首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Escherichia coli replication origin oriC and other regions with high numbers of GATC sites remain hemimethylated after replication much longer than regions with average numbers of GATC sites. The prolonged period of hemimethylation has been attributed to the presence of bound SeqA protein. Here, it was found that a GATC cluster inserted at the datA site, which binds large amounts of DnaA in vivo, did not become remethylated at all, unless the availability of the DnaA protein was severely reduced. Sequestration of oriC was also found to be affected by the availability of DnaA. The period of origin hemimethylation was reduced by approximately 30% upon a reduction in the availability of DnaA. The result shows that not only SeqA binding but also DnaA binding to newly replicated origins contributes to keeping them hemimethylated. It was also found that the number of SeqA foci increased in cells with a combination of DnaA-mediated protection and sequestration at the GATC::datA cluster.  相似文献   

2.
Escherichia coli SeqA binds clusters of transiently hemimethylated GATC sequences and sequesters the origin of replication, oriC, from methylation and premature reinitiation. Besides oriC, SeqA binds and organizes newly synthesized DNA at replication forks. Binding to multiple GATC sites is crucial for the formation of stable SeqA-DNA complexes. Here we report the crystal structure of the oligomerization domain of SeqA (SeqA-N). The structural unit of SeqA-N is a dimer, which oligomerizes to form a filament. Mutations that disrupt filament formation lead to asynchronous DNA replication, but the resulting SeqA dimer can still bind two GATC sites separated from 5 to 34 base pairs. Truncation of the linker between the oligomerization and DNA-binding domains restricts SeqA to bind two GATC sites separated by one or two full turns. We propose a model of a SeqA filament interacting with multiple GATC sites that accounts for both origin sequestration and chromosome organization.  相似文献   

3.
Escherichia coli cells were constructed in which the dnaA gene was moved to a location opposite oriC on the circular chromosome. In these cells the dnaA gene was replicated with significant delay relative to the origin. Consequently, the period where the newly replicated and hemimethylated oriC was sequestered no longer coincided with the period where the dnaA gene promoter was sequestered. DnaA protein synthesis was therefore expected to continue during origin sequestration. Despite a normal length of the sequestration period in such cells, they had increased origin content and also displayed asynchrony of initiation. This indicated that reinitiation occasionally occurred at some origins within the same cell cycle. The extra initiations took place in spite of a reduction in total DnaA protein concentration to about half of the wild-type level. We propose that this more efficient utilization of DnaA protein results from an increased availability at the end of the origin sequestration period. Therefore, coordinated sequestration of oriC and dnaA is required for maintaining controlled once-per-cell-cycle initiation.  相似文献   

4.
Preferential binding of SeqA protein to hemimethylated oriC, the origin of Escherichia coli chromosomal replication, delays methylation by Dam methylase. Because the SeqA-oriC interaction appears to be essential in timing of chromosomal replication initiation, the biochemical functions of SeqA protein and Dam methylase at the 13-mer L, M, and R region containing 4 GATC sequences at the left end of oriC were examined. We found that SeqA protein preferentially bound hemimethylated 13-mers but not fully nor unmethylated 13-mers. Regardless of strand methylation, the binding of SeqA protein to the hemimethylated GATC sequence of 13-mer L was followed by additional binding to other hemimethylated GATC sequences of 13-mer M and R. On the other hand, Dam methylase did not discriminate binding of 13-mers in different methylation patterns and was not specific to GATC sequences. The binding specificity and higher affinity of SeqA protein over Dam methylase to the hemimethylated 13-mers along with the reported cellular abundance of this protein explains the dominant action of SeqA protein over Dam methylase to the newly replicated oriC for the sequestration of chromosomal replication. Furthermore, SeqA protein bound to hemimethylated 13-mers was not dissociated by Dam methylase, and most SeqA protein spontaneously dissociated 10 min after binding. Also, SeqA protein delayed the in vitro methylation of hemimethylated 13-mers by Dam methylase. These in vitro results suggest that the intrinsic binding instability of SeqA protein results in release of sequestrated hemimethylated oriC.  相似文献   

5.
T Brendler  A Abeles    S Austin 《The EMBO journal》1995,14(16):4083-4089
The P1 plasmid replication origin P1oriR is controlled by methylation of four GATC adenine methylation sites within heptamer repeats. A comparable (13mer) region is present in the host origin, oriC. The two origins show comparable responses to methylation; negative control by recognition of hemimethylated DNA (sequestration) and a positive requirement for methylation for efficient function. We have isolated a host protein that recognizes the P1 origin region only when it is isolated from a strain proficient for adenine methylation. The substantially purified 22 kDa protein also binds to the 13mer region of oriC in a methylation-specific fashion. It proved to be the product of the seqA gene that acts in the negative control of oriC by sequestration. We conclude that the role of the SeqA protein in sequestration is to recognize the methylation state of P1oriR and oriC by direct DNA binding. Using synthetic substrates we show that SeqA binds exclusively to the hemimethylated forms of these origins forms that are the immediate products of replication in a methylation-proficient strain. We also show that the protein can recognize sequences with multiple GATC sites, irrespective of the surrounding sequence. The basis for origin specificity is primarily the persistence of hemimethylated forms that are over-represented in the natural. DNA preparations relative to controls.  相似文献   

