首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A high degree of activity of the nuclei in the developing carposporangia of the red alga Polysiphonia novae-angliae Taylor is described. Profiles of the nucleus are greatly convoluted, resulting in a much increased surface area. Regions where endoplasmic reticulum substitutes for the nuclear envelope are frequently observed. Various cytoplasmic reserves are associated with the nucleus during carposporangium maturation. Lipid bodies, fibrillar bodies, and striated vesicles (or cylindrical bodies) may occur within the nucleoplasm beneath areas of the nuclear envelope substituted by ER. Granules of Floridean starch are observed in proximity to the outer surface of these same areas as well as the nuclear membrane. The homologous nature of the nuclear envelope with the ER is stressed. The role of the nucleus as being actively involved in the synthesis of materials is suggested.  相似文献   

2.
A 22-year-old stand of coastal sage scrub in the coastal mountains of southern California had a peak standing aboveground biomass of 1,417 g/m2, determined by dimension analysis. Annual aboveground net primary production was 255 g/m2/yr, determined by monthly twig harvests of dominant species and the clipping production of subordinate species. The stand was codominated by two drought-deciduous species, Salvia leucophylla and Artemisia californica, which together comprised 81% of the biomass. Annual litterfall was measured at 194 g/m2/yr. These biomass, production, and litterfall values are less than those measured in most evergreen chaparral communities in California. Seasonally, the two dominant shrubs began aboveground production in the winter soon after the first rains and continued growth for six months until early summer. A massive leaf fall occurred in May–June as the summer drought began, but twig and inflorescence production for both species continued at a high rate into the summer months. Salvia leucophylla had two shoot types: 1) an early spring canopy shoot that elongated rapidly, produced the inflorescence, and died in mid-summer; and 2) a short side shoot produced in late spring with small dense leaves that were retained during the summer drought and early winter. Artemisia californica produced a single cohort of twigs in the early spring, most of which carried inflorescences by late summer.  相似文献   

3.
The phosphogluconate dehydrogenase (Pgdh) locus is the only polymorphic allozyme locus observed among 37 loci examined in all four populations of a New Mexico state Endangered species, the White Sands pupfish (Cyprinodon tularosa). We report evidence suggesting that this polymorphism may be associated with salinity. Salinity levels vary widely within and between habitats occupied by White Sands pupfish. The frequency of the Pgdh100 allozyme was correlated with salinity but not with temperature. Frequency of Pgdh100 differed between low (3.76 parts per thousand (ppt)) and high (9.23 ppt) salinity sites at Malpais Spring despite no obvious barriers to fish movement. Frequencies of Pgdh100 in two introduced populations differed from that of the presumptive founding stock and correlated with salinity in the current habitats.  相似文献   

4.
We have examined aspects of the bioluminescence of 5 clones of Dissodinium, 1 clone of Pyrocystis acuta, 4 clones of Pyrocystis fusiformis, and 5 clones of Pyrocystis noctiluca. All clones produced the same color bioluminescence with an intensity peak near 474 nm. The in vivo emission spectra of these clones agreed with those previously determined, for 4 other species of marine dinoflagellates. The amount of light emitted by the dinoflagellates in scotophase when mechanically stimulated to exhaustion was determined for most of the clones. The largest species, P. noctiluca and P. fusiformis, emitted 37–89 × 109 photons cell?1 and 23–62 × 109 photons cell?1, respectively, about a thousand, times as much light as Gonyaulax species. Pyrocystis acuta emitted 3–6 × 109 photons cell?1. Three of the 5 clones of Dissodinium were bioluminescent. The range for 3 clones was 5–13 × 109 photons cell?1. All 5 clones of Dissodinium are morphologically distinct. Both the clones of Dissodinium and Pyrocystis produced much higher numbers of photons per cell nitrogen (ca. 7–50 times) than Gonyaulax polyedra or Pyrodinium bahamense. The data suggested that enzyme turnover occurred in the reactions producing light during mechanical stimulation of Dissodinium and Pyrocystis species.  相似文献   

