首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
Vasil'eva SV  Makhova EV 《Genetika》2003,39(8):1033-1038
Oxidative stress formed in Escherichia coli cells is known to bring about a complex induction of alternative DNA repair processes, including SOS, SoxRS, and heat-shock response (HSR). The modification by heat shock of the expression of sfiA and soxS genes induced by oxidative agents H2O2, menadione and 4-nitroquinoline-1-oxide (4NQO) was studied for the first time. Quantitative parameters of gene expression were examined in E. coli strains with fused genes (promoters) sfiA::lacZ and soxS::lacZ. The expression of these genes induced by cell treatment with H2O2, but not menadione or 4NQO, was shown to decrease selectively after exposure to heat shock. Since genetic activity of menadione and 4NQO depends mainly on the formation of superoxide anion O2-, it is assumed that the effect of selective inhibition by heat-shock of sfiA and soxS gene expression in experiments with H2O2 is connected with activity of DnaK heat shock protein, which, unlike other heat-shock proteins, cannot be induced by superoxide anion O2-.  相似文献   

7.
The effect DNA repair might have on the integration of exogenous proviral DNA into host cell DNA was investigated by comparing the efficiency of proviral DNA integration in normal chicken embryonic fibroblasts and in chicken embryonic fibroblasts treated with UV or 4-nitroquinoline-1-oxide. The cells were treated with UV or 4-nitroquinoline-1-oxide at various time intervals ranging from 6 h before to 24 h after infection with Schmidt-Ruppin strain A of Rous sarcoma virus. The chicken embryonic fibroblasts were subsequently cultured for 18 to 21 days to ensure maximal integration and elimination of nonintegrated exogenous proviral DNA before DNA was extracted. Integration of proviral DNA into the cellular genome was quantitated by hybridization of denatured cellular DNA on filters with an excess of (3)H-labeled 35S viral RNA. The copy number of the integrated proviruses in normal cells and in infected cells was also determined from the kinetics of liquid RNA-DNA hybridization in DNA excess. Both RNA excess and DNA excess methods of hybridization indicate that two to three copies of the endogenous provirus appear to be present per haploid normal chicken cell genome and that two to three copies of the provirus of Schmidt-Ruppin strain A of Rous sarcoma virus become integrated per haploid cell genome after infection. The copy number of viral genome equivalents integrated per cell treated with UV or 4-nitroquinoline-1-oxide at different time intervals before or after infection did not differ from the copy number in untreated but infected cells. This finding supports our previous report that the integration of oncornavirus proviral DNA is restricted to specific sites in the host cell DNA and suggests a specific mechanism for integration.  相似文献   

8.
J Chen  L Samson 《Nucleic acids research》1991,19(23):6427-6432
We previously showed that the expression of the Saccharomyces cerevisiae MAG 3-methyladenine (3MeA) DNA glycosylase gene, like that of the E. coli alkA 3MeA DNA glycosylase gene, is induced by alkylating agents. Here we show that the MAG induction mechanism differs from that of alkA, at least in part, because MAG mRNA levels are not only induced by alkylating agents but also by UV light and the UV-mimetic agent 4-nitroquinoline-1-oxide. Unlike some other yeast DNA-damage-inducible genes, MAG expression is not induced by heat shock. The S. cerevisiae MGT1 O6-methylguanine DNA methyltransferase is not involved in regulating MAG gene expression since MAG is efficiently induced in a methyltransferase deficient strain; similarly, MAG glycosylase deficient strains and four other methylmethane sulfonate sensitive strains were normal for alkylation-induced MAG gene expression. However, de novo protein synthesis is required to elevate MAG mRNA levels because MAG induction was abolished in the presence of cycloheximide. MAG mRNA levels were equally well induced in cycling and G1-arrested cells, suggesting that MAG induction is not simply due to a redistribution of cells into a part of the cell cycle which happens to express MAG at high levels, and that the inhibition of DNA synthesis does not act as the inducing signal.  相似文献   

9.
10.
11.
12.
Oxidative stress formed in Escherichia coli cells is known to bring about a complex induction of alternative DNA repair processes, including SOS, SoxRS, and heat-shock response (HSR). The modification by heat shock of the expression ofsfiA and soxS genes induced by oxidative agents H2O2, menadione and 4-nitroquinoline-1-oxide (4NQO) was studied for the first time. Quantitative parameters of gene expression were examined inE. coli strains with fused genes (promoters) sfiA::lacZ and soxS::lacZ.The expression of these genes induced by cell treatment with H2O2, but not menadione or 4NQO, was shown to decrease selectively after exposure to heat shock. Since genetic activity of menadione and 4NQO depends mainly on the formation of superoxide anion ,O¯ 2 it is assumed that the effect of selective inhibition by heat-shock of sfiA and soxS gene expression in experiments with H2O2 is connected with activity of DnaK heat shock protein, which, unlike other heat-shock proteins, cannot be induced by superoxide anion O¯ 2.  相似文献   

