共查询到20条相似文献,搜索用时 15 毫秒
1.
Brumshtein B Greenblatt HM Butters TD Shaaltiel Y Aviezer D Silman I Futerman AH Sussman JL 《The Journal of biological chemistry》2007,282(39):29052-29058
Gaucher disease is caused by mutations in the gene encoding acid beta-glucosidase (GlcCerase), resulting in glucosylceramide (GlcCer) accumulation. The only currently available orally administered treatment for Gaucher disease is N-butyl-deoxynojirimycin (Zavesca, NB-DNJ), which partially inhibits GlcCer synthesis, thus reducing levels of GlcCer accumulation. NB-DNJ also acts as a chemical chaperone for GlcCerase, although at a different concentration than that required to completely inhibit GlcCer synthesis. We now report the crystal structures, at 2A resolution, of complexes of NB-DNJ and N-nonyl-deoxynojirimycin (NN-DNJ) with recombinant human GlcCerase, expressed in cultured plant cells. Both inhibitors bind at the active site of GlcCerase, with the imino sugar moiety making hydrogen bonds to side chains of active site residues. The alkyl chains of NB-DNJ and NN-DNJ are oriented toward the entrance of the active site where they undergo hydrophobic interactions. Based on these structures, we make a number of predictions concerning (i) involvement of loops adjacent to the active site in the catalytic process, (ii) the nature of nucleophilic attack by Glu-340, and (iii) the role of a conserved water molecule located in a solvent cavity adjacent to the active site. Together, these results have significance for understanding the mechanism of action of GlcCerase and the mode of GlcCerase chaperoning by imino sugars. 相似文献
2.
T Latham G A Grabowski B D Theophilus F I Smith 《American journal of human genetics》1990,47(1):79-86
Gaucher disease is inherited in an autosomal recessive manner and is the most prevalent lysosomal storage disease. Gaucher disease has marked phenotypic variation and molecular heterogeneity, and seven point mutations in the acid beta-glucosidase (beta-Glc) gene have been identified. By means of sequence-specific oligonucleotides (SSO), mutation 6433C has been detected homozygously in neuronopathic type 2 (acute) and type 3 (subacute) patients, as well as in children with severe visceral involvement who are apparently free of neuronopathic disease. To investigate the molecular basis for this puzzling finding, amplified beta-Glc cDNAs from 6433C homozygous type 2 and type 3 Gaucher disease patients were cloned and sequenced. The Swedish type 3 Gaucher disease patient was truly homozygous for alleles only containing the 6433C mutation. In comparison, the type 2 patient contained a singly mutated 6433C allele and a "complex" allele with multiple discrete point mutations (6433C, 6468C, and 6482C). Each of the mutations in the complex allele also was present in the beta-Glc pseudogene. SSO hybridization of 6433C homozygotes revealed that both type 2 patients contained additional mutations in one allele, whereas the 6433C alone was detected in both type 3 and in young severe type 1 Gaucher disease patients. These results suggest that the presence of the complex allele influences the severity of neuronopathic disease in 6433C homozygotes and reveal the central role played by the pseudogene in the formation of mutant alleles of the beta-Glc gene. Analysis of additional cDNA clones also identified two new alleles in a type 3 patient, emphasizing the molecular heterogeneity of neuronopathic Gaucher disease. 相似文献
3.