6.
DnaA occupies only the three highest-affinity binding sites in E. coli oriC throughout most of the cell cycle. Immediately prior to initiation of chromosome replication, DnaA interacts with additional recognition sites, resulting in localized DNA-strand separation. These two DnaA-oriC complexes formed during the cell cycle are functionally and temporally analogous to yeast ORC and pre-RC. After initiation, SeqA binds to hemimethylated oriC, sequestering oriC while levels of active DnaA are reduced, preventing reinitiation. In this paper, we investigate how resetting of oriC to the ORC-like complex is coordinated with SeqA-mediated sequestration. We report that oriC resets to ORC during sequestration. This was possible because SeqA blocked DnaA binding to hemimethylated oriC only at low-affinity recognition sites associated with GATC but did not interfere with occupation of higher-affinity sites. Thus, during the sequestration period, SeqA repressed pre-RC assembly while ensuring resetting of E. coli ORC.  相似文献   

7.
In rapidly growing Escherichia coli cells replication cycles overlap and initiation occurs at multiple replication origins (oriCs). All origins within a cell are initiated essentially in synchrony and only once per cell cycle. Immediate re-initiation of new origins is avoided by sequestration, a mechanism dependent on the SeqA protein and Dam methylation of GATC sites in oriC. Here, GATC sites in oriC were changed to GTTC. This reduced the sequestration to essentially the level found in SeqA-less cells. The mutant origins underwent re-initiation, showing that the GATC sites in oriC are required for sequestration. Each re-initiation eventually gave rise to a cell containing an extra nucleoid. The three-nucleoid cells displayed one asymmetrically placed FtsZ-ring and divided into a two-nucleoid cell and a one-nucleoid cell. The three nucleoid-cells thus divided into three daughters by two consecutive divisions. The results show that extra rounds of replication cause extra daughter cells to be formed prematurely. The fairly normal mutant growth rate and size distribution show, however, that premature rounds of replication, chromosome segregation, and cell division are flexibly accommodated by the existing cell cycle controls.  相似文献   

8.
Bending of DNA is a prerequisite of site-specific recombination and gene expression in many regulatory systems involving the assembly of specific nucleoprotein complexes. We have investigated how the uniquely clustered Dam methylase sites, GATCs, in the origin of Escherichia coli replication ( oriC  ) and their methylation status modulate the geometry of oriC and its interaction with architectural proteins, such as integration host factor (IHF), factor for inversion stimulation (Fis) and DnaA initiator protein. We note that 3 of the 11 GATC sites at oriC are strategically positioned within the IHF protected region. Methylation of the GATCs enhances IHF binding and alters the IHF-induced bend at oriC . GATC motifs also contribute to intrinsic DNA curvature at oriC and the degree of bending is modulated by methylation. The IHF-induced bend at oriC is further modified by Fis protein and IHF affinity for its binding site may be impaired by protein(s) binding to GATCs within the IHF site. Thus, GATC sites at oriC affect the DNA conformation and GATCs, in conjunction with the protein-induced bends, are critical cis -acting elements in specifying proper juxtapositioning of initiation factors in the early steps of DNA replication.  相似文献   

9.
To demonstrate that sequestration A (SeqA) protein binds preferentially to hemimethylated GATC sequences at replication forks and forms clusters in Escherichia coli growing cells, we analysed, by the chromatin immunoprecipitation (ChIP) assay using anti-SeqA antibody, a synchronized culture of a temperature-sensitive dnaC mutant strain in which only one round of chromosomal DNA replication was synchronously initiated. After synchronized initiation of chromosome replication, the replication origin oriC was first detected by the ChIP assay, and other six chromosomal regions having multiple GATC sequences were sequentially detected according to bidirectional replication of the chromosome. In contrast, DNA regions lacking the GATC sequence were not detected by the ChIP assay. These results indicate that SeqA binds hemimethylated nascent DNA segments according to the proceeding of replication forks in the chromosome, and SeqA releases from the DNA segments when fully methylated. Immunofluorescence microscopy reveals that a single SeqA focus containing paired replication apparatuses appears at the middle of the cell immediately after initiation of chromosome replication and the focus is subsequently separated into two foci that migrate to 1/4 and 3/4 cellular positions, when replication forks proceed bidirectionally an approximately one-fourth distance from the replication origin towards the terminus. This supports the translocating replication apparatuses model.  相似文献   