5.
Laboratory studies were used to examine how variation in the density of spore settlement influences gametophyte growth, reproduction, and subsequent sporophyte production in the kelps Pterygophora californica Ruprecht and Macrocystis pyrifera (L.) C. Ag. In still (non-aerated) cultures, egg maturation in both species was delayed when spores were seeded at densities 300 · mm?2. Although the density at which this inhibition was first observed was similar for both species, the age at which their eggs matured was not. P. californica females reached sexual maturity an average of 4 days (or ~ 30%) sooner than did M, pyrifera. As observed previously in field experiments, per capita sporophyte production was negatively density dependent for both species when seeded at spore densities of 10 · mm?2. Total sporophyte production (i.e. number · cm?2) for both species, however, was greatest at intermediate densities of spore settlement (~ 50 spores · mm?2). In contrast, total sporophyte production by P. californica steadily increased with increasing spore density in aerated cultures; highest sporophyte density was observed on slides seeded at a density of 1000 spores · mm?2. Preliminary experiments with P. californica involving manipulation of aeration and nutrients indicate that inhibition of gametophyte growth and reproduction at higher densities of spore settlement in non-aerated cultures was probably caused by nutrient limitation.  相似文献   

6.
The morphology, gross cytology, reproduction, and habitat ecology are described for Derbesia marina based on observations of New England field populations and laboratory cultures of this plant. These data, and additional observations on cultures of several other species of Derbesia from elsewhere and on type and other important collections, have been used to evaluate the systematic relationship of New England Derbesia with other species of this genus. The single Derbesia species in New England is referred to D. marina. The systematic criteria previously used to distinguish species within Derbesia are reviewed and interpreted within the context of the present investigation. In systematic studies, we stress the importance of the use of sporangial and chloroplast morphology, the presence or absence of pyrenoids, and reproductive history. Two types of life history are reported for D. marina in New England: (1) A form of D. marina collected at 20 m reproduces directly with stephanokontous zoospores growing into sporophytic plants of Derbesia morphologically identical to their parent thalli. (2) On the other hand, at least some New England, populations of D. marina have retained the genetic potential for producing a sexual generation (Halicystis ovalis), even though the latter is unknown for the coast of northeastern North America.3 Gametophytes (H. ovalis) were produced directly from enlargement and subsequent differentiation of uncleaved lateral sporangia in 2 cultured populations of New England D. marina. A single female and numerous male vesicles formed in this manner produced gametes, but neither fertilization nor parthenogenesis occurred; thus the entire life history was not completed in culture. The occurrence of the directly reproducing deep water form of D. marina is presented as evidence for speciation of a sporophyte (Derbesia) independent of its alternate gametophyte (Halicystis). An hypothesis is advanced to explain the source and means for expression of genetic variability necessary for speciation in a population of nonsexually reproducing Derbesia.  相似文献   