Yu L Ikeda K Kato A Adachi I Godin G Compain P Martin O Asano N 《Bioorganic & medicinal chemistry》2006,14(23):7736-7744
The most common lysosomal storage disorder, Gaucher disease, is caused by inefficient folding and trafficking of certain variants of lysosomal beta-glucosidase (beta-Glu, also known as beta-glucocerebrosidase). Recently, Sawker et al. reported that the addition of subinhibitory concentrations (10 microM) of the pharmacological chaperone N-nonyl-1-deoxynojirimycin (NN-DNJ) (10) to Gaucher patient-derived cells leads to a 2-fold increase in activity of mutant (N370S) enzyme [Proc. Natl. Acad. Sci. U.S.A.2002, 99, 15428]. However, we found that the addition of NN-DNJ at 10 microM lowered the lysosomal alpha-glucosidase (alpha-Glu) activity by 50% throughout the assay period in spite of the excellent chaperoning activity in N370S fibroblasts. Hence, we prepared a series of DNJ derivatives with an alkyl chain at the C-1alpha position and evaluated their in vitro inhibitory activity and potential as pharmacological chaperones for Gaucher cell lines. Among them, alpha-1-C-octyl-DNJ (CO-DNJ) (15) showed 460-fold stronger in vitro inhibitory activity than DNJ toward beta-Glu, while NN-DNJ enhanced in vitro inhibitory activity by 360-fold. Treatment with CO-DNJ (20 microM) for 4 days maximally increased intracellular beta-Glu activity by 1.7-fold in Gaucher N370 cell line (GM0037) and by 2.0-fold in another N370 cell line (GM00852). The addition of 20 microM CO-DNJ to the N370S (GM00372) culture medium for 10 days led to 1.9-fold increase in the beta-Glu activity without affecting the intracellular alpha-Glu activity for 10 days. Only CO-DNJ showed a weak beta-Glu chaperoning activity in the L444P type 2 variant, with 1.2-fold increase at 5-20 microM, and furthermore maximally increased the alpha-Glu activity by 1.3-fold at 20 microM. These experimental results suggest that CO-DNJ is a significant pharmacological chaperone for N370S Gaucher variants, minimizing the potential for undesirable side effects such as alpha-Glu inhibition. 相似文献
4.
Heterogeneity of mutations in the acid beta-glucosidase gene of Gaucher disease patients 总被引:6,自引:0,他引:6
Gaucher disease is inherited in an autosomal recessive manner and is the most prevalent lysosomal storage disease. Gaucher disease has marked phenotypic variation and molecular heterogeneity, and several simple and complex alleles of the acid beta-glucosidase gene have been identified as causal to this disease. Certain combinations of alleles have been shown to correlate well with the severity of the disease, but many Gaucher disease patients exist whose disease is not explained by any of the published mutations. This study was undertaken to identify mutant alleles in such incompletely characterized Gaucher disease, in an attempt to find further correlations between clinical phenotype and the presence of acid beta-glucosidase alleles. RNA was isolated from Gaucher cell lines and converted to cDNA, the cDNA was amplified by PCR and cloned, and several clones for each allele were sequenced. Several new singly mutated and multiply mutated alleles were identified, and sequence-specific oligonucleotide hybridization was used to verify the presence of these mutations in the genome of these patients. All newly identified mutations occurred only rarely in the Gaucher disease population, making it difficult to determine whether inheritance of a particular combination of alleles always correlates with the clinical manifestations seen in the test patients. Three of the newly described alleles were single missense mutations in exon 8, one was a single missense mutation in exon 5, and the fifth was a complex allele, comprising a series of different point mutations scattered throughout exons 5 and 6.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
5.
J N Kanfer S S Raghavan R A Mumford R S Labow D G Williamson D S Layne 《Biochemical and biophysical research communications》1975,67(2):683-688
A deficiency in the activity of steroid: β-glucosidase has been observed in the particulate fraction of Gauchers tissues. There was no diminution of the “soluble” form of this enzyme in adult tissue samples. In contrast, there was a marked reduction in the soluble steroid β-glucoside hydrolytic activity in the brain and spleen, and not liver from the infantile form of the disease. 相似文献
6.
S S Raghavan R A Mumford J N Kanfer 《Biochemical and biophysical research communications》1973,54(1):256-263
A deficiency in the activity of glucosylsphingosine: β-glucosidase has been observed in Gaucher's spleen tissue and skin fibroblasts. Preliminary studies indicated the presence of a material similar to glucosylsphingosine in Gaucher's spleen while such a material was not detectable in normal and other pathological control spleen tissue. This is the first report of the natural occurrence of a psychosine-like material in a mammalian tissue. 相似文献
7.