10.
J L Campbell  N Kleckner 《Cell》1990,62(5):967-979
We have examined individual GATC sites throughout the E. coli genome for their kinetics of remethylation by dam methyltransferase following the passage of the chromosomal replication fork. We present evidence for three major conclusions: that oriC is a single function unit that is specifically sequestered from dam methyltransferase for a significant period of time and then released; that the dnaA promoter region is subject to sequestration analogous to that observed at oriC and thus that hemimethylation-dependent sequestration is a general phenomenon; and that each round of replication initiation triggers a transient, temporally coordinate block in both reinitiation at oriC and expression of the dnaA gene. These and other observations are all consistent with the notion that hemimethylation in these two regions acts coordinately to ensure that every origin undergoes initiation once and only once per cell cycle; other possible roles for sequestration at dnaA are also considered.  相似文献   

11.
DnaA protein is required for the initiation of DNA replication at the bacterial chromosomal origin, oriC, and at the origins of many plasmids. The concentration of DnaA protein is an important factor in determining when initiation occurs during the cell cycle. Methylation of GATC sites in the dnaAp2 promoter, two of which are in the -35 and -10 sequences, has been predicted to play an important role in regulating dnaA gene expression during the cell cycle because the promoter is sequestered from methylation immediately following replication. Mutations that eliminate these two GATC sites but do not substantially change the activity of the promoter were introduced into a reporter gene fusion and into the chromosome. The chromosomal mutants are able to initiate DNA replication synchronously at both moderately slow and fast growth rates, demonstrating that GATC methylation at these two sites is not directly involved in providing the necessary amount of DnaA for precise timing of initiation during the cell cycle. Either sequestration does not involve these GATC sites, or cell cycle control of DnaA expression is not required to supply the concentration necessary for correct timing of initiation.  相似文献   

12.
G B Ogden  M J Pratt  M Schaechter 《Cell》1988,54(1):127-135
DNA from the E. coli replicative origin binds with high affinity to outer membrane preparations. Specific binding regions are contained within a 463 bp stretch of origin DNA between positions -46 and +417 on the oriC map. This region of DNA contains an unusually high number of GATC sites, the recognition sequence for the E. coli DNA adenine methylase. We show here that oriC DNA binds to membrane only when it is hemimethylated. The E. coli chromosomal origin is hemimethylated for 8-10 min after initiation of replication, and origin DNA binds to membranes only during this time period. Based on these results, we propose a speculative model for chromosome segregation in E. coli.  相似文献   

13.
W Messer  U Bellekes    H Lother 《The EMBO journal》1985,4(5):1327-1332
Methylation of GATC sites by the dam methylase is required for efficient initiation of DNA replication at the replication origin, oriC, of Escherichia coli. This is demonstrated by the inability of minichromosomes to be maintained in dam mutant strains. The requirement for methylated GATC sites is less stringent in vitro than in vivo. The time required for complete methylation of the origin region apparently determines the minimal spacing of replication forks on the chromosome.  相似文献   

14.
The replication of both ColE1-type plasmids and plasmids bearing the origin of replication of the Escherichia coli chromosome (oriC) has been shown to be inhibited by hemimethylation of adenine residues within GATC sequences. In the case of oriC plasmids, this inhibition was previously shown to be mediated by the specific affinity of the hemimethylated origin DNA for an outer cell membrane fraction. Here, we suggest that a similar mechanism is operating in the case of the ColE1-like plasmid pBR322 as (i) a hemimethylated DNA fragment carrying the promoter for the RNA which primes DNA synthesis (RNAII) is specifically bound by the same membrane fraction and, (ii) the addition of the membrane fraction to a soluble assay of pBR322 replication results in preferential inhibition of initiation on the hemimethylated template. We suggest that membrane sequestration of hemimethylated origin DNA and/or associated replication genes following replication may be a common element restricting DNA replication to precise moments in the cell cycle.  相似文献   

15.
DNA replication in most organisms is regulated such that all chromosomes are replicated once, and only once, per cell cycle. In rapidly growing Escherichia coli, replication of eight identical chromosomes is initiated essentially simultanously, each from the same origin, oriC. Plasmid-borne oriC sequences (minichromosomes) are also initiated in synchrony with the eight chromosomal origins. We demonstrate that specific inactivation of newly formed, hemimethylated origins (sequestration) was required for the stable co-existence of oriC-dependent replicons. Cells in which initiations were not confined to a short interval in the cell cycle (carrying mutations in sequestration or initiation genes or expressing excess initiator protein) could not support stable co-existence of several oriC-dependent replicons. The results show that such stable co-existence of oriC-dependent replicons is dependent on both a period of sequestration that is longer than the initiation interval and a reduction of the initiation potential during the sequestration period. These regulatory requirements are the same as those required to confine initiation of each replicon to once, and only once, per cell cycle.  相似文献   

