首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Knight DP  Feng D 《Tissue & cell》1994,26(2):155-167
The egg capsule of the dogfish is a composite material containing collagenous fibrils and 2 mum spherical hydrophobic protein granules. The latter appear to owe much of their hydrophobicity to an exceptionally high tyrosine content (approximately 20% of total amino acid residues). The hydrophobic component appears to form as an emulsion in the secretory granules of the D and E zone gland cells of the nidamental gland. Droplets of the hydrophobic material appear to become coated with remarkably regular layers of radially-arranged collagen molecules which form a series of concentric, evenly spaced layers around each hydrophobic granule. Numerous disclinations were seen where the layers around adjacent granules interfered with one another. The layers are thought to represent a lamellar liquid crystalline phase previously described for this collagen (Knight et al., 1993). The fine structural appearance of the concentric layers and evidence for radial arrangement of collagen molecules within them is compatible with the suggestion that the layers are built from a dumbbell-shaped unit approximately 35 nm long with hydrophobic groups concentrated at the ends. This unit may represent a dumbbell-shaped molecule or an oligomer of two or more molecules lying parallel with one another in a head-to-tail arrangement. Such a unit can be readily incorporated into models for the micellar, hexagonal columnar and final fibrillar phases previously described for this collagen (Knight et al., 1993). Evidence from the TEM study of stretched egg capsule wall suggests that there is a mechanical interaction between the hydrophobic granules and the collagen fibrils in the fully formed material. We suggest that the radial, concentric layered arrangement of collagen molecules is established by hydrophobic interactions within the liquid crystalline material and locked into place by oxidative covalent cross-linking to give a 3-dimensional cross-linked meshwork of collagen fibrils and hydrophobic granules. The latter arrangement helps to account for the high tensilestrength and toughness of this material.  相似文献   

2.
Feng D  Knight DP 《Tissue & cell》1994,26(5):649-659
The collagen of the egg capsule of the dogfish, Scyliorhinus canicula is stored and secreted by the secretory cells of the D-zone of the nidamental gland (Rusaou?n-Innocent, 1990b). The collagen appears to pass through several morphologically distinct textures during storage, secretion and fibril formation which may represent different lyotropic liquid crystalline phases (Knight et al., 1993). In the present communication we report evidence that a fall in hydrogen ion concentration induces fibrillogenesis during the secretion of the dogfish egg capsule. In an attempt to understand the factors involved in collagen assembly, we investigated the effects of subjecting isolated collagen storage granules in vitro to solutions ranging in pH from 2-11 and Na(+), K(+), Ca(++), Mg(++), Zn(++) and Cu(++) ions at concentrations varying from 0.01-0.5 M. From pH 2 to pH 4 most granules appeared completely amorphous; from pH 5 to pH 7 granules showed the following previously reported liquid crystalline textures: isotropic, lamellar, micellar, hexagonal columnar, transversely banded twisted nematic, and unbanded twisted nematic. At pH 8 granules showed both the hexagonal columnar phase (phase IV) and small quantities of the final fibrillar phase together with a previously undescribed texture. The latter texture, which we refer to as phase VII, had a D period (17.5 nm) half that of the lamellar texture (phase II) and the final egg capsule fibrils (phase VI). From pH 9 to pH 11, only the final fibrillar texture (phase VI) together with small quantities of the new texture (phase VII) were present. Na(+), K(+), Ca(++), Mg(++), Zn(++) and Cu(++) ions did not appear to have an observable effect on the phases found in isolated granules at pH 7.0. The role of pH in collagen storage and fibrillogenesis was confirmed by direct estimation of the pH in vivo using vital staining with neutral red, a range of pH indicators applied to unfixed cryostat sections and direct measurements of the pH of the jelly within the egg capsule. The implications of these findings for the mechanism of collagen storage and fibrillogenesis in the dogfish egg capsule and other collagenous systems are discussed.  相似文献   

3.
Knight DP  Feng D 《Tissue & cell》1994,26(3):385-401
The egg capsule of the dogfish Scyliorhinus canicula is a collagenous material with a laminated, plywood (orthogonal) construction. The collagen fibrils which constitute the bulk of the egg capsule wall have a unique, highly ordered structure (Knight and Hunt, 1974; 1976, 1986; Gathercole et al., 1993) which is thought to represent a smectic A liquid crystalline phase (Knight et al., 1993). The egg capsule is extremely strong and chemically inert (Hunt, 1985). It is stored, secreted and formed by the nidamental gland (Rusaou?n 1976, 1990 a, b; Knight and Feng, 1992). During intracellular storage, secretion and fibrillogenesis, the dogfish egg capsule collagen appears to pass through a remarkable series of textures within a lyotropic liquid crystalline phase diagram (Knight et al., 1993). In the present communication, further observations on the ultrastructure of the collagen fibrils and their arrangement within the laminae of the fully-formed egg capsule are reported. The effect of tilting ultrathin sections of fibrils in the goniometer stage of a transmission electron microscope are described, demonstrating that the crystalline lattice within the fibril appeared twisted more or less regularly into a long pitch helix. Other observations indicated that some of the fibrils were in turn twisted round one another to form fibres which therefore had a coiled-coil structure. The fibres are arranged parallel to one another in the laminae which are stacked to give an orthogonal plywood construction. The effects of staining fibrils with cuprolinic blue and with tannic acid are reported. Reduction in the water content of the fibrils before fixation appeared to move some of the fibrils through the part of the lyotropic phase transition diagram converting them from smectic A to smectic C. Finally, evidence is presented that the fibrils shrank, but remarkably, still retained a longitudinally-ordered but modified, molecular arrangement even after boiling in water for periods of up to 10 min. These observations are discussed in relation to other collagens.  相似文献   