Martin SL Bushman D Wang F Li PW Walker A Cummiskey J Branciforte D Williams MC 《Nucleic acids research》2008,36(18):5845-5854
L1 is a ubiquitous interspersed repeated sequence in mammals that achieved its high copy number by autonomous retrotransposition. Individual L1 elements within a genome differ in sequence and retrotransposition activity. Retrotransposition requires two L1-encoded proteins, ORF1p and ORF2p. Chimeric elements were used to map a 15-fold difference in retrotransposition efficiency between two L1 variants from the mouse genome, T(FC) and T(Fspa), to a single amino acid substitution in ORF1p, D159H. The steady-state levels of L1 RNA and protein do not differ significantly between these two elements, yet new insertions are detected earlier and at higher frequency in T(FC), indicating that it converts expressed L1 intermediates more effectively into new insertions. The two ORF1 proteins were purified and their nucleic acid binding and chaperone activities were examined in vitro. Although the RNA and DNA oligonucleotide binding affinities of these two ORF1 proteins were largely indistinguishable, D159 was significantly more effective as a nucleic acid chaperone than H159. These findings support a requirement for ORF1p nucleic acid chaperone activity at a late step during L1 retrotransposition, extend the region of ORF1p that is known to be critical for its functional interactions with nucleic acids, and enhance understanding of nucleic acid chaperone activity. 相似文献
8.
Leukocyte beta-glucosidase in homozygotes and heterozygotes for Gaucher disease 总被引:6,自引:2,他引:6 下载免费PDF全文
Human leukocytes contain at least two isozymes of 4-methylumbelliferyl-β-glucosidase acting optimally at pH 4.0 and 4.8; in Gaucher disease, only the former is deficient. Brief exposure of the leukocyte homogenate to pH 4.0 at room temperature results in irreversible inactivation of the pH 4.8 activity, while the activity at pH 4.0 remains unaffected. The more acidic isozyme is stimulated four- to fivefold by 0.2% sodium taurodeoxycholate (TDC) with a shift in the pH optimum to 5.0. The less acidic isozyme is completely suppressed in the presence of this detergent. Both leukocyte isozymes appear to be membrane-bound since gel filtration of Sephadex G-200 produces only one peak of activity located at the void volume, unlike in liver and kidney where a second peak also can be demonstrated. Heat inactivation analysis indicated that in controls, assayed in the absence of detergent, pH 4.0 activity is more thermostable than pH 4.8 activity. However, in Gaucher disease, the residual β-glucosidase at pH 4.0 is just as thermolabile as the unaffected pH 4.8 activity. Heat inactivation of the enzyme in the presence of TDC resulted in rapid loss of activity, suggesting a direct effect of the bile salt on the configuration of the enzyme decreasing its thermal stability. In the absence of detergent, acid β-glucosidase shows two Km's, one at 3.2 mM and another at 0.9 mM. In the presence of detergent, only the higher Km at 3.3 mM is obtained. In patients with Gaucher disease and in obligate carriers, the Km remains essentially unaffected while the Vmax shows the expected deficiency.
A reliable and reproducible selective assay technique has been developed for the diagnosis of Gaucher disease homozygotes and obligate heterozygotes and for the carrier screening of individuals at risk for this inherited disorder. The efficacy of this technique has been demonstrated by studying the activity in 42 controls, 26 patients, 32 obligate heterozygotes, and 23 healthy relatives of patients with Gaucher disease.
相似文献9.
