首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
G L?ngst  E J Bonte  D F Corona  P B Becker 《Cell》1999,97(7):843-852
The chromatin accessibility complex (CHRAC) belongs to the class of nucleosome remodeling factors that increase the accessibility of nucleosomal DNA in an ATP-dependent manner. We found that CHRAC induces movements of intact histone octamers to neighboring DNA segments without facilitating their displacement to competing DNA or histone chaperones in trans. CHRAC-induced energy-dependent nucleosome sliding may, in principle, explain nucleosome remodeling, nucleosome positioning, and nucleosome spacing reactions known to be catalyzed by CHRAC. The catalytic core of CHRAC, the ATPase ISWI, also mobilized nucleosomes at the expense of energy. However, the directionality of the CHRAC- and ISWI-induced nucleosome movements differed drastically, indicating that the geometry of the native complex modulates the activity of its catalytic core.  相似文献   

2.
The ATPase ISWI is the molecular motor of several nucleosome remodeling complexes including ACF. We analyzed the ACF-nucleosome interactions and determined the characteristics of ACF-dependent nucleosome remodeling. In contrast to ISWI, ACF interacts symmetrically with DNA entry sites of the nucleosome. Two-color fluorescence cross-correlation spectroscopy measurements show that ACF can bind four DNA duplexes simultaneously in a complex that contains two Acf1 and ISWI molecules. Using bead-bound nucleosomal substrates, nucleosome movement by mechanisms involving DNA twisting was excluded. Furthermore, an ACF-dependent local detachment of DNA from the nucleosome was demonstrated in a novel assay based on the preferred intercalation of ethidium bromide to free DNA. The findings suggest a loop recapture mechanism in which ACF introduces a DNA loop at the nucleosomal entry site that propagates over the histone octamer surface and leads to nucleosome repositioning.  相似文献   

3.
K M Lee  S Sif  R E Kingston  J J Hayes 《Biochemistry》1999,38(26):8423-8429
We have employed a site-specific core histone-DNA cross-linking approach to investigate the mechanism of hSWI/SNF remodeling of a nucleosome. Remodeling results in the complete loss of canonical contacts between the N-terminal tail of H2A and DNA while new interactions are detected between this domain and DNA near the center of the original nucleosome. The data are consistent with a model in which remodeling results in the unraveling of a region of DNA from the edge of the nucleosome, leading to a repositioning of the H2A/H2B dimer to a noncanonical position near the center of the remodeled complex. Additionally, we find that prior cross-linking of the H2A N-terminal region to nucleosomal DNA does not restrict hSWI/SNF remodeling of the remainder of the nucleosome. Thus, disruption of both H2A-DNA interactions near the edge of the nucleosome is not an obligatory step in remodeling of the remainder of the complex.  相似文献   

4.
5.
C Logie  C L Peterson 《The EMBO journal》1997,16(22):6772-6782
A novel, quantitative nucleosome array assay has been developed that couples the activity of a nucleosome 'remodeling' activity to restriction endonuclease activity. This assay has been used to determine the kinetic parameters of ATP-dependent nucleosome disruption by the yeast SWI/SNF complex. Our results support a catalytic mode of action for SWI/SNF in the absence of nucleosome targeting. In this quantitative assay SWI/SNF and ATP lead to a 100-fold increase in nucleosomal DNA accessibility, and initial rate measurements indicate that the complex can remodel one nucleosome every 4.5 min on an 11mer nucleosome array. In contrast to SWI/SNF action on mononucleosomes, we find that the SWI/SNF remodeling reaction on a nucleosome array is a highly reversible process. This result suggests that recovery from SWI/SNF action involves interactions among nucleosomes. The biophysical properties of model nucleosome arrays, coupled with the ease with which homogeneous arrays can be reconstituted and the DNA accessibility analyzed, makes the described array system generally applicable for functional analysis of other nucleosome remodeling enzymes, including histone acetyltransferases.  相似文献   

6.
The nucleosome remodeling factor NURF is a four-subunit, ISWI-containing chromatin remodeling complex that catalyzes nucleosome sliding in an ATP-dependent fashion, thereby modulating the accessibility of the DNA. To elucidate the mechanism of nucleosome sliding, we have investigated by hydroxyl radical footprinting how NURF makes initial contact with a nucleosome positioned at one end of a DNA fragment. NURF binds to two separate locations on the nucleosome: a continuous stretch of linker DNA up to the nucleosome entry site and a region asymmetrically surrounding the nucleosome dyad within the minor grooves, close to residues of the histone H4 tail that have been implicated in the activation of ISWI activity. Kinetic analysis reveals that nucleosome sliding occurs in apparent increments or steps of 10 bp. Furthermore, single nucleoside gaps as well as nicks about two helical turns before the dyad interfere with sliding, indicating that structural stress at this region assists the relative movement of DNA. These findings support a sliding model in which the position-specific tethering of NURF forces a translocating ISWI ATPase to pump a DNA distortion over the histone octamer, thereby changing the translational position of the nucleosome.  相似文献   