4.
Phase equilibria and structure of dry and hydrated egg lecithin   总被引:21,自引:0,他引:21  
The behavior of purified egg lecithin in water has been investigated in relation to the quantity of water present and the temperature. The complete binary phase diagram of egg lecithin-water is presented as well as X-ray diffraction data on selected mixtures. Dry egg lecithin is present in at least partially crystalline form until about 40 degrees C. Above this temperature it forms a "wax-like" phase up to about 88 degrees C. From 88 to 109 degrees C it forms a viscous isotropic phase which gives face-centered cubic spacings by X-ray analysis. Above 110 degrees C its texture is "neat" and the structure is assumed to be lamellar until its final melting point at 231 degrees C. Hydrated lecithin forms (except for a small zone of cubic phase at low water concentrations and high temperature) a lamellar liquid crystalline phase. This phase contains up to 45% water at 20 degrees C. Mixtures containing more water separate into two phases, the lamellar liquid crystalline phase and water. In the melting curve of hydrated lecithin a eutectic is noted at about 16% water and the cubic phase seen when less water is present disappears at this composition of the mixture. These facts, along with previous vapor pressure measurements, suggest that there is a structural change at about 16% water. X-ray diffraction studies of lecithin at 24 degrees C and calculations from these data suggest that the reason for this may be the presence of a "free water layer" when more than 16% water is present.  相似文献   

5.
We present the crystalline organization of 33 all-AT deoxyoligonucleotide duplexes, studied by x-ray diffraction. Most of them have very similar structures, with Watson-Crick basepairs and a standard average twist close to 36 degrees. The molecules are organized as parallel columns of stacked duplexes in a helical arrangement. Such organization of duplexes is very regular and repetitive: all sequences show the same pattern. It is mainly determined by the stacking of the terminal basepairs, so that the twist in the virtual TA base step between neighbor duplexes is always negative, approximately -22 degrees. The distance between the axes of parallel columns is practically identical in all cases, approximately 26 A. Interestingly, it coincides with that found in DNA viruses and fibers in their hexagonal phase. It appears to be a characteristic distance for ordered parallel DNA molecules. This feature is due to the absence of short range intermolecular forces, which are usually due to the presence of CG basepairs at the end of the oligonucleotide sequence. The duplexes apparently interact only through their diffuse ionic atmospheres. The results obtained can thus be considered as intermediate between liquid crystals, fibers, and standard crystal structures. They provide new information on medium range DNA-DNA interactions.  相似文献   

6.
We investigate the effect of the addition of a trivalent cation, spermidine, to dilute solutions of nucleosome core particles (NCP). In the presence of spermidine, part of the NCP segregates from the initial homogeneous solution, forming dense aggregates. We follow this precipitation process over a wide range of spermidine and NaCl concentrations and determine the conditions of aggregation of the particles. The structure of the dense phases is analyzed by means of polarizing light microscopy and cryo-electron microscopy. We report the existence of multiple supramolecular organizations. According to the relative concentrations of spermidine, monovalent salt and NCP, the particles may aggregate into amorphous phases, stack into randomly oriented columns, or form liquid crystalline phases. Two discotic liquid crystalline phases are identified and analyzed: a columnar nematic corresponding to columns of NCP simply aligned in parallel, and a columnar hexagonal phase in which the columns order into a transversal 2D hexagonal array. We discuss the nature and origin of the interactions possibly involved in the formation and maintenance of these different types of order.  相似文献   

7.
The membrane protein Imp1227 (Ignicoccus outer membrane protein; Imp1227) is the main protein constituent of the unique outer sheath of the hyperthermophilic, chemolithoautotrophic Archaeum Ignicoccus hospitalis. This outer sheath is the so far only known example for an asymmetric bilayer among the Archaea and is named 'outer membrane'. With its molecular mass of only 6.23 kDa, Imp1227 is found to be incorporated into the outer membrane in form of large, stable complexes. When separated by SDS-PAGE, they exhibit apparent masses of about 150, 50, 45 and 35 kDa. Dissociation into the monomeric form is achieved by treatment with SDS-containing solutions at temperatures at or above 113 degrees C. Electron micrographs of negatively stained samples confirm that isolated membranes are tightly packed with round complexes, about 7 nm in diameter, with a central, stain-filled 2 nm pore; a local two-dimensional crystalline arrangement in form of small patches can be detected by tomographic reconstruction. The comparison of the nucleotide and amino acid sequence of Imp1227 with public databases showed no reliable similarities with known proteins. Using secondary structure prediction and molecular modelling, an alpha-helical transmembrane domain is proposed; for the oligomer, a ring-shaped nonamer with a central 2 nm pore is a likely arrangement.  相似文献   

8.
The double-layered hexagonal disks of the extracellular hemoglobin of the annelid