首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
麝香石竹玻璃苗与正常苗的生理特性差异   总被引:9,自引:0,他引:9  
周菊华  陈秀玲  钟华鑫  梁海曼   《广西植物》1993,13(2):164-169
诱导麝香石竹茎段外植体产生不定芽的分化,所得到的正常苗与玻璃苗的生理特性明显有差异。表现在玻璃苗的鲜重、干重、粗纤维和叶绿素含量与正常苗相比显著降低;玻璃苗的可溶性糖含量增加38%,而蔗糖含量下降63%,束缚水含量显著增高,自由水含量明显降低;玻璃苗的淀粉酶总活性也明显升高,碱性和中性区过氧化物酶同工酶活性显著提高而酸性区的同工酶活性有所下降。然而,玻璃苗和正常苗形成时的芽分化频率以及伸长生长量之间无明显区别。结果表明,麝香石竹试管苗的玻璃化可能是在碳水化合物代谢、氮代谢和水分存在状况等发生生理异常的情况下在芽分化启动后的生长过程中发生的,而不是在芽分化启动时已经决定的。  相似文献   

2.
3.
4.
5.
香椿试管苗的生根与移栽   总被引:6,自引:1,他引:5  
通过基内诱导生根、基外诱导生根及生根苗移栽等试验,研究了香椿试管苗的生根与移栽。结果表明,基内诱导生根的主要影响因子是生长素IBA,其次是培养基中无机盐浓度,适宜的生根配方是在不含无机盐的培养基中附加1.0mg/L IAB。用NAA、IAB短时间处理无根苗基部,可使部分苗生根,但生根率偏低。试管苗移栽的适宜时期为3月至7月初,以蛭石、河沙为基质效果较好。移载成活的关键是充分炼苗及良好的基质和适宜的时期,注意防虫并保温遮荫。  相似文献   

6.
7.
The biomechanical role of septate nodes (points of leaf attachment with transverse diaphragms of tissue) in the otherwise hollow aerial stems of Equisetum hyemale L. is examined by means of multiple resonance frequency spectra. Resonance frequencies were determined for intact shoots, as well as the same shoots through which metal needles were inserted to destroy septa at nodes. The elastic modulus (E) of shoots, before and after surgical manipulation, was calculated. Shoots with perforated septa had E values from 17 to 32% less than intact shoots. During winter months with subfreezing temperatures, shoots with intact nodal septa accumulated water (in the form of ice) in their internodal pith canals. Values of E calculated for a shoot with intact septa and internodal water, and for the same shoot without septa do not differ significantly. Calculations indicate that the mass of internodal water is a significant fraction of the mass sufficient to deflect and buckle shoots. The added mass of internodal water is sufficient to mask the actual elastic modulus of shoots. The data indicate that nodes with septa significantly influence the flexural rigidity of shoots, but that this influence changes as a function of the quantity of water found in pith cavities.  相似文献   

8.
Primary shoot vasculature has been studied for 31 species of Pereskioideae and Opuntioideae from serial transections and stained, decorticated shoot tips. The eustele of all species is interpreted as consisting of sympodia, one for each orthostichy. A sympodium is composed of a vertically continuous axial bundle from which arise leaf- and areole-trace bundles and, in many species, accessory bundles and bridges between axial bundles. Provascular strands for leaf traces and axial bundles are initiated acropetally and continuously within the residual meristem, but differentiation of procambium for areole traces and bridges is delayed until primordia form on axillary buds. The differentiation patterns of primary phloem and xylem are those typically found in other dicotyledons. In all species vascular supply for a leaf is principally derived from only one procambial bundle that arises from axial bundles, whereas traces from two axial bundles supply the axillary bud. Two structural patterns of primary vasculature are found in the species examined. In four species of Pereskia that possess the least specialized wood in the stem, primary vascular systems are open, and leaf traces are mostly multipartite, arising from one axial bundle. In other Pereskioideae and Opuntioideae the vascular systems are closed through a bridge at each node that arises near the base of each leaf, and leaf traces are generally bipartite or single. Vascular systems in Pereskiopsis are relatively simple as compared to the complex vasculature of Opuntia, in which a vascular network is formed at each node by fusion of two sympodia and a leaf trace with areole traces and numerous accessory bundles. Variations in nodal structure correlate well with differences in external shoot morphology. Previous reports that cacti have typical 2-trace, unilacunar nodal structure are probably incorrect. Pereskioideae and Opuntioideae have no additional medullary or cortical systems.  相似文献   

