OA may include strategies and interventions aimed at reducing oxidative damage in articular cartilage.  相似文献   

4.
S100A12 is a member of the S100 protein family, which are intracellular calcium-binding proteins. Although there are many reports on the involvement of S100A12 in inflammatory diseases, its presence in osteoarthritic cartilage has not been reported. The purpose of this study was to investigate the expression of S100A12 in human articular cartilage in osteoarthritis (OA) and to evaluate the role of S100A12 in human OA chondrocytes. We analyzed S100A12 expression by immunohistochemical staining of cartilage samples obtained from OA and non-OA patients. In addition, chondrocytes were isolated from knee cartilage of OA patients and treated with recombinant human S100A12. Real-time RT-PCR was performed to analyze mRNA expression. Protein production of matrix metalloproteinase 13 (MMP-13) and vascular endothelial growth factor (VEGF) in the culture medium were measured by ELISA. Immunohistochemical analyses revealed that S100A12 expression was markedly increased in OA cartilages. Protein production and mRNA expression of MMP-13 and VEGF in cultured OA chondrocytes were significantly increased by treatment with exogenous S100A12. These increases in mRNA expression and protein production were suppressed by administration of soluble receptor for advanced glycation end products (RAGE). Both p38 mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) inhibitors also suppressed the increases in mRNA expression and protein production of MMP-13 and VEGF. We demonstrated marked up-regulation of S100A12 expression in human OA cartilages. Exogenous S100A12 increased the production of MMP-13 and VEGF in human OA chondrocytes. Our data indicate the possible involvement of S100A12 in the development of OA by up-regulating MMP-13 and VEGF via p38 MAPK and NF-κB pathways.  相似文献   

5.
Vascular endothelial growth factor (VEGF) plays an essential role in the angiogenesis of growing cartilage. Although VEGF expression in cartilage vanishes in normal adults, VEGF is known to be expressed in chondrocytes of osteoarthritic (OA) cartilage. As little information is available on the VEGF expression in the cartilage of OA-like lesions of the temporomandibular joint (TMJ), VEGF expression in the condylar cartilage of TMJs of rats affected with OA was examined. To evoke OA, mechanical stress was applied by forced jaw opening for 10 or 20 days. After 20 days, marked OA-like lesions were observed in the condyle. VEGF was expressed in the chondrocytes of the mature and hypertrophic cell layers of the intermediate and posterior region of the condyle. The percentage of VEGF immunopositive chondrocytes significantly increased with the period of applied mechanical stress. Furthermore, tartrate-resistant acid phosphatase (TRAP) staining of the condylar cartilage showed significant increment of osteoclasts in the mineralized layer subjacent to the hypertrophic layer where high VEGF expression could be detected. The results suggest that VEGF plays an important role in the progression of OA.Eiji Tanaka and Junko Aoyama contributed equally to this work.  相似文献   

6.
A hallmark of rheumatoid- and osteoarthritis (OA) is proinflammatory cytokine-induced degeneration of cartilage collagen and aggrecan by matrix metalloproteinases (MMPs) and aggrecanases (ADAMTS). Effects of the Chinese herb, Tripterygium wilfordii Hook F (TWHF), on cartilage and its anti-arthritic mechanisms are poorly understood. This study investigated the impact of a purified derivative of TWHF, PG490 (triptolide), on cytokine-stimulated expression of the major cartilage damaging proteases, MMP-3, MMP-13, and ADAMTS4. PG490 inhibited cytokine-induced MMP-3, MMP-13 gene expression in primary human OA chondrocytes, bovine chondrocytes, SW1353 cells, and human synovial fibroblasts. Triptolide was effective at low doses and blocked the induction of MMP-13 by IL-1 in human and bovine cartilage explants. TWHF extract and PG490 also suppressed IL-1-, IL-17-, and TNF-alpha-induced expression of ADAMTS-4 in bovine chondrocytes. Thus, PG490 could protect cartilage from MMP- and aggrecanase-driven breakdown. The immunosuppressive, cartilage protective, and anti-inflammatory properties could make PG490 potentially a new therapeutic agent for arthritis.  相似文献   

