首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Both development and evolution under chronic malnutrition lead to reduced adult size in Drosophila. We studied the contribution of changes in size vs. number of epidermal cells to plastic and evolutionary reduction of wing size in response to poor larval food. We used flies from six populations selected for tolerance to larval malnutrition and from six unselected control populations, raised either under standard conditions or under larval malnutrition. In the control populations, phenotypic plasticity of wing size was mediated by both cell size and cell number. In contrast, evolutionary change in wing size, which was only observed as a correlated response expressed on standard food, was mediated entirely by reduction in cell number. Plasticity of cell number had been lost in the selected populations, and cell number did not differ between the sexes despite males having smaller wings. Results of this and other experimental evolution studies are consistent with the hypothesis that alleles which increase body size through prolonged growth affect wing size mostly via cell number, whereas alleles which increase size through higher growth rate do so via cell size.  相似文献   

2.
3.
Yang X  Xu T 《Cell research》2011,21(5):715-729
How multicellular organisms control their size is a fundamental question that fascinated generations of biologists. In the past 10 years, tremendous progress has been made toward our understanding of the molecular mechanism underlying size control. Original studies from Drosophila showed that in addition to extrinsic nutritional and hormonal cues, intrinsic mechanisms also play important roles in the control of organ size during development. Several novel signaling pathways such as insulin and Hippo-LATS signaling pathways have been identified that control organ size by regulating cell size and/or cell number through modulation of cell growth, cell division, and cell death. Later studies using mammalian cell and mouse models also demonstrated that the signaling pathways identified in flies are also conserved in mammals. Significantly, recent studies showed that dysregulation of size control plays important roles in the development of many human diseases such as cancer, diabetes, and hypertrophy.  相似文献   

4.
Body size is important to most aspects of biology and is also one of the most labile traits. Despite its importance we know remarkably little about the proximate (developmental) factors that determine body size under different circumstances. Here, I review what is known about how cell size and number contribute to phenetic and genetic variation in body size in Drosophila melanogaster, several fish, and fruits and leaves of some angiosperms. Variation in resources influences size primarily through changes in cell number while temperature acts through cell size. The difference in cellular mechanism may also explain the differences in growth trajectories resulting from food and temperature manipulations. There is, however, a poorly recognized interaction between food and temperature effects that needs further study. In addition, flies show a sexual dimorphism in temperature effects with the larger sex responding by changes in cell size and the smaller sex showing changes in both cell size and number. Leaf size is more variable than other organs, but there appears to be a consistent difference between how shade-tolerant and shade-intolerant species respond to light level. The former have larger leaves via cell size under shade, the latter via cell number in light conditions. Genetic differences, primarily from comparisons of D. melanogaster, show similar variation. Direct selection on body size alters cell number only, while temperature selection results in increased cell size and decreased cell number. Population comparisons along latitudinal clines show that larger flies have both larger cells and more cells. Use of these proximate patterns can give clues as to how selection acts in the wild. For example, the latitudinal pattern in D. melanogaster is usually assumed to be due to temperature, but the cellular pattern does not match that seen in laboratory selection at different temperatures.  相似文献   

5.
A fundamental challenge in biology is to understand the reproducibility of developmental programs between individuals of the same metazoan species. This developmental precision reflects the meticulous integration of temporal control mechanisms with those that specify other aspects of pattern formation, such as spatial and sexual information. The cues that guide these developmental events are largely intrinsic to the organism but can also include extrinsic inputs, such as nutrition or temperature. This review discusses the well-characterized developmental timing mechanism that patterns the C. elegans epidermis. Components of this pathway are conserved, and their links to developmental time control in other species are considered, including the temporal patterning of the fly nervous system. Particular attention is given to the roles of miRNAs in developmental timing and to the emerging mechanisms that link developmental programs to nutritional cues.  相似文献   

6.
Conservation of major signaling pathways between humans and flies has made Drosophila a useful model organism for cancer research. Our understanding of the mechanisms regulating cell growth, differentiation and development has been considerably advanced by studies in Drosophila. Several recent high profile studies have examined the processes constraining the metastatic growth of tumor cells in fruit fly models. Cell invasion can be studied in the context of an in vivo setting in flies, enabling the genetic requirements of the microenvironment of tumor cells undergoing metastasis to be analyzed. This Perspective discusses the strengths and limitations of Drosophila models of cancer invasion and the unique tools that have enabled these studies. It also highlights several recent reports that together make a strong case for Drosophila as a system with the potential for both testing novel concepts in tumor progression and cell invasion, and for uncovering players in metastasis.  相似文献   