9.
Apices of adult Hedera helix have a larger meristematic area, composed of smaller cells, than those of the juvenile shoots. In shoot tips of juvenile plants, cell divisions in the subapical area occur over a longer portion of the shoot, and cell division is continued for a longer period of time. These features are reminiscent of GA-induced changes in other plants. It is suggested that in experiments designed to shift Hedera from the juvenile to the adult form, consideration should be given to agents which affect both rates of cell division and distribution of dividing cells in the young shoot.  相似文献   

10.
Marcgravia rectifolia L. is a dimorphic vine having distinct juvenile and adult shoots. The juvenile shoot is a climber characterized by an orthotropic growth habit, a flattened stem, adventitious roots, and ovate leaves. The adult shoot, on the other hand, possesses a plagiotropic growth habit, has a cylindrical stem, few or no adventitious roots, and lanceolate leaves. Both phases have distichous phyllotaxy, however the plastochron is shorter for the adult phase than for the juvenile. Internode elongation occurs earlier for adult shoots than for juvenile shoots. Cytological analyses show the flattened stem of the juvenile results from differential production of cells, especially in the pith region. On the other hand, internodes of the adult phase are longer than juvenile internodes, a result of more cells produced rather than longer cells. In juvenile stems a perivascular band of elongated fibers develops, while in adult stems this band consists of brachyosclereids. Both phases undergo secondary growth and have non-storied cambia. Cambial activity begins in the 6th internode of each phase. As secondary growth proceeds, the adult stem produces much more xylem than juvenile stems of the same age. Adventitious roots produced in the juvenile stem are located in vertical rows at the “corners” of flattened stems and are attachment structures aiding the climbing habit of this vine. Phase changes occur regularly in this species. The juvenile phase usually transforms into the adult, however the adult phase can spontaneously revert back into the juvenile phase. The anatomical features and the phase changes are discussed and compared to Hedera helix, a vine whose phase changes have been studied in some detail. It is suggested that the anatomical features of Marcgravia rectifolia L. including its phase changes, may provide an alternative system to study physiological changes similar to those done with Hedera helix.  相似文献   

11.
12.
Tucker Shirley C. (Northwestern U., Evanston, Ill.) Ontogeny and phyllotaxis of the terminal vegetative shoots of Michelia fuscata. Amer. Jour. Bot. 49(7): 722–737. Illus. 1962.—Two patterns of symmetry occur in Michelia fuscata In the lead shoots, leaves arise in a 2/5 spiral arrangement which may be either clockwise or counterclockwise. Other shoots are dorsiventrally organized; these shoots produce leaves in a modified ½ phyllotaxis in which the angle between the 2 files of leaves lies between 100° and 150°, according to the particular branch. Both types of shoot have a zonate apical meristem with a biseriate tunica a central initial zone, and a peripheral zone. The apical configuration of cells does not change appreciably during the plastochron. The flat to low-convex outline of the shoot apex is maintained by initiation of the leaves close to the summit of the apex; the diameter of the meristem diminishes greatly after such an initiation. Leaf inception in the subsurface tunica layer is followed by precocious activity of the marginal meristems which extend the stipular flanges completely around the base of the apical meristem. The stipular margins then fuse laterally and form a hood over the apex. A subapical initial meanwhile is active in the leaf blade, where it persists up to the time the leaf is 2 mm high. The most recent primordium is 300 μ high before another leaf is initiated. The vascular system of the stem is a cylindrical network of leaf traces, with 6–12 traces per leaf. The procambium develops acropetally from preexisting vascular strands in the stem below. Elements of the diverse sclereid system differ in shape in different tissues, according to the availability of intercellular space. Goebel's term “Pendelsymmetrie” is discussed with reference to apical activity in Michelia.  相似文献   

13.
We observed colonization and mortality of plants in small (26 m2) artificial soil disturbances and undisturbed controls in a tall-grass prairie from 1977–1980. This paper examines the dynamics of colonists based on mode of origin (seedlings and shoots) and broad taxonomic affinity (forbs and graminoids). Few seedlings colonized either disturbances or controls the first year, probably due to a severe drought in 1976 when few seeds were produced. Graminoid shoots were more abundant in disturbed sites than in controls the first year, probably due to the “edge effect” of cutting roots and rhizomes and stimulating new growth. For each year following the first, the number of current residents peaked early in the season and then declined, with the decline more precipitous for seedlings than for shoots. The population fluctuations of seedlings were very predictable, and separate years resembled each other. In contrast to seedling populations, graminoid shoot populations generally were accumulating throughout the study. Populations of forb shoots rose and fell, but the years did not resemble each other. Neither seedlings nor forb shoots showed a response to the new uncolonized soil resource of the artificial disturbances compared to controls, but graminoid shoots were more common on disturbed sites. These results suggest a nonequilibrium dynamic among colonizers of small-scale microsites.  相似文献   

14.
The location and some morphological, anatomical, and functional aspects of the gravity-sensitive pulvini of a selected number of grass shoots are examined. There are two distinct gravity-sensitive regions near the nodal regions of Gramineae. One, the leaf sheath pulvinus, is located at the base of the sheathing leaf bases, and is characteristic of the subfamily Festucoideae. The other, the internodal pulvinus, is located at the base of the internode, a little above the nodal joint. Most members of the Panicoideae possess internodal pulvini, in addition to more or less developed leaf sheath pulvini. Three members of the Oryzoideae examined possess leaf sheath pulvini only, while Phragmites australis (Arundinoideae) possesses both leaf sheath and internodal pulvini. Leaf sheath pulvini of some grasses develop hairs, cork-silica cell pairs or stomatal apparatuses over the epidermis while many others are devoid of any such idioblasts. Both the leaf sheath and internodal pulvini of all grasses examined preferentially exclude, or accumulate very little silica, whereas the regions of the shoot immediately above and below the pulvini in these same grasses accumulate large quantities of silica. Pulvini remain unsilicified or poorly silicified throughout their life and even after several days following geotropic bending. Pulvini are also distinguished from the regions above and below them by the lack of lignin in the bundle cap cells. Lignin is found only in the xylem vascular tissue, and this consists of annular and helical vessel elements only. The bundle cap cells are rich in pectin and are described as collenchymatous. All pulvini possess specialized zones of cells containing starch statoliths. In response to horizontal displacement of the shoots, the lower side of the pulvini grows by cell elongation only. The collenchymatous cells stretch in a manner that results in alternately thin and thick regions of cell wall.  相似文献   

15.
16.
A nucleic acid component (x-RNA) has been found in high concentration in maize shoots. It is eluted from a MAK (methylated albumin kieselguhr) column at about the same position as messenger RNA. The amount of x-RNA in pea epicotyls is absent or very low. It is suggested that x-RNA is long-lived messenger RNA and is found in high concentration in monocotyledonous plants, especially in the case of plants of the Gramineae family. Dicotyledonous plants, typically, contain little or no detectable x-RNA as observed by ultraviolet absorbancy. In the case of corn shoots, x-RNA is in highest concentration in the ribosomal fraction (78,500 × g, 70 min). In both maize shoots and pea epicotyls the newly synthesized nucleic acids were confined to the nuclear fraction (10,000 × g, 10 min).  相似文献   

17.
18.
Early spring shoot and fine-root development of four evergreen and three deciduous shrub species were analyzed in a subarctic muskeg at Fairbanks, Alaska. The overwintered foliage of the evergreen shrubs regreened earlier than new leaves developed on the deciduous species. Likewise, the evergreen shrubs produced new fine roots earlier than the deciduous species. The total nonstructural carbohydrate (TNC) concentration did not decline in the evergreen shrub Ledum palustre during the spring development. This contrasted with the deciduous shrub Betula glandulosa, where a significant TNC reduction in stem tissue coincided with bud break and fine-root growth flush.  相似文献   

19.
Shoot multiplication of Helianthus annuus was optimal from half shoot apices cultured on MS media with 0.1–1.0 mg/1 benzyl adenine or kinetin. Auxins inhibited multiplication and promoted callusing. Rooting was poor and was not promoted by auxins. Flowering of multiple shoots was observed after as little as 3 wk of culture. A number of plant growth regulators and environmental conditions had no effect on flowering which supports the determinate apex theory for sunflower (Habermann and Sekulow, 1972). Adventitious shoots were induced on leaves of the multiple shoots in some inbreds.  相似文献   

20.
Age- and size-specific shoot life histories were studied with population censuses in June 1984 and June 1985 in an evergreen understory shrub. Rhododendron maximum. Most shoots (65%) survived without branching or flowering, and lesser numbers branched (2%), flowered (20%), or died (23%) during the year between censuses. The probabilities of surviving, branching, flowering or dying were both age- and size-dependent. Small, young shoots increased in leaf area. Flowering occurred most prominently in 3- to 6-year old shoots that had exceeded a leaf area of 200 cm2, and the rate of flowering increased proportionately with size above this threshold. Branching normally occurred in the year following flowering. The age and size distributions of the population shifted significantly between years, indicating a nonequilibrium population. The survival schedule was Deevey Type I, indicating a high degree of “parental care” of young shoots. Age- and age + size-based demographic models predicted a rapid decline of the shoot population over a decade, while a size-based model predicted a much slower decline in shoot numbers. A sensitivity analysis of the models showed that overall shoot population growth was positively influenced by branching shoots and shoots that added leaf area, and negatively influenced by shoots that lost leaf area, died, or flowered. The role of shoot life histories in determining individual plant fitness and ecological dominance is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号