7.
D. C. Seel 《Ibis》1970,112(1):1-14
Nestling survival and nestling weights in P. domesticus and P. montanus were studied in 1961 and 1963–64 at Oxford. This paper concludes a study of factors influencing the reproductive rate. Taking all losses into account, P. domesticus reared an average of 1.6 nestlings per brood (45%) and P. montanus 2.7 nestlings per brood (59%). About a third of all broods of both species failed completely to survive the nestling period. In P. domesticus these failures were most numerous in the middle part of the breeding season and are attributed to nutritional deficiencies derived from unsuitable food provided as a consequence of a seasonal food shortage, but in P. montanus complete brood failures occurred mostly in the second half of the nestling period and are attributed to predation. 43 broods of P. domesticus and one brood of P. montanus were weighed daily. Those of P. domesticus were classified as (1) successful broods—in these some nestlings died in the larger brood-sizes, apparently through starvation; (2) long-lived unsuccessful broods—in these the nestlings died at intervals and failure was attributed to nutritional deficiencies; and (3) short-lived unsuccessful broods. A slight decrease in the weights of nestlings in successful broods at the end of the nestling period is attributed to the utilization of insulating fat facilitated by the completion of the feather covering. Nestlings of both species left the nest at 88–89% of the adult weight. Taking all “successful” broods together, the percentage survival rates on nestling day 131/2 (day of hatching = day 1/2) in P. domesticus were 81–82% in b/2–3, 70% in b/4 and 56% in b/5 (a situation paralleled in this respect by P. hispaniolensis), but in P. montanus they were c. 82% in all brood-sizes. Hence, in P. domesticus b/4 probably gave rise to the largest number of nestlings reared per brood, while in P. montanus most nestlings were produced by the largest brood-size. Weighings of many broods on day 131/2 showed two trends in the weight of the nestlings: (1) in both species the weight of the nestling decreased as the number of survivors from each initial brood-size decreased; (2) between successive initial brood-sizes the weight of the nestling of P. domesticus decreased with increasing brood-size but in P. montanus there was no change. The losses in the larger broods of P. domesticus occurred mostly in the first half of the nestling period—apparently in association with the asynchronous hatching of the eggs and as a consequence of the limitation on the feeding frequency of the adults. Nestling survival was lowest in the larger broods in the middle of the breeding season and contrasted with the mid-season increase in mean clutch-size. It is suggested that in the study area there was a (possibly unnatural) shortage of food suitable for nestlings in the middle of the season. It is suggested that in P. domesticus the unexpectedly low feeding frequencies of the adults with large broods, apparently causing their low survival rates, may be an adaptation evolved to obtain the maximum amount of food in the presence of other adults which would be attracted to a food source by higher rates of activity. The breeding success calculated from data derived from the whole of this study was 35% for P. domesticus and 49% for P. montanus (2.9 and 3.9 nestlings per breeding pair per year respectively). It is suggested that the population of P. domesticus was much closer to a critical limiting factor, e.g. food supply, than that of P. montanus. This may account for the striking differences between the two species in their nestling survival rates and their nestling weights in relation to brood-size; in particular, the success of the larger broods of P. montanus may have been a temporary phenomenon.  相似文献   

8.
Litter production was studied in the Great Dismal Swamp, Virginia in four plant communities which differ primarily in species composition and flooding regime. Greatest leaf deposition occured in the more flooded communities, maple-gum (Acer-Nyssa) with 536 gm-2 yr-1 and cypress (Taxodium distichum (L.) Richard) with 528 gm-2 yr-1, followed by the cedar (Chamaecyparis thyoides (L.) BSP) and mixed hardwood (Quercus-Acer-Nyssa-Liquidambar) communities, with 506 gm-2 yr-1 and 455 gm-2 yr-1, respectively. Apparently periodic flooding promotes production. Peaks occurring in October and November corresponded to autumn leaf fall, while peaks in January and May were due to some leaf litter combined with a large amount of woody litter. Litter nutrient concentrations were higher, except for Ca, in the most abundant species (cypress and water gum) in the frequently flooded cypress community. Higher leaf fall rates and litter nutrient concentrations resulted in greater nutrient deposition in the cypress and maple-gum communities.  相似文献   

9.
Substantial allele-frequency changes were observed at the Adh and αGpdh loci in a seminatural population of Drosophila melanogaster kept in a tropical greenhouse during 1972–1985. Further analysis of the changes at the Adh and αGpdh loci showed that linkage disequilibrium between these loci occurred for a prolonged period due to the presence of In(2L)t, a long inversion on the left arm of the second chromosome. We observed increases in the frequencies of In(2L)t and of short inversions on the left arm of the second chromosome in subpopulations kept at 29.5°C or 33°C. These inversion-frequency increases were accompanied by an increase in Adhs and a decrease in αGpdhs frequency. In populations kept at 20°C and 25°C, inversion frequencies decreased, while αGpdhs allele frequencies decreased at 25°C and increased at 20°C. At 33°C, egg-to-adult survival of individuals possessing In(2L)t, either in the homokaryotypic or the heterokaryotypic state, was higher than that of the other karyotypes of identical allozyme constitution (i.e., Adhs αGpdhF). Thus it seems that In(2L)t has a selective advantage at high temperature. We argue that the observed changes in allele frequencies at the Adh and αGpdh loci are, in part, due to genic selection and are not merely the result of selection acting on the chromosome rearrangements and hitchhiking of the allozymes. The results are discussed with respect to the latitudinal clines found for In(2L)t, Adh, and αGpdh.  相似文献   