Phosphatidylinositol transfer protein alpha (PITP alpha) is a ubiquitous and highly conserved protein in multicellular eukaryotes that catalyzes the exchange of phospholipids between membranes in vitro and participates in cellular phospholipid metabolism, signal transduction and vesicular trafficking in vivo. Here we report the three-dimensional crystal structure of a phospholipid-free mouse PITP alpha at 2.0 A resolution. The structure reveals an open conformation characterized by a channel running through the protein. The channel is created by opening the phospholipid-binding cavity on one side by displacement of the C-terminal region and a hydrophobic lipid exchange loop, and on the other side by flattening of the central beta-sheet. The relaxed conformation is stabilized at the proposed membrane association site by hydrophobic interactions with a crystallographically related molecule, creating an intimate dimer. The observed open conformer is consistent with a membrane-bound state of PITP and suggests a mechanism for membrane anchoring and the presentation of phosphatidylinositol to kinases and phospholipases after its extraction from the membrane. Coordinates have been deposited in the Protein Data Bank (accession No. 1KCM). 相似文献
10.
Lei K Ninomiya H Suzuki M Inoue T Sawa M Iida M Ida H Eto Y Ogawa S Ohno K Suzuki Y 《Biochimica et biophysica acta》2007,1772(5):587-596
Gaucher disease (GD), caused by a defect of beta-glucosidase (beta-Glu), is the most common form of sphingolipidosis. We have previously shown that a carbohydrate mimic N-octyl-beta-valienamine (NOV), an inhibitor of beta-Glu, could increase the protein level and enzyme activity of F213I mutant beta-Glu in cultured GD fibroblasts, suggesting that NOV acted as a pharmacological chaperone to accelerate transport and maturation of this mutant enzyme. In the current study, NOV effects were evaluated in GD fibroblasts with various beta-Glu mutations and in COS cells transiently expressing recombinant mutant proteins. In addition to F213I, NOV was effective on N188S, G202R and N370S mutant forms of beta-Glu, whereas it was ineffective on G193W, D409H and L444P mutants. When expressed in COS cells, the mutant proteins as well as the wild-type protein were localized predominantly in the endoplasmic reticulum and were sensitive to Endo-H treatment. NOV did not alter this localization or Endo-H sensitivity, suggesting that it acted in the endoplasmic reticulum. Profiling of N-alkyl-beta-valienamines with various lengths of the acyl chain showed that N-dodecyl-beta-valienamine was as effective as NOV. These results suggest a potential therapeutic value of NOV and related compounds for GD with a broad range of beta-Glu mutations. 相似文献
11.
To better understand the molecular mechanisms and genetic basis of human disease, we systematically examine relationships between 3,949 genes, 62,663 mutations and 3,453 associated disorders by generating a three-dimensional, structurally resolved human interactome. This network consists of 4,222 high-quality binary protein-protein interactions with their atomic-resolution interfaces. We find that in-frame mutations (missense point mutations and in-frame insertions and deletions) are enriched on the interaction interfaces of proteins associated with the corresponding disorders, and that the disease specificity for different mutations of the same gene can be explained by their location within an interface. We also predict 292 candidate genes for 694 unknown disease-to-gene associations with proposed molecular mechanism hypotheses. This work indicates that knowledge of how in-frame disease mutations alter specific interactions is critical to understanding pathogenesis. Structurally resolved interaction networks should be valuable tools for interpreting the wealth of data being generated by large-scale structural genomics and disease association studies. 相似文献
12.
G A Grabowski S Gatt M Horowitz 《Critical reviews in biochemistry and molecular biology》1990,25(6):385-414
Human lysosomal beta-glucosidase (D-glucosyl-acylsphingosine glucohydrolase, EC 3.2.1.45) is a membrane-associated enzyme that cleaves the beta-glucosidic linkage of glucosylceramide (glucocerebroside), its natural substrate, as well as synthetic beta-glucosides. Experiments with cultured cells suggest that in vivo this glycoprotein requires interaction with negatively charged lipids and a small acidic protein, SAP-2, for optimal glucosylceramide hydrolytic rates. In vitro, detergents (Triton X-100 or bile acids) or negatively charged ganglioside or phospholipids and one of several "activator proteins" increase hydrolytic rate of lipid and water-soluble substrates. Using such in vitro assay systems and active site-directed covalent inhibitors, kinetic and structural properties of the active site have been elucidated. The defective activity of this enzyme leads to the variants of Gaucher disease, the most prevalent lysosomal storage disease. The nonneuronopathic (type 1) and neuronopathic (types 2 and 3) variants of this inherited (autosomal recessive) disease but panethnic, but type 1 is most prevalent in the Ashkenazi Jewish population. Several missense mutations, identified in the structural gene for lysosomal beta-glucosidase from Gaucher disease patients, are presumably casual to the specifically altered posttranslational oligosaccharide processing or stability of the enzyme as well as the altered in vitro kinetic properties of the residual enzyme from patient tissues. 相似文献
13.