7.
The control of growth is fundamental to the developing metazoan. Here, we show that CHICO, a Drosophila homolog of vertebrate IRS1-4, plays an essential role in the control of cell size and growth. Animals mutant for chico are less than half the size of wild-type flies, owing to fewer and smaller cells. In mosaic animals, chico homozygous cells grow slower than their heterozygous siblings, show an autonomous reduction in cell size, and form organs of reduced size. Although chico flies are smaller, they show an almost 2-fold increase in lipid levels. The similarities of the growth defects caused by mutations in chico and the insulin receptor gene in Drosophila and by perturbations of the insulin/IGF1 signaling pathway in vertebrates suggest that this pathway plays a conserved role in the regulation of overall growth by controling cell size, cell number, and metabolism.  相似文献   

8.
Mammalian insulin and insulin-like growth factors (IGFs) signal through several receptors with different ligand specificities to regulate metabolism and growth. This regulation is defective in diabetes and in a wide variety of human tumors. Recent analysis in Drosophila melanogaster has revealed that insulin-like molecules (known as DILPs in flies) also control growth and metabolism, but probably do so by signaling through a single insulin receptor (InR). The intracellular signaling molecules regulated by this receptor are highly evolutionarily conserved. Work in flies has helped to dissect the network of InR-regulated intracellular signaling pathways and identify some of the critical players in these pathways and in interacting signaling cascades. Surprisingly, these studies have shown that DILPs control tissue and body growth primarily by regulating cell growth and cell size. Changes in cell growth produced by these molecules may subsequently modulate the rate of cell proliferation in a cell type-specific fashion. At least part of this growth effect is mediated by two small groups of neurons in the Drosophila brain, which secrete DILPs into the circulatory system at levels that are modulated by nutrition. This signaling center is also involved in DILP-dependent control of the fly's rate of development, fertility, and life span. These surprisingly diverse functions of InR signaling, which appear to be conserved in all higher animals, reflect a central role for this pathway in coordinating development, physiology, and properly proportioned growth of the organism in response to its nutritional state. Studies in flies are providing important new insights into the biology of this system, and the identification of novel components in the InR-regulated signaling cascade is already beginning to inform the development of new therapeutic strategies for insulin-linked diseases in the clinic.  相似文献   

9.
The columnar arrangement of dividing cells in the epiphyseal cartilage plates of growing bones provides a model of a linear proliferation system. One factor which determines the rate of cell production, and hence the rate of growth, is the size of the proliferating population. In this one dimensional system this size is equal to the length of the proliferation zone. Two possible mechanisms for a differentiation control that sets a limit to the length of this zone have been tested in computer simulations. While a diffusion gradient control is consistent with cell kinetic measurements a division limit based on an inheritable growth substance is shown to require further development before the model fits experimental data.Cell division in the columns produces linear clones of cells. If the final length of a bone is set by a limit on the number of divisions that the cartilage stem cells can make, then the number of cells per clone is crucial in determining overall bone growth. The parameters that affect linear clone size have been investigated in computer simulations. Clone size depends largely on the relative division rate of stem cells to proliferation zone cells — but the data on stem cell division rates are generally unreliable.The analysis could be applied to other linear proliferating systems.  相似文献   

10.
Reggie-1 and reggie-2 are two evolutionarily highly conserved proteins which are up-regulated in retinal ganglion cells during regeneration of lesioned axons in the goldfish optic nerve. They are located at the cytoplasmic face of the plasma membrane and are considered to be 'lipid raft' constituents due to their insolubility in Triton X-100 and presence in the 'floating fractions'; hence they were independently named flotillins. According to our current view, the reggies subserve functions as protein scaffolds which form microdomains in neurons, lymphocytes and many other cell types across species as distant as flies and humans. These microdomains are of a surprisingly constant size of less than or equal to 0.1 mm in all cell types, whereas the distance between them is variable. The microdomains co-ordinate signal transduction of specific cell-surface proteins and especially of GPI (glycosylphosphatidylinositol)-anchored proteins into the cell, as is demonstrated for PrP(c) (cellular prion protein) in T-lymphocytes. These cells possess a pre-formed reggie cap scaffold consisting of densely packed reggie microdomains. PrP(c) is targeted to the lymphocyte reggie cap when activated by antibody cross-linking, and induces a distinct Ca(2+) signal. In developing zebrafish, reggies become concentrated in neurons and axon tracts, and their absence, after morpholino antisense RNA-knockdown, results in deformed embryos with reduced brains. Likewise, defects in Drosophila eye morphogenesis occur upon reggie overexpression in mutant flies. The defects observed in the organism, as well as in single cells in culture, indicate a morphogenetic function of the reggies, with emphasis on the nervous system. This complies with their role as scaffolds for the formation of multiprotein complexes involved in signalling across the plasma membrane.  相似文献   