16.
A level of explanation in biology intermediate between macromolecules and cells has recently been proposed. This level is that of hyperstructures. One class of hyperstructures comprises the genes, mRNA, proteins and lipids that assemble to fulfil a particular function and disassemble when no longer required. To reason in terms of hyperstructures, it is essential to understand the factors responsible for their formation. These include the local concentration of sites on DNA and their cognate DNA-binding proteins. In Escherichia coli, the formation of a SeqA hyperstructure via the phenomenon of local concentration may explain how the binding of SeqA to hemimethylated GATC sequences leads to the sequestration of newly replicated origins of replication.  相似文献   

17.
Escherichia coli dam mutants, lacking the GATC DNA methylase, do not produce anucleate cells at high frequencies, suggesting that hemimethylation of the chromosome origin of replication, oriC, is not essential for correct chromosome partitioning.  相似文献   

18.
In vivo and in vitro evidence is presented implicating a function of GATC methylation in the Escherichia coli replication origin, oriC, during initiation of DNA synthesis. Transformation frequencies of oriC plasmids into E. coli dam mutants, deficient in the GATC-specific DNA methylase, are greatly reduced compared with parental dam+ cells, particularly for plasmids that must use oriC for initiation. Mutations that suppress the mismatch repair deficiency of dam mutants do not increase these low transformation frequencies, implicating a new function for the Dam methylase. oriC DNA isolated from dam- cells functions 2- to 4-fold less well in the oriC-specific in vitro initiation system when compared with oriC DNA from dam+ cells. This decreased template activity is restored 2- to 3-fold if the DNA from dam- cells is first methylated with purified Dam methylase. Bacterial origin plasmids or M13-oriC chimeric phage DNA, isolated from either base substitution or insertion dam mutants of E. coli, exhibit some sensitivity to digestion by DpnI, a restriction endonuclease specific for methylated GATC sites, showing that these dam mutants retain some Dam methylation activity. Sites of preferred cleavage are found within the oriC region, as well as in the ColE1-type origin.  相似文献   

19.
Brendler T  Austin S 《The EMBO journal》1999,18(8):2304-2310
The SeqA protein binds to the post-replicative forms of the origins of replication of the Escherichia coli chromosome (oriC) and the P1 plasmid (P1oriR) at hemimethylated GATC adenine methylation sites. It appears to regulate replication by preventing premature reinitiation. However, SeqA binding is not exclusive to replication origins: different fragments with hemimethylated GATC sites can bind SeqA in vitro when certain rules apply. Most notably, more than one such site must be present on a bound fragment. The protein appears to recognize individual hemimethylated sites, but must undergo an obligate cooperative interaction with a nearby bound protein for stable binding. SeqA contacts both DNA strands in a discrete patch at each hemimethylated GATC sequence. All four GATC bases are contacted and are essential for binding. Although the recognized sequence is symmetrical, the footprint on the methylated strand is always broader, suggesting that the bound protein is positioned asymmetrically with its orientation dictated by the position of the unique methyl group. Studies of alternative spacings and relative orientations of adjacent sites suggest that each site may be recognized by a symmetrical dimer with an induced asymmetry in one of the subunits similar to that seen with certain type II restriction endonucleases.  相似文献   

20.
Regions of bacterial chromosomes occupy characteristic locations within the cell. In Bacillus subtilis, the origin of replication, oriC, is located at 0 degrees /360 degrees on the circular chromosome. After duplication, sister 0 degrees regions rapidly move to and then reside near the cell quarters. It has been hypothesized that origin function or oriC sequences contribute to positioning and movement of the 0 degrees region. We found that the position of a given chromosomal region does not depend on initiation of replication from the 0 degrees region. In an oriC mutant strain that replicates from a heterologous origin (oriN) at 257 degrees , the position of both the 0 degrees and 257 degrees regions was similar to that in wild-type cells. Thus, positioning of chromosomal regions appears to be independent of which region is replicated first. Furthermore, we found that neither oriC sequences nor the replication initiator DnaA is required or sufficient for positioning a region near the cell quarters. A sequence within oriC previously proposed to play a critical role in chromosome positioning and partitioning was found to make little, if any, contribution. We propose that uncharacterized sites outside of oriC are involved in moving and/or maintaining the 0 degrees region near the cell quarters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号