Li W Adams TE Kjellberg M Stenflo J Huntington JA 《The Journal of biological chemistry》2007,282(18):13759-13768
Protein C inhibitor (PCI) is a multifunctional serpin with wide ranging protease inhibitory functions, unique cofactor binding activities, and potential non-inhibitory functions akin to the hormone-transporting serpins. To gain insight into the molecular mechanisms utilized by PCI we developed a robust expression system in Escherichia coli and solved the crystal structure of PCI in its native state. The five monomers obtained from our two crystal forms provide an NMR-like ensemble revealing regions of inherent flexibility. The reactive center loop (RCL) of PCI is long and highly flexible with no evidence of hinge region incorporation into beta-sheet A, as seen for other heparin-binding serpins. We adapted an extrinsic fluorescence method for determining dissociation constants for heparin and find that the N-terminal tail of PCI and residues adjacent to helix H are not involved in heparin binding. The minimal heparin length capable of tight binding to PCI was determined to be chains of eight monosaccharide units. A large hydrophobic pocket occupied by hydrophobic crystal contacts was found in an analogous position to the hormone-binding site in thyroxine-binding globulin. In conclusion, the data presented here provide important insights into the mechanisms by which PCI exercises its multiple inhibitory and non-inhibitory functions. 相似文献
14.
Lin H Sugimoto Y Ohsaki Y Ninomiya H Oka A Taniguchi M Ida H Eto Y Ogawa S Matsuzaki Y Sawa M Inoue T Higaki K Nanba E Ohno K Suzuki Y 《Biochimica et biophysica acta》2004,1689(3):219-228
Gaucher disease (GD) is the most common form of sphingolipidosis and is caused by a defect of beta-glucosidase (beta-Glu). A carbohydrate mimic N-octyl-beta-valienamine (NOV) is an inhibitor of beta-Glu. When applied to cultured GD fibroblasts with F213I beta-Glu mutation, NOV increased the protein level of the mutant enzyme and up-regulated cellular enzyme activity. The maximum effect of NOV was observed in F213I homozygous cells in which NOV treatment at 30 microM for 4 days caused a approximately 6-fold increase in the enzyme activity, up to approximately 80% of the activity in control cells. NOV was not effective in cells with other beta-Glu mutations, N370S, L444P, 84CG and RecNciI. Immunofluorescence and cell fractionation showed localization of the F213I mutant enzyme in the lysosomes of NOV-treated cells. Consistent with this, NOV restored clearance of 14C-labeled glucosylceramide in F213I homozygous cells. F213I mutant beta-Glu rapidly lost its activity at neutral pH in vitro and this pH-dependent loss of activity was attenuated by NOV. These results suggest that NOV works as a chemical chaperone to accelerate transport and maturation of F213I mutant beta-Glu and may suggest a therapeutic value of this compound for GD. 相似文献
15.
16.
17.