7.
Berberine, a plant alkaloid used in Chinese medicine, has broad cell‐protective functions in a variety of cell lines. Chondrocyte apoptosis contributes to the pathogenesis of cartilage degeneration in osteoarthritis (OA). However, little is known about the effect and underlying mechanism of berberine on OA chondrocytes. Here, we assessed the effects of berberine on cartilage degeneration in interleukin‐1β (IL‐1β)‐stimulated rat chondrocytes and in a rat model of OA. The results of an MTT assay and western blotting analysis showed that berberine attenuated the inhibitory effect of IL‐1β on the cell viability and proliferating cell nuclear antigen expression in rat chondrocytes. Furthermore, berberine activated Akt, which triggered p70S6K/S6 pathway and up‐regulated the levels of aggrecan and Col II expression in IL‐1β‐stimulated rat chondrocytes. In addition, berberine increased the level of proteoglycans in cartilage matrix and the thickness of articular cartilage, with the elevated levels of Col II, p‐Akt and p‐S6 expression in a rat OA model, as demonstrated by histopathological and immunohistochemistry techniques. The data thus strongly suggest that berberine may ameliorate cartilage degeneration from OA by promoting cell survival and matrix production of chondrocytes, which was partly attributed to the activation of Akt in IL‐1β‐stimulated articular chondrocytes and in a rat OA model. The resultant chondroprotective effects indicate that berberine merits consideration as a therapeutic agent in OA.  相似文献   

8.
Emerging evidence has shown an imbalance in M1/M2 macrophage polarization to play an essential role in osteoarthritis (OA) progression. However, the underlying mechanistic basis for this polarization is unknown. RNA sequencing of OA M1-polarized macrophages found highly expressed levels of pentraxin 3 (PTX3), suggesting a role for PTX3 in OA occurrence and development. Herein, PTX3 was found to be increased in the synovium and articular cartilage of OA patients and OA mice. Intra-articular injection of PTX3 aggravated, while PTX3 neutralization reversed synovitis and cartilage degeneration. No metabolic disorder or proteoglycan loss were observed in cartilage explants when treated with PTX3 alone. However, cartilage explants exhibited an OA phenotype when treated with culture supernatants of macrophages stimulated with PTX3, suggesting that PTX3 did not have a direct effect on chondrocytes. Therefore, the OA anti-chondrogenic effects of PTX3 are primarily mediated through macrophages. Mechanistically, PTX3 was upregulated by miR-224-5p deficiency, which activated the p65/NF-κB pathway to promote M1 macrophage polarization by targeting CD32. CD32 was expressed by macrophages, that when stimulated with PTX3, secreted abundant pro-inflammation cytokines that induced severe articular cartilage damage. The paracrine interaction between macrophages and chondrocytes produced a feedback loop that enhanced synovitis and cartilage damage. The findings of this study identified a functional pathway important to OA development. Blockade of this pathway and PTX3 may prevent and treat OA.Subject terms: Osteoarthritis, Extracellular signalling molecules  相似文献   