11.
Calbindin is a calcium-binding protein, commonly found in certain subpopulations of the enteric nervous system in mammals. Recently, calbindin-immunoreactive enteric neurons have also been demonstrated in shorthorn sculpin (Myoxocephalus scorpius). In the present study, calbindin immunoreactivity has been investigated in the gut of adult and larval zebrafish (Danio rerio) and differences and similarities between the two species are discussed. Calbindin immunoreactivity is present in 40%?C50% of all enteric neurons in adult zebrafish. It first appears at 3?days post-fertilisation (dpf) and is present in all regions of the gut by 13 dpf. Calbindin-immunoreactive nerve cell bodies do not differ in size from calbindin-negative cells. Zebrafish calbindin-immunoreactive neurons are serotonin-negative, with at least some being choline acetyltransferase (ChAT)-positive, in contrast to the sculpin in which cells are generally smaller than the average enteric neuron and are serotonin-positive and ChAT-negative. These findings further emphasise the importance of comparative studies for understanding the diversity of chemical coding in the enteric nervous system of fish and other vertebrates. Improved knowledge of the role of the enteric nervous system is also essential for future studies of gut activity with regard to zebrafish being used as a model organism.  相似文献   

12.
13.
《Fly》2013,7(2):173-175
The endocycle is a developmentally specialized cell cycle that lacks M phase and consists of only S and G phases. Endoreplicating cells acquire high ploidies by multiple rounds of replication without cell divisions in order to increase protein synthesis to support growth and development of the organism. Endoreplication occurs in developmentally specialized cell types after they terminally differentiate. These cells include: ovarian nurse cells and follicle cells, most of laval tissues in flies and placenta giant trophoblasts and megakaryocytes in mammals.

To date studies of endoreplication have mainly focused on two aspects: Cyclin-dependent kinase (CDK)-mediated controls to license and re-license replication origins in the absence of mitosis, and development or differentiation signaling pathways that mediate transition from mitotic replication to endoreplication. The replication initiation machinery itself has not been much studied, partly because it has been generally considered to consist of the same set of factors used in mitotic cycle.

Recently we reported a loss-of-function analysis of the Drosophila orc1 gene, which revealed that the Origin Recognition Complex (ORC) is dispensable for endoreplication. This finding is surprising and rather provocative as it runs against the dogma and is expected to stimulate discussion and interest in the identification of molecular mechanisms of the initiation of endoreplication. What follows is a highly speculative view on how endoreplication occurs in the absence of the ORC and what advantage ORC-independent replication brings to the organism.  相似文献   

14.
Drosophila melanogaster has been introduced recently as a model organism in which to study the mechanisms by which drugs of abuse change behavior and by which the nervous system changes upon repeated drug exposure. Surprising similarities between flies and mammals have begun to emerge at the behavioral, neurochemical and molecular levels.  相似文献   

15.
Amphibian sympathetic ganglia in tissue culture   总被引:1,自引:0,他引:1  
1. A culture medium has been developed for amphibian sympathetic nervous tissue but it is suggested that the ionic values should be adjusted to correspond to the concentrations of salts in the plasma of particular species. 2. The morphology, monoamine fluorescence, growth and differentiation of sympathetic ganglia of the frog, Limnodynastes dumerili, have been studied in culture. 3. Two types of neuron could be distinguished largely according to size, namely small, 18 X 20 mum and large, 38 X 42 mum. The possibility that these represent one type at different stages in development or represent functionally distinct neurons is discussed. 4. The sympathetic neurons are extremely sensitive to nerve growth factor (NGF) which caused an increase in the size of the cell bodies, the number of nerve fibres regenerating, the rate of axonal growth and synthesis of catecholamines. 5. Various other cell types appearing in the cultures have been described, including chromaffin, satellite, Schwann, multipolar and epithelial cells as well as fibroblasts, melanocytes and macrophages. The epithelial cells show slow contractions and changes in shape.  相似文献   