10.
Relative 2C nuclear DNA contents were microphotometrically determined from nuclei isolated from eight species of Microseris, four species of Agoseris, and Phalacroseris Bolanderi. The thirteen species are diploid (2n = 18) western North American members of the subtribe Microseridinae, tribe Cichorieae, of the family Compositae. A 7.7-fold variation in DNA content was detected. Phalacroseris has the highest DNA content and Agoseris heterophylla has the lowest. Within the genera Microseris and Agoseris, a 2.8- and 3.1-fold range in DNA content was detected. The higher values were from perennial species, and the lower values were from annual inbreeding species. Both evolutionary increases and decreases in nuclear DNA content have apparently occurred during the differentiation of the subtribe.  相似文献   

11.
Boshoff, A.F., Palmer, N.G., Avery, G., Davies, R.A.G. & Jarvis, M.J.F. 1991. Biogeoraphical and toporaphical variation in the prey of the Black Eagle in the Cape Province, South Africa. Ostrich 62: 58–72.

Prey remains collected at or near Black Eagle Aquilu verreauxii nest sites in the Cape Province, South Africa, were analysed according to frequency of occurrence of prey scies in the samples. A total of 5748 prey individuals, collected from 73 sites, was analysed according to tree biome groups and four nest site types. The Rock Hyrax Procuvia capensis is the dominant prey species, but the eagles' diet sctrum vanestypes. The according to its availability. Indices of species richness and diversity of the prey are inverser correlated with the proportion of the prey contributed by P. capenis, which in turn is determined by topography and vegetation. Biome has a greater influence on the indices than has nest site type. The age structure of the P. capensis prey remains closely reflects the juvenile: sub- adult: adult ratios in the biomes and at the nest site tpes. hfedium-sized (aprox. 1–4,5 kg) pre is usually taken. Juvenile domestic small-stock (lambs ani goat kids) comprised onb 3,4% of the over, total.  相似文献   

12.
R. E. Moreau  R. M. Dolp 《Ibis》1970,112(2):209-228
Data are presented for the fat and water contents of 410 specimens of 11 species of trans-Saharan migrants collected on the northwest coast of Egypt in autumn. Mean fat contents vary from 37% of lean dry weight in Hirundo rustica to 110% in Sylvia communis. There is also much variation in the range of fat contents within individual species, Muscicapa striata and Lanius collurio being exceptionally closely grouped and P. phoenicurus widely dispersed. The results for each species are discussed in relation to their migratory circumstances. On the basis that the birds concerned would have started to cross the eastern Mediterranean with at least 11/2 times as much fat as they contained on landing in Egypt, comparisons are made with data for spring migrants in western Africa and with American trans-Gulf migrants. Water contents, discussed as % of lean dry weight, show considerable variation within each species:the coefficient correlating this percentage with % fat is around 0.50 except in Lanius (0.98) and Oriolus (0.92). On investigating the relationship between wing-length and lean dry weight, we did not find a strong correlation in any of the species and caution in accepting conclusions to the contrary is indicated.  相似文献   