7.
8.
The chromatin accessibility complex (CHRAC) is an abundant, evolutionarily conserved nucleosome remodeling machinery able to catalyze histone octamer sliding on DNA. CHRAC differs from the related ACF complex by the presence of two subunits with molecular masses of 14 and 16 kDa, whose structure and function were not known. We determined the structure of Drosophila melanogaster CHRAC14-CHRAC16 by X-ray crystallography at 2.4-angstroms resolution and found that they dimerize via a variant histone fold in a typical handshake structure. In further analogy to histones, CHRAC14-16 contain unstructured N- and C-terminal tail domains that protrude from the handshake structure. A dimer of CHRAC14-16 can associate with the N terminus of ACF1, thereby completing CHRAC. Low-affinity interactions of CHRAC14-16 with DNA significantly improve the efficiency of nucleosome mobilization by limiting amounts of ACF. Deletion of the negatively charged C terminus of CHRAC16 enhances DNA binding 25-fold but leads to inhibition of nucleosome sliding, in striking analogy to the effect of the DNA chaperone HMGB1 on nucleosome sliding. The presence of a surface compatible with DNA interaction and the geometry of an H2A-H2B heterodimer may provide a transient acceptor site for DNA dislocated from the histone surface and therefore facilitate the nucleosome remodeling process.  相似文献   

9.
10.
11.
Recent mapping of nucleosome positioning on several long gene regions subject to DNA methylation has identified instances of nucleosome repositioning by this base modification. The evidence for an effect of CpG methylation on nucleosome formation and positioning in chromatin is reviewed here in the context of the complex sequence-structure requirements of DNA wrapping around the histone octamer and the role of this epigenetic mark in gene repression.  相似文献   

12.
13.
Drosophila Mi-2 (dMi-2) is the ATPase subunit of a complex combining ATP-dependent nucleosome remodelling and histone deacetylase activities. dMi-2 contains an HMG box-like region, two PHD fingers, two chromodomains and a SNF2-type ATPase domain. It is not known which of these domains contribute to nucleosome remodelling. We have tested a panel of dMi-2 deletion mutants in ATPase, nucleosome mobilization and nucleosome binding assays. Deletion of the chromodomains impairs all three activities. A dMi-2 mutant lacking the chromodomains is incorporated into a functional histone deacetylase complex in vivo but has lost nucleosome-stimulated ATPase activity. In contrast to dHP1, dMi-2 does not bind methylated histone H3 tails and does not require histone tails for nucleosome binding. Instead, the dMi-2 chromodomains display DNA binding activity that is not shared by other chromodomains. Our results suggest that the chromodomains act at an early step of the remodelling process to bind the nucleosome substrate predominantly via protein-DNA interactions. Furthermore, we identify DNA binding as a novel chromodomain-associated activity.  相似文献   

14.
15.
The conformation of mononucleosome complexes reconstituted with recombinant core histones on a 614-basepair-long DNA fragment containing the Xenopus borealis 5S rRNA nucleosome positioning sequence was studied by scanning/atomic force microscopy in the absence or presence of linker histone H1. Imaging without prior fixation was conducted with air-dried samples and with mononucleosomes that were injected directly into the scanning force microscopy fluid cell and visualized in buffer. From a quantitative analysis of approximately 1,700 complexes, the following results were obtained: i), In the absence of H1, a preferred location of the nucleosome at the X. borealis 5S rRNA sequence in the center of the DNA was detected. From the distribution of nucleosome positions, an energy difference of binding to the 5S rRNA sequence of DeltaDeltaG approximately 3 kcal mol(-1) as compared to a random sequence was estimated. Upon addition of H1, a significantly reduced preference of nucleosome binding to this sequence was observed. ii), The measured entry-exit angles of the DNA at the nucleosome in the absence of H1 showed two maxima at 81 +/- 29 degrees and 136 +/- 18 degrees (air-dried samples), and 78 +/- 25 degrees and 137 +/- 25 degrees (samples imaged in buffer solution). In the presence of H1, the species with the smaller entry-exit angle was stabilized, yielding average values of 88 +/- 34 degrees for complexes in air and 85 +/- 10 degrees in buffer solution. iii), The apparent contour length of the nucleosome complexes was shortened by 34 +/- 13 nm as compared to the free DNA due to wrapping of the DNA around the histone octamer complex. Considering an 11 nm diameter of the nucleosome core complex, this corresponds to a total of 145 +/- 34 basepairs that are wound around the nucleosome.  相似文献   