16.
Dietary restriction extends lifespan in diverse organisms, but the gene regulatory mechanisms and tissues mediating the increased survival are still unclear. Studies in worms and flies have revealed a number of candidate mechanisms, including the target of rapamycin and insulin/IGF‐like signalling (IIS) pathways and suggested a specific role for the nervous system in mediating the response. A pair of sensory neurons in Caenorhabditis elegans has been found to specifically mediate DR lifespan extension, but a neuronal focus in the Drosophila nervous system has not yet been identified. We have previously shown that reducing IIS via the partial ablation of median neurosecretory cells in the Drosophila adult brain, which produce three of the seven fly insulin‐like peptides, extends lifespan. Here, we show that these cells are required to mediate the response of lifespan to full feeding in a yeast dilution DR regime and that they appear to do so by mechanisms that involve both altered IIS and other endocrine effects. We also present evidence of an interaction between these mNSCs, nutrition and sleep, further emphasising the functional homology between the DILP‐producing neurosecretory cells in the Drosophila brain and the hypothalamus of mammals in their roles as integration sites of many inputs for the control of lifespan and behaviour.  相似文献   

17.
ErbB receptors and the development of the nervous system   总被引:1,自引:0,他引:1  
Tyrosine kinase receptors and their ligands allow communication between cells in the developing and adult organism. An extensive line of research has revealed that ‘neuregulins’, a family of EGF-like factors that signal via ErbB receptors, are used frequently for cell communication during nervous system development, and control a spectacular spectrum of developmental processes. For instance, during development of the peripheral nervous system, Schwann cells require neuronally-produced neuregulin (Nrg1) for growth, migration and myelination, neural crest cells rely on mesenchymally-generated Nrg1 signals for migration, while muscle requires neuronally-produced Nrg1 for the differentiation of a muscle spindle. In the central nervous system, neuregulin signals allow cells to act as guideposts or as barriers for axons during pathfinding. Neuregulin signals are also important in other organs, but the nervous system functions have received recently considerable attention due to the finding that particular haplotypes of Nrg1 and ErbB4 predispose to schizophrenia. Understanding the neuregulin signaling system can thus contribute to define causes of this devastating mental disorder.  相似文献   

18.
The regulation of cell cycle and apoptosis is fundamental to the control of cell growth and organism homeostasis. Failure to efficiently regulate these processes often results in the increased cell growth observed in tumours. Accumulation of genetic lesions frequently eliminates these regulatory steps so it is imperative that multiple signalling pathways are employed to ensure that efficient control is maintained. Over the last few years a novel signalling pathway entered the limelight that prevents inappropriate activation of the cell cycle and can elicit apoptosis to limit cell numbers. Denoted the MST/hippo pathway, it is involved in regulating cell number in organism development and tumour progression. Here we aim to review the evidence for a conserved pathway from flies to mammals, and of equal importance to initiate the discussion on the additional cellular and signalling processes that have been adopted by this pathway to achieve further regulation and diversified cellular outcomes in mammals.  相似文献   

19.
The expanding TOR signaling network   总被引:25,自引:0,他引:25  
Cell growth (increase in cell mass or size) is tightly coupled to nutrient availability, growth factors and the energy status of the cell. The target of rapamycin (TOR) integrates all three inputs to control cell growth. The discovery of upstream regulators of TOR (AMPK, the TSC1-TSC2 complex and Rheb) has provided new insights into the mechanism by which TOR integrates its various inputs. A recent finding in flies reveals that TOR controls not only growth of the cell in which it resides (cell-autonomous growth) but also the growth of distant cells, thereby determining organ and organism size in addition to the size of isolated cells. In yeast and mammals, the identification of two structurally and functionally distinct multiprotein TOR complexes (TORC1 and TORC2) has provided a molecular basis for the complexity of TOR signaling. Furthermore, TOR has emerged as a regulator of growth-related processes such as development, aging and the response to hypoxia. Thus, TOR is part of an intra- and inter-cellular signaling network with a remarkably broad role in eukaryotic biology.  相似文献   

20.
Summary The bristle pattern of the second-leg basitarsus inDrosophila melanogaster was studied as a function of the number and size of the cells on this segment in well-fed and starved wild-type flies, in triploid flies, and in two mutants (dachs andfour-jointed) that have abnormally short basitarsi. The second-leg basitarsi of well-fed, wild-type flies from 22 otherDrosophila species were studied in a similar manner. There are typically 8 longitudinal rows of evenly-spaced bristles on the second-leg basitarsus, and in each row the number of bristles was consistently found to vary in proportion to the estimated number of cells along the segment, and the interval between bristles was found to vary in proportion to the average cell diameter on the segment. These correlations are interpreted to mean that the spacing of the bristles within each row is controlled developmentally, whereas the number of bristles is not. The interval between bristles is evidently measured either as a fixed number of cells or as a distance which indirectly depends upon cell diameter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号