Gaucher disease is a common lysosomal storage disease caused by a defect of acid beta-glucosidase (GCase). The optimal in vitro hydrolase activity of GCase requires saposin C, an activator protein that derives from a precursor, prosaposin. To develop additional models of Gaucher disease and to test in vivo effects of saposin deficiencies, mice expressing low levels (4--45% of wild type) of prosaposin and saposins (PS-NA) were backcrossed into mice with specific point mutations (V394L/V394L or D409H/D409H) of GCase. The resultant mice were designated 4L/PS-NA and 9H/PS-NA, respectively. In contrast to PS-NA mice, the 4L/PS-NA and 9H/PS-NA mice displayed large numbers of engorged macrophages and nearly exclusive glucosylceramide (GC) accumulation in the liver, lung, spleen, thymus, and brain. Electron microscopy of the storage cells showed the characteristic tubular storage material of Gaucher cells. Compared with V394L/V394L mice, 4L/PS-NA mice that expressed 4--6% of wild-type prosaposin levels had approximately 25--75% decreases in GCase activity and protein in liver, spleen, and fibroblasts. These results imply that reduced saposin levels increased the instability of V394L or D409H GCases and that these additional decreases led to large accumulations of GC in all tissues. These models mimic a more severe Gaucher disease phenotype and could be useful for therapeutic intervention studies. 相似文献
18.
19.
K M Osiecki-Newman D Fabbro T Dinur S Boas S Gatt G Legler R J Desnick G A Grabowski 《Enzyme》1986,35(3):147-153
Two sepharose-bound 1-deoxynojirimycin N-alkyl derivatives, N-(9-carboxynonyl)- and N-(11-carboxyundecyl)-deoxynojirimycin, were used for the affinity purification of acid beta-glucosidase (beta-Glc) from normal and type-1 Ashkenazi Jewish Gaucher disease (AJGD) sources. The capacities of these nondegradable inhibitor supports were 0.5 and 0.75 mg of normal beta-Glc/ml of settled gel, respectively. The purified normal enzyme (14-18% yield) had a specific activity of 1.6 X 10(6) nmol/h/mg protein and was homogeneous as evidenced by a single protein species of Mr = 67,000 on sodium dodecylsulfate-polyacrylamide gel electrophoresis and reverse phase high-performance liquid chromatography (HPLC). Microsequencing demonstrated a single N terminus, and the sequence of the first 22 N-terminal amino acids was colinear with that predicted from the beta-Glc cDNA. Amino acid composition analyses of beta-Glc revealed a high content (35%) of hydrophobic amino acids. The N-decyl-deoxynojirimycin support facilitated the purification of the residual enzyme from type-1 AJGD spleen to about 7,500-fold in four steps with a yield of about 11%. These new affinity supports provided improved stability, capacity and/or specificity compared to other affinity or HPLC methods for purifying this lysosomal glycosidase. 相似文献
20.
The genetic basis of a craniofacial disease provides insight into COPII coat assembly 总被引:3,自引:0,他引:3
Fromme JC Ravazzola M Hamamoto S Al-Balwi M Eyaid W Boyadjiev SA Cosson P Schekman R Orci L 《Developmental cell》2007,13(5):623-634
Proteins trafficking through the secretory pathway must first exit the endoplasmic reticulum (ER) through membrane vesicles created and regulated by the COPII coat protein complex. Cranio-lenticulo-sutural dysplasia (CLSD) was recently shown to be caused by a missense mutation in SEC23A, a gene encoding one of two paralogous COPII coat proteins. We now elucidate the molecular mechanism underlying this disease. In vitro assays reveal that the mutant form of SEC23A poorly recruits the Sec13-Sec31 complex, inhibiting vesicle formation. Surprisingly, this effect is modulated by the Sar1 GTPase paralog used in the reaction, indicating distinct affinities of the two human Sar1 paralogs for the Sec13-Sec31 complex. Patient cells accumulate numerous tubular cargo-containing ER exit sites devoid of observable membrane coat, likely representing an intermediate step in COPII vesicle formation. Our results indicate that the Sar1-Sec23-Sec24 prebudding complex is sufficient to form cargo-containing tubules in vivo, whereas the Sec13-Sec31 complex is required for membrane fission. 相似文献