9.
Insulin-like growth factor 1 (IGF-1) has poor anabolic efficacy in cartilage in osteoarthritis (OA), partly because of its sequestration by abnormally high levels of extracellular IGF-binding proteins (IGFBPs). We studied the effect of NBI-31772, a small molecule that inhibits the binding of IGF-1 to IGFBPs, on the restoration of proteoglycan synthesis by human OA chondrocytes. IGFBPs secreted by human OA cartilage or cultured chondrocytes were analyzed by western ligand blot. The ability of NBI-31772 to displace IGF-1 from IGFBPs was measured by radiobinding assay. Anabolic responses in primary cultured chondrocytes were assessed by measuring the synthesis of proteoglycans in cetylpyridinium-chloride-precipitable fractions of cell-associated and secreted 35S-labeled macromolecules. The penetration of NBI-31772 into cartilage was measured by its ability to displace 125I-labeled IGF-1 from cartilage IGFBPs. We found that IGFBP-3 was the major IGFBP secreted by OA cartilage explants and cultured chondrocytes. NBI-31772 inhibited the binding of 125I-labeled IGF-1 to IGFBP-3 at nanomolar concentrations. It antagonized the inhibitory effect of IGFBP-3 on IGF-1-dependent proteoglycan synthesis by rabbit chondrocytes. The addition of NBI-31772 to human OA chondrocytes resulted in the restoration or potentiation of IGF-1-dependent proteoglycan synthesis, depending on the IGF-1 concentrations. However, NBI-31772 did not penetrate into cartilage explants. This study shows that a new pharmacological approach that uses a small molecule inhibiting IGF-1/IGFBP interaction could restore or potentiate proteoglycan synthesis in OA chondrocytes, thereby opening exciting possibilities for the treatment of OA and, potentially, of other joint-related diseases.  相似文献   

10.
Mitochondrial dysfunction in osteoarthritis   总被引:2,自引:0,他引:2  
In osteoarthritis (OA) a time or age dependent process leads to aberrant cartilage structure which is characterized by reduced number of chondrocytes, loss of existing cartilage extracellular matrix, the production of matrix with abnormal composition and pathologic matrix calcification. Because chondrocyte matrix synthesis and mineralization are modulated by the balance between ATP generation and consumption, the mechanism by which chondrocytes generate energy have been a topic of interest. The analysis of mitochondrial respiratory chain (MRC) activity in OA chondrocytes shows a significant decrease in complexes II and III compared to normal chondrocytes. On the other hand, mitochondrial mass is increased in OA, as demonstrated by a significant rise in CS activity. Furthermore, OA cells show a reduction in the mitochondrial membrane potential (deltapsim) as demonstrated by using the fluorescent probe JC-1. OA cartilage contains high number of apoptotic chondrocytes, and mitochondria play a key role in apoptosis. Interestingly, OA cartilages show markedly elevated Bcl-2 and caspasa-3 expression. This expression is also correlated with chondrocyte apoptosis and OA lesions. The pathogenesis of OA includes elaboration of increased amounts of NO as a consequence of up-regulation of chondrocyte-inducible NO synthase induced by IL-1, TNF-alpha and other factors. NO reduces chondrocyte survival and induces cell death with morphologic changes characteristic of chondrocyte apoptosis. NO reduces the activity of complex IV and decreases the deltapsim as measured as the ratio of red/green fluorescence. Furthermore, NO induces the mRNA expression of caspase-3 and -7, and it reduces the expression of mRNA bcl-2 and the bcl-2 protein synthesis. Some studies suggest that the chondrocyte mitochondria are specialized for calcium transport and are important in the calcification of the extracellular matrix. Mineral formation has been demonstrated in matrix vesicles (MV) and within mitochondria. Direct suppression of mitochondrial respiration promoted MV-mediated mineralization in chondrocytes. Regulation of MRC may be one of the signaling pathways by which NO modulates articular cartilage matrix biosynthesis and pathologic mineralization. After age 40, the incidence of OA in humans increases progressively with increasing age. Studies show a trend to statistic significance between the age and the reduction of complex I activity of human normal chondrocytes. However, the study of relation between age and deltapsim in normal chondrocytes do not demonstrate any significant correlation. It has been reported that as the number of population doublings increased, mitochondrial DNA was degraded and the number of mitochondria per chondrocyte decline. One approach for determining the role of mitochondria in OA is to determine the effects of the MRC inhibition and to compare them with the findings in OA. Inhibition of MRC with antimycin prevents the normal ability of TGFbeta to increase excretion of Pi, thereby worsening deposition of pathologic HA crystals. In chondrocytes, the inhibition of complex IV with NaN3 modified both the deltapsim and the survival of cells inducing apoptosis. Inhibition of complex I with rotenone increases the expression and synthesis of Bcl-2 and Cox-2, both effects are similar effects to produced by IL-1 in human chondrocytes.  相似文献   