13.
The physical habitat of cetaceans found along the continental slope in the north-central and western Gulf of Mexico was characterized from shipboard sighting data, simultaneous hydrographic measurements, and satellite remote sensing. The study area was encompassed by the longitude of the Florida-Alabama border (87.5°W), the southernmost latitude of the Texas-Mexico border (26.0°N), and the 100-m and 2,000-m isobaths. Shipboard surveys were conducted seasonally for two years from April 1992 to May 1994. A total of 21,350 km of transect was visually sampled in an area of 154,621 km2. Sighting localities of species in the study area were differentiated most clearly with bottom depth. Atlantic spotted dolphins (Stenella frontalis) were consistently found in the shallowest water on the continental shelf and along the shelf break. In addition, the bottom depth gradient (sea floor slope) was less for Atlantic spotted dolphins than for any other species. Bottlenose dolphins (Tursiops truncatus) were found most commonly along the upper slope in water significantly deeper than that for Atlantic spotted dolphins. All the other species and species categories were found over deeper bottom depths; these were Risso's dolphins (Grampus griseus), short-finned pilot whales (Glob-icephala macrorhynchus), pygmy/dwarf sperm whales (Kogia spp.), roughtoothed dolphins (Steno bredanensis), spinner dolphins (Stenella longirostris), sperm whales (Physeter macrocephalus), striped dolphins (Stenella coeruleoalba), Mesoplodon spp., pantropical spotted dolphins (Stenella attenuata), Clymene dolphins (Stenella clymene) and unidentified beaked whales (Ziphiidae). Risso's dolphins and short-finned pilot whales occurred along the upper slope and, as a subgroup, were significantly different from striped dolphins, Mesoplodon spp., pantropical spotted dolphins, Clymene dolphins, and unidentified beaked whales, which occurred in the deepest water. Pygmy/dwarf sperm whales, rough-toothed dolphins, spinner dolphins, and sperm whales occurred at intermediate depths between these two subgroups and overlapped them.  相似文献   

14.
The A genome of the tetraploid wheats (AABB, 2n = 28) shows 5-6 bivalents in crosses with Triticum boeoticum (2n = 14) and various Aegilops diploids (2n = 14). The B genome has never been similarly identified with any species, and is commonly thought to have been modified at the tetraploid level. Triticum boeoticum was presumably accepted as the A-genome donor because of its morphological similarity to the wild tetraploids and because it was formerly the only known wild diploid wheat. The B donor has been thought to be Ae. speltoides or another species of the Sitopsis section of Aegilops, but these diploids show pairing affinity with A rather than B. More recently, another diploid wheat, T. urartu, was found to be sympatric with T. boeoticum throughout the natural range of the tetraploids. The synthetic boeoticum-urartu amphiploid was virtually identical morphologically with the wild tetraploid wheats, whereas various boeoticum-Sitopsis amphiploids were markedly different. But the urartu genome, like those of T. boeoticum and Sitopsis, paired with A and not with B. However, cytological evidence also shows (1) that the genomes of any plausible parental combination pair with one another, (2) that the A and B genomes of the tetraploid wheats pair with one another in the absence of the gene Ph, and (3) that homoeologous chromosomes of the tetraploids have differentiated further, presumably as a result of diploidization. Consequently, chromosome pairing at Meiosis I can be expected to give ambiguous evidence regarding the identity of the tetraploid genomes with their parental prototypes. A hypothesis regarding the expected pairing affinities between tetraploid homoeologues that have differentiated from closely related parental chromosomes is advanced to explain the anomalous pairing behavior of the A and B genomes. Triticum boeoticum and T. urartu are inferred to be the parents of the tetraploid wheats.  相似文献   

15.
The non-photosynthetic, phagotrophic dinoflagellate, Gymnodinium fungiforme Anissimova is attracted to a variety of amino acids and other organic compounds. Glycine, taurine and serine attracted the dinoflagellates at a threshold detection level of 10?8 M fallowed by dextrose (10?7 M) and alanine, proline and threonine (10?6 M). Glycine, taurine and alanine are three of the most abundant free amino acids found in invertebrates and protozoa which are major food sources of this dinoflagellate. Three additional species of cultured heterotrophic dinoflagellates were exposed to the water soluble fraction of a shrimp extract known to attract G. fungiforme. All three species responded to the extract, but one species, Oxyrrhis marina, did so only after changing its food source. It is suggested that chemosensory behavior may be suppressed or expressed depending on culture conditions.  相似文献   