13.
14.
15.
16.
Summary Restriction fragments of Micrococcus luteus DNA that contained the gene defined by the mutation of an excision repair-deficient mutant, UVsN1, were cloned from both the parental and mutant strains with the Escherichia coli host-vector system. The wild-type fragment was able to reverse the multiple sensitivity of the mutant to ultraviolet, mitomycin C, and 4-nitroquinoline-1-oxide by one-step transformation. Determination of the nucleotide sequences revealed an open reading frame potentially coding for a protein of 709 amino acid residues, within which the mutation was identified as a CGTA transition causing a change from serine to phenylalanine. The putative product of the open reading frame showed an extensive amino acid sequence homology to the E. coli UvrB protein comprising 673 residues; the homologous region extended over the greater parts of both polypeptides, in which 55% and 17% of the 659 pairs of aligned amino acids were accounted for by conserved residues and conservative substitutions, respectively. This indicates that the gene defined by the UVsN1 mutation represents a homolog of the E. coli uvrB gene, implying the presence in M. luteus of an enzyme complex homologous to the E. coli UvrABC excinuclease.Abbreviations Ap ampicillin - AP apurinic-apyrimidinic - MC mitomycin - C: 4NQO 4-nitroquinoline-1-oxide - r resistant - s sensitive - UV ultraviolet Dedicated to the memory of Shunzo Okubo (1930–1978) who played the pivotal role in our earlier studies on the M. luteus repair system  相似文献   

17.
Mutation in response to most types of DNA damage is thought to be mediated by the error-prone sub-branch of post-replication repair and the associated translesion synthesis polymerases. To further understand the mutagenic response to DNA damage, we screened a collection of 4848 haploid gene deletion strains of Saccharomyces cerevisiae for decreased damage-induced mutation of the CAN1 gene. Through extensive quantitative validation of the strains identified by the screen, we identified ten genes, which included error-prone post-replication repair genes known to be involved in induced mutation, as well as two additional genes, FYV6 and RNR4. We demonstrate that FYV6 and RNR4 are epistatic with respect to induced mutation, and that they function, at least partially, independently of post-replication repair. This pathway of induced mutation appears to be mediated by an increase in dNTP levels that facilitates lesion bypass by the replicative polymerase Pol delta, and it is as important as error-prone post-replication repair in the case of UV- and MMS-induced mutation, but solely responsible for EMS-induced mutation. We show that Rnr4/Pol delta-induced mutation is efficiently inhibited by hydroxyurea, a small molecule inhibitor of ribonucleotide reductase, suggesting that if similar pathways exist in human cells, intervention in some forms of mutation may be possible.  相似文献   

18.
19.
The in situ assay of deoxyribonucleases in DNA-containing polyacrylamide gels following their Separation by microdisc electrophoresis was used to determine the influence of UV irradiation, 4-nitroquinoline-1-oxide, methylmethanesulfonate, and Bleomycin on the activity of an alkaline deoxyribonuclease, specific for denatured and UV-irradiated DNA, from human lymphocytes. The activity of this endonuclease increased in UV-irradiated cells and in cells incubated with 4-nitroquinoline-1-oxide and Bleomycin. The increment was not altered by hydroxyurea inhibiting DNA synthesis, or coffeine preventing recombinational repair. It is suggested that the nuclease is involved in repair replication of mispaired DNA regions.  相似文献   

20.
The Bacillus subtilis hbs gene encodes an essential chromatin-associated protein termed Hbsu. Hbsu, the counterpart of the Escherichia coli HU protein, binds DNA in a non-specific way but has a clear preference for bent, kinked or altered DNA sequences. To investigate the role of Hbsu in DNA repair and DNA recombination we have constructed a series of site-directed mutants in the hbs gene and used these mutant genes to substitute the wild-type chromosomal hbs gene. The hbs47 mutation, which codes for a mutant protein in which residue Phe-47 has been replaced by Trp, does not cause any discernible phenotype. Additional substitution of residue Arg-55 by Ala (hbs4755 mutation) rendered cells deficient in DNA repair, homologous recombination and (i protein-mediated site-specific recombination. We have also tested the effect on DNA repair of the hbs4755 mutation in combination with mutations in different functions of homologous DNA recombination (recA, recF, recG, recti and addAB). The hbs4755 mutation did not modify the sensitivity of recH and addAB cells to the DNA-damaging agents methylmethane sulphonate (MMS) or 4-nitroquinoline-1-oxide (4NQO), and it only marginally affected recF and recG cells. The hbs4755 mutation blocked intermolecular recombination in recH cells and markedly reduced it (20- to 50-fold) in recF and recG cells, but had no effect on addAB cells. Taken together, these data indicate that the Hbsu protein is required for DNA repair and for homologous DNA recombination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号