16.
Circular duplex DNA containing the SV40 replication origin was assembled into chromosomes in vitro with core histones and nucleosome assembly factor from HeLa cells. Their ability to serve as a template for replication was examined by incubating them with SV40 T antigen and HeLa cell extract. Nucleosome assembly of the template prevented DNA replication. Replication of chromosomes was severely inhibited at more than two-thirds of physiological nucleosome density. When the DNA was preincubated with T antigen and then assembled into chromosomes, however, inhibition of DNA replication was greatly reduced. These results suggest that nucleosome assembly of the template inhibits initiation of SV40 DNA replication and that the inhibition can be overcome by formation of an initiation complex before nucleosome assembly.  相似文献   

17.
Chromatin remodeling enzymes use energy derived from ATP hydrolysis to mobilize nucleosomes and alter their structure to facilitate DNA access. The Remodels the Structure of Chromatin (RSC) complex has been extensively studied, yet aspects of how this complex functionally interacts with nucleosomes remain unclear. We introduce a steric mapping approach to determine how RSC activity depends on interaction with specific surfaces within the nucleosome. We find that blocking SHL + 4.5/–4.5 via streptavidin binding to the H2A N-terminal tail domains results in inhibition of RSC nucleosome mobilization. However, restriction enzyme assays indicate that remodeling-dependent exposure of an internal DNA site near the nucleosome dyad is not affected. In contrast, occlusion of both protein faces of the nucleosome by streptavidin attachment near the acidic patch completely blocks both remodeling-dependent nucleosome mobilization and internal DNA site exposure. However, we observed partial inhibition when only one protein surface is occluded, consistent with abrogation of one of two productive RSC binding orientations. Our results indicate that nucleosome mobilization requires RSC access to the trailing but not the leading protein surface, and reveals a mechanism by which RSC and related complexes may drive unidirectional movement of nucleosomes to regulate cis-acting DNA sequences in vivo.  相似文献   

18.
19.
CENP-A and CENP-B are major components of centromeric chromatin. CENP-A is the histone H3 variant, which forms the centromere-specific nucleosome. CENP-B specifically binds to the CENP-B box DNA sequence on the centromere-specific repetitive DNA. In the present study, we found that the CENP-A nucleosome more stably retains human CENP-B than the H3.1 nucleosome in vitro. Specifically, CENP-B forms a stable complex with the CENP-A nucleosome, when the CENP-B box sequence is located at the proximal edge of the nucleosome. Surprisingly, the CENP-B binding was weaker when the CENP-B box sequence was located in the distal linker region of the nucleosome. This difference in CENP-B binding, depending on the CENP-B box location, was not observed with the H3.1 nucleosome. Consistently, we found that the DNA-binding domain of CENP-B specifically interacted with the CENP-A-H4 complex, but not with the H3.1-H4 complex, in vitro. These results suggested that CENP-B forms a more stable complex with the CENP-A nucleosome through specific interactions with CENP-A, if the CENP-B box is located proximal to the CENP-A nucleosome. Our in vivo assay also revealed that CENP-B binding in the vicinity of the CENP-A nucleosome substantially stabilizes the CENP-A nucleosome on alphoid DNA in human cells.  相似文献   

20.
The EBNA1 protein of Epstein–Barr virus (EBV) activates latent-phase DNA replication by an unknown mechanism that involves binding to four recognition sites in the dyad symmetry (DS) element of the viral latent origin of DNA replication. Since EBV episomes are assembled into nucleosomes, we have examined the ability of Epstein–Barr virus nuclear antigen 1 (EBNA1) to interact with the DS element when it is assembled into a nucleosome core particle. EBNA1 bound to its recognition sites within this nucleosome, forming a ternary complex, and displaced the histone octamer upon competitor DNA challenge. The DNA binding and dimerization region of EBNA1 was sufficient for nucleosome binding and destabilization. Although EBNA1 was able to bind to nucleosomes containing two recognition sites from the DS element positioned at the edge of the nucleosome, nucleosome destabilization was only observed when all four sites of the DS element were present. Our results indicate that the presence of a nucleosome at the viral origin will not prevent EBNA1 binding to its recognition sites. In addition, since four EBNA1 recognition sites are required for both nucleosome destabilization and efficient origin activation, our findings also suggest that nucleosome destabilization by EBNA1 is important for origin activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号