16.
THE TRANSPORT AND FUNCTION OF SILICON IN PLANTS   总被引:11,自引:0,他引:11  
A number of lines of evidence (Mr, number of -OH groups, measured fluxes at inner mitochondrial membranes) suggest the intrinsic PSi(OH)4 of about 10-10 m s-1 in the plant cell plasmalemma. While relatively low, such a PSi(OH)4 could maintain the intracellular concentration of Si(OH)4 equal to that in the medium for a phytoplankton cell of 5 μm radius growing with a generation time of 24 h. Such passive entry could not account for SiO, precipitation such as is required for scale (Chrysophyceae) or wall (Bacillariophyceae) production in terms of either the generation of a super-saturated solution or the quantity of SiO2 required; active transport occurs at the plasmalemma (and possibly at an internal membrane) of such cells. The energy required for silicification, even in a diatom with an Si/C ratio of 0.25, is only some 2% of the total energy (as NADPH and ATP) needed for growth; the energy cost of leakage of Si(OH)4 due to the intrinsic permeability of lipid bilayers to Si(OH)4 is never more than 10% of the cost of silicification. In vascular land plants the entry of Si from the soil into the xylem can involve a flux ratio (mol Si/m3 water) that is less than (e.g. Leguminoseae) equal to (e.g. many Gramineae) or greater than (e.g. Oryza, Equisetum) the concentration (mol m-3) in the bathing solution. Even the low influx of the Leguminoseae cannot be accounted for by the ‘lipid solution’ value of PS(OH)4, but requires entry coupled (phenomenologically) to water influx with a reflexion coefficient of about 0.9. The situation in most Gramineae is described by such a coupling with a reflexion coefficient near O, while the accumulation of Si (relative to water) in Oryza and Equisetum involves an apparent reflexion coefficient which is negative, i.e. an active transport system stoichiometrically related to water flux. Even in Leguminoseae with a transpiration-stream concentration of Si(OH)4 of only 20 mmol m-3 (cf. the soil solution at 200 mmol m-3), the fact that only I % of the water in the xylem is retained in the plant means that Si(OH)4 at transpirational termini approaches saturation; super-saturation, and precipitation of SiO, occurs in Gramineae and Equisetum. SiO2 precipitation occurs mainly near transpirational termini but can also occur in the xylem vessels and endodermis of roots, for example. Si(OH)2 mobility in the phloem seems to be very restricted. The energy costs of SiO2 relative to organic compounds as structural and defensive materials are in the ratio of 1:10-1:20 (on the basis of weight of material). The relative rarity of SiO2 as a structural material is discussed in the context of the evolution of Si(OH)4-transport mechanisms.  相似文献   

17.
Allozyme variation in species of the mangrove genus Avicennia was screened in 25 populations collected from 22 locations in the Indo-West Pacific and eastern North America using 11 loci. Several fixed gene differences supported the specific status of Avicennia alba, A. integra, A. marina, and A. rumphiana from the Indo-West Pacific, and A. germinans from the Atlantic-East Pacific. The three varieties of A. marina, var. marina, var. eucalyptifolia, and van australasica, had higher genetic similarities (Nei's I) and no fixed gene differences, confirming their conspecific status. Strong genetic structuring was observed in A. marina, with sharp changes in gene frequencies at the geographical margins of varietal distributions. The occurrence of alleles found otherwise in only one variety, in only immediately adjacent populations of another variety, provided evidence of introgession between varieties. The varieties appear to have diverged recently in the Pleistocene and are apparently not of ancient Cretaceous origin, as suggested earlier. Despite evidence of high degrees of outcrossing, gene flow among populations was relatively low (Nem < 1–2), except where populations were geographically continuous, questioning assumptions that these widespread mangrove species achieve high levels of long-distance dispersal.  相似文献   