11.
Innate immune molecule surfactant protein D (SP-D), a member of the C-type lectin protein family, plays an indispensable role in host defense and the regulation of inflammation in the lung and other tissues. Osteoarthritis (OA) is a degenerative disease of cartilage, with inflammation that causes pathologic changes and tissue damage. However, it is unknown whether there exist SP-D expression and its potential role in the pathogenesis of OA. In this study, we examined SP-D expression and explored its biological function in a sodium nitroprusside (SNP)-stimulated rat chondrocytes and surgically-induced rat OA model. We found SP-D expression in both human and rat articular chondrocytes, with higher level in normal chondrocytes compared to in OA chondrocytes. Furthermore, In vivo study demonstrated that recombinant human SP-D (rhSP-D) ameliorated cartilage degeneration in surgically-induced rat OA model. In vitro cell culture study showed that rhSP-D markedly inhibited the expression of caspase-3 as an apoptosis biomarker, and decreased phosphorylation of p38 mitogen-activated protein kinase (MAPK), which resulted in maintaining normal nuclear morphology and increasing mitochondrial membrane potential in SNP-stimulated rat chondrocytes. Collectively, these findings indicate that SP-D expresses in articular chondrocytes and suppresses SNP-stimulated chondrocyte apoptosis and ameliorates cartilage degeneration via suppressing p38 MAPK activity.  相似文献   

12.
Reactive oxygen species (ROS)-induced chondrocytes apoptosis plays a key role in osteoarthritis (OA) pathogenesis. Uncoupling protein 4 (UCP4) can protect cells against oxidative stress via reducing ROS production and cell apoptosis. Here, silencing of UCP4 in primary chondrocytes significantly inhibited cell survival, but induced ROS production and cell apoptosis. UCP4 mRNA of cartilage tissues was decreased in osteoarthritis patients, which was negatively correlated with synovial fluid (SF) leptin concentration. Moreover, leptin treatment (5, 10 and 20 ng/ml) of primary cultured chondrocytes significantly decreased mRNA and protein levels of UCP4, but increased ROS production and cell apoptosis in a dose-dependent manner. The effects of leptin treatment (20 ng/ml) on chondrocytes was partially reversed by ectopic expression of UCP4. More importantly, intraarticularly injection of UCP4 adenovirus remarkably alleviate OA progression and cell apoptosis in a rat OA model induced by anterior cruciate ligament transection (ACLT). In conclusion, UCP4, whose expression was suppressed by leptin, may be involved in the ROS production and apoptosis of chondrocytes, thus contributing to the OA pathogenesis.  相似文献   

13.

Introduction

This study was performed to evaluate the attenuation of osteoarthritic (OA) pathogenesis via disruption of the stromal cell-derived factor-1 (SDF-1)/C-X-C chemokine receptor type 4 (CXCR4) signaling with AMD3100 in a guinea pig OA model.

Methods

OA chondrocytes and cartilage explants were incubated with SDF-1, siRNA CXCR4, or anti-CXCR4 antibody before treatment with SDF-1. Matrix metalloproteases (MMPs) mRNA and protein levels were measured with real-time polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. The 35 9-month-old male Hartley guinea pigs (0.88 kg ± 0.21 kg) were divided into three groups: AMD-treated group (n = 13); OA group (n = 11); and sham group (n = 11). At 3 months after treatment, knee joints, synovial fluid, and serum were collected for histologic and biochemical analysis. The severity of cartilage damage was assessed by using the modified Mankin score. The levels of SDF-1, glycosaminoglycans (GAGs), MMP-1, MMP-13, and interleukin-1 (IL-1β) were quantified with ELISA.

Results

SDF-1 infiltrated cartilage and decreased proteoglycan staining. Increased glycosaminoglycans and MMP-13 activity were found in the culture media in response to SDF-1 treatment. Disrupting the interaction between SDF-1 and CXCR4 with siRNA CXCR4 or CXCR4 antibody attenuated the effect of SDF-1. Safranin-O staining revealed less cartilage damage in the AMD3100-treated animals with the lowest Mankin score compared with the control animals. The levels of SDF-1, GAG, MMP1, MMP-13, and IL-1β were much lower in the synovial fluid of the AMD3100 group than in that of control group.

Conclusions

The binding of SDF-1 to CXCR4 induces OA cartilage degeneration. The catabolic processes can be disrupted by pharmacologic blockade of SDF-1/CXCR4 signaling. Together, these findings raise the possibility that disruption of the SDF-1/CXCR4 signaling can be used as a therapeutic approach to attenuate cartilage degeneration.  相似文献   

14.
Osteoarthritis (OA) is characterized by cartilage attrition, subchondral bone remodeling, osteophyte formation and synovial inflammation. Perturbed homeostasis caused by inflammation, oxidative stress, mitochondrial dysfunction and proapoptotic/antiapoptotic dysregulation is known to impair chondrocyte survival in joint microenvironments and contribute to OA pathogenesis. However, the molecular mechanisms underlying the programmed cell death (apoptosis) of chondral cells are not yet well defined. The present study was conducted to evaluate apoptosis of chondrocytes from knee articular cartilage of patients with OA. The aim of this study was to investigate and compare the apoptosis through the expression of caspase-3 in tissue explants, in cells cultured in monolayer, and in cells encapsulated in a hydrogel (PEGDA) scaffold. Chondrocytes were also studied following cell isolation and encapsulation in poly(ethylene glycol) diacrylate (PEGDA) hydrogels. Specifically, articular cartilage specimens were assessed by histology (Hematoxlyn and Eosin) and histochemistry (Safranin-O and Alcian Blue). The effector of apoptosis caspase-3 was studied through immunohistochemistry, immunocytochemistry and immunofluorescence. DNA strand breaks were evaluated in freshly isolated chondrocytes from human OA cartilage using the TUNEL assay, and changes in nuclear morphology of apoptotic cells were detected by staining with Hoechst 33258. The results showed an increased expression of caspase-3 in tissue explants, in pre-confluent cells and after four passages in culture, and a decreased expression of caspase-3 comparable to control cartilage in cells encapsulated in hydrogels (PEGDA) after 5 weeks in culture. The freshly isolated chondrocytes were TUNEL positive. The chondrocytes after 5 weeks of culture in hydrogels (PEGDA) showed the formation of new hyaline cartilage with increased cell growth, cellular aggregations and extracellular matrix (ECM) production. This is of particular relevance to the use of OA cells and tissue engineering in the therapeutic approach to patients.  相似文献   

15.

Introduction

miR-146a is one of the first identified miRNAs expressed differentially in osteoarthritis (OA) cartilage. However, the role it plays in OA pathogenesis is not clear. The aim of this study is to identify a molecular target of miR-146a, thereby elucidating its function in chondrocytes during OA pathogenesis.

Methods

Primary chondrocytes from Sprague-Dawley rats were treated with IL-1β before the expression levels of miR-146a, Smad4 and vascular endothelial growth factor (VEGF) were quantified by real-time PCR and/or western blotting. The effect of miR-146a on cellular response to transforming growth factor (TGF)-β1 was quantified by a luciferase reporter harboring TGF-β1 responsive elements and by extracellular signal-regulated kinase assay. The effect of miR-146a on apoptosis was quantified by the TUNEL assay. OA pathogenesis was surgically induced with joint instability in rats, evaluated by histopathological analysis with safranin O staining, and the expression levels of miR-146a, Smad4, and VEGF were quantified using real-time PCR and/or immunohistochemistry.

Results

IL-1β treatment of chondrocytes increased the expression levels of miR-146a and VEGF and decreased the levels of Smad4 in a time-dependent manner. miR-146a upregulated VEGF expression and downregulated Smad4 expression in chondrocytes, while a miR-146a inhibitor acted in a converse manner. Smad4, a common mediator of the TGF-β pathway, is identified as a direct target of miR-146a by harboring a miR-146a binding sequence in the 3''-UTR region of its mRNA. Mutation of the binding sequence significantly relieved the inhibition of the Smad4 reporter activity by miR-146a. Furthermore, miR-146a upregulation of VEGF is mediated by Smad4. Expression of miR-146a led to a reduction of cellular responsiveness to TGF-β and an increase of apoptosis rate in chondrocytes. In vivo, cartilage from surgically induced OA rats displayed higher levels of miR-146a and VEGF compared with the sham group. In contrast, Smad4 expression level was lower in the OA group than the sham group.

Conclusion

IL-1β responsive miR-146a is overexpressed in an experimentally induced OA model, accompanied by upregulation of VEGF and downregulation of Smad4 in vivo. miR-146a may contribute to OA pathogenesis by increasing VEGF levels and by impairing the TGF-β signaling pathway through targeted inhibition of Smad4 in cartilage.  相似文献   

16.
17.
Elevated levels of PGE(2) have been reported in synovial fluid and cartilage from patients with osteoarthritis (OA). However, the functions of PGE(2) in cartilage metabolism have not previously been studied in detail. To do so, we cultured cartilage explants, obtained from patients undergoing knee replacement surgery for advanced OA, with PGE(2) (0.1-10 muM). PGE(2) inhibited proteoglycan synthesis in a dose-dependent manner (maximum 25% inhibition (p < 0.01)). PGE(2) also induced collagen degradation, in a manner inhibitable by the matrix metalloproteinase (MMP) inhibitor ilomastat. PGE(2) inhibited spontaneous MMP-1, but augmented MMP-13 secretion by OA cartilage explant cultures. PCR analysis of OA chondrocytes treated with PGE(2) with or without IL-1 revealed that IL-1-induced MMP-13 expression was augmented by PGE(2) and significantly inhibited by the cycolooygenase 2 selective inhibitor celecoxib. Conversely, MMP-1 expression was inhibited by PGE(2), while celecoxib enhanced both spontaneous and IL-1-induced expression. IL-1 induction of aggrecanase 5 (ADAMTS-5), but not ADAMTS-4, was also enhanced by PGE(2) (10 muM) and reversed by celecoxib (2 muM). Quantitative PCR screening of nondiseased and end-stage human knee OA articular cartilage specimens revealed that the PGE(2) receptor EP4 was up-regulated in OA cartilage. Moreover, blocking the EP4 receptor (EP4 antagonist, AH23848) mimicked celecoxib by inhibiting MMP-13, ADAMST-5 expression, and proteoglycan degradation. These results suggest that PGE(2) inhibits proteoglycan synthesis and stimulates matrix degradation in OA chondrocytes via the EP4 receptor. Targeting EP4, rather than cyclooxygenase 2, could represent a future strategy for OA disease modification.  相似文献   

18.
Osteoarthritis (OA) is a heterogeneous disease that is extremely hard to cure owing to its complex regulation network of pathogenesis, especially cartilage degeneration. FBXO21 is a subunit of ubiquitin E3 ligases that degrades P‐glycoprotein and EID1 by ubiquitination and activates the JNK and p38 pathways; however, its role in OA remains unknown. Here, the main objective of this study was to evaluate the potential effects and mechanism of FBXO21 in OA degeneration, we revealed that FBXO21 is upregulated in the cartilage of patients with OA, aging, and monosodium iodoacetate‐induced OA rats, and chondrocytes treated with interleukin‐1β, tumor necrosis factor‐α, and lipopolysaccharide. Moreover, the in vivo and in vitro knockdown of FBXO21 suppressed OA‐related cartilage degeneration, as evidenced by activated autophagy, upregulated anabolism, alleviated apoptosis, and downregulated catabolism. In contrast, its overexpression promoted OA‐related cartilage degeneration. In addition, using mass spectrometry and co‐immunoprecipitation assay, we demonstrated that the downstream mechanism of FBXO21 inhibits autophagy by interacting with and phosphorylating ERK. Furthermore, FBXO21 alleviated anabolism and enhanced apoptosis and catabolism by inhibiting autophagy in rat chondrocytes. Interestingly, for its upstream mechanism, JUNB promoted FBXO21 expression by directly targeting the FBXO21 promoter, thus further accelerating cartilage degeneration in SW1353 cells and rat chondrocytes. Overall, our findings reveal that the JUNB‐FBXO21‐ERK axis regulates OA apoptosis and cartilage matrix metabolism by inhibiting autophagy. Therefore, FBXO21 is an attractive target for regulating OA pathogenesis, and its knockdown may provide a novel targeted therapy for OA.  相似文献   

19.
Obesity has been associated with an increased risk of osteoarthritis (OA). However, the mechanism by which obesity contributes to OA remains uncertain. Adiponectin, an adipocyte-derived hormone, has shown anti-diabetic and anti-atherogenic properties. In the present study, we aimed to investigate the potential role of adiponectin in OA disease. We demonstrated that adiponectin was present in OA synovial fluid (SF) and its expression level was almost 100-fold decrease compared with that in OA plasma. FPLC and ELISA studies revealed the distribution and abundance of the adiponectin complexes in plasma and SF from patients with OA. The percentage of high molecular weight (HMW) per total adiponectin in OA SF was lower than in OA plasma, while that of the hexamer form was similar and the trimer form was higher. The expression levels of adiponectin receptors AdipoR1 and AdipoR2 were examined in human OA tissues by RT-PCR. AdipoR1 was abundantly expressed in cartilage, bone and synovial tissues, whereas AdipoR2 was rarely detected. Finally, the effects of adiponectin on primary chondrocyte functions were studied by using antibody-based protein array and RT-PCR. The patterns of mRNA expression and protein production strongly indicate that adiponectin is involved in the modulation of cartilage destruction in chondrocytes by up-regulating TIMP-2 and down-regulating IL-1beta-induced MMP-13. Together these findings clearly indicate that the adiponectin may act as a protective role in the progression of OA, and this also provide new thinking on the relationship between obesity and OA.  相似文献   

20.
Cartilage matrix homeostasis involves a dynamic balance between numerous signals that modulate chondrocyte functions. This study aimed at elucidating the role of the extracellular glucose concentration in modulating anabolic and catabolic gene expression in normal and osteoarthritic (OA) human chondrocytes and its ability to modify the gene expression responses induced by pro-anabolic stimuli, namely Transforming Growth Factor-β (TGF). For this, we analyzed by real time RT-PCR the expression of articular cartilage matrix-specific and non-specific genes, namely collagen types II and I, respectively. The expression of the matrix metalloproteinases (MMPs)-1 and -13, which plays a major role in cartilage degradation in arthritic conditions, and of their tissue inhibitors (TIMP) was also measured. The results showed that exposure to high glucose (30 mM) increased the mRNA levels of both MMPs in OA chondrocytes, whereas in normal ones only MMP-1 increased. Collagen II mRNA was similarly increased in normal and OA chondrocytes, but the increase lasted longer in the later. Exposure to high glucose for 24 h prevented TGF-induced downregulation of MMP-13 gene expression in normal and OA chondrocytes, while the inhibitory effect of TGF on MMP-1 expression was only partially reduced. Other responses were not significantly modified. In conclusion, exposure of human chondrocytes to high glucose, as occurs in vivo in diabetes mellitus patients and in vitro for the production of engineered cartilage, favors the chondrocyte catabolic program. This may promote articular cartilage degradation, facilitating OA development and/or progression, as well as compromise the quality and consequent in vivo efficacy of tissue engineered cartilage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号