18.
Leaf structure, photosynthetic characteristics and related physiological parameters have been studied in three ornamental shade species: Fatsia japonica, Cissus rhombifolia (relatively light-tolerant plants), and Philodendron scandens (obligate shade plant). Species were grown in a shadehouse. Maximum photosynthetic photon flux density was 470 μmol m-2 s-1. Net rate of CO2 uptake at light saturation (maximum Pn) in Fatsia was 6.90 ± 1.27 μmol m-2 s-1. In Cissus and Philodendron values were about 30% and 63% less respectively, than those measured in Fatsia. The nitrogen content, relative dry wt, specific leaf dry wt (SLDW), chlorophyll a/b ratio, and nitrogen to chlorophyll ratio were lower in Philodendron. However, leaf thickness in Philodendron (296 ± 17 μm) was about 54% and 160% higher, respectively, than in Fatsia and Cissus, and the ratio between mesophyll cell area and leaf surface area (Ames/A) was nearly similar in the three species. However Philodendron exhibited a percentage of palisade parenchyma about three times lower than that observed in the two other species. The chloroplast number per mm of cell wall in transverse sections (chloroplast density) in the palisade parenchyma was fairly constant (about 65), irrespective of species. The “chloroplast density” in the spongy parenchyma of Philodendron was about 53% and 63%, respectively, of Fatsia and Cissus values. In Fatsia and Cissus chloroplast ultrastructure seems to change gradually and continuously from sun to shade type with the depth from the adaxial to abaxial surface. Special emphasis was given in order to determine the structural parameters best correlated with maximum Pn between the different species. In this way chloroplast number in transverse sections (chloroplast number) and the ratio between chloroplast area and leaf surface area (Achl/A) were the parameters best correlated with maximum Pn, and stomatal frequency was also a good determinant of maximum Pn. However, leaf thickness, SLDW, and even Ames/A ratio were weakly correlated with maximum Pn.  相似文献   

19.
The photosynthesis‐irradiance response (PE) curve, in which mass‐specific photosynthetic rates are plotted versus irradiance, is commonly used to characterize photoacclimation. The interpretation of PE curves depends critically on the currency in which mass is expressed. Normalizing the light‐limited rate to chl a yields the chl a‐specific initial slope (αchl). This is proportional to the light absorption coefficient (achl), the proportionality factor being the photon efficiency of photosynthesis (φm). Thus, αchl is the product of achl and φm. In microalgae αchl typically shows little (<20%) phenotypic variability because declines of φm under conditions of high‐light stress are accompanied by increases of achl. The variation of αchl among species is dominated by changes in achl due to differences in pigment complement and pigment packaging. In contrast to the microalgae, αchl declines as irradiance increases in the cyanobacteria where phycobiliproteins dominate light absorption because of plasticity in the phycobiliprotein:chl a ratio. By definition, light‐saturated photosynthesis (Pm) is limited by a factor other than the rate of light absorption. Normalizing Pm to organic carbon concentration to obtain PmC allows a direct comparison with growth rates. Within species, PmC is independent of growth irradiance. Among species, PmC covaries with the resource‐saturated growth rate. The chl a:C ratio is a key physiological variable because the appropriate currencies for normalizing light‐limited and light‐saturated photosynthetic rates are, respectively, chl a and carbon. Typically, chl a:C is reduced to about 40% of its maximum value at an irradiance that supports 50% of the species‐specific maximum growth rate and light‐harvesting accessory pigments show similar or greater declines. In the steady state, this down‐regulation of pigment content prevents microalgae and cyanobacteria from maximizing photosynthetic rates throughout the light‐limited region for growth. The reason for down‐regulation of light harvesting, and therefore loss of potential photosynthetic gain at moderately limiting irradiances, is unknown. However, it is clear that maximizing the rate of photosynthetic carbon assimilation is not the only criterion governing photoacclimation.  相似文献   

20.
The marine chrysophyte Dinobryon balticum (Schzütt) Lemm. was one of the dominant members of the phytoplankton community (1.8×103 cells-L−1) in June and July in Conception Bay, Newfoundland. Dinobryon balticum colonies were common only in samples from June and July. The cells were concentrated at 5 m (X±SD=1.11±4 × 105 cells.L−1) and at 40 m (3.32±2×104.L−1) depths. Colonies were composed of up to 560 cells with a mean (±SD) colony size of 10 ± 1 cells at 5 m and 40 ± 8 cells at 40 m. Fluorescent latex bead-uptake experiments conducted with field samples indicated that this marine species was capable of phagotrophy and that twice as many Dinobryon cells were ingesting beads at 40 m than at 5 m, although the ingestion rates for those cells actively ingesting beads were similar at both depths. This chrysophyte was found in association with bacteria-and nutrient-rich microhabitats of microaggregates and fecal pellets. The cells and colonies observed in this study appeared to be healthy, as demonstrated by their appearance and their ability to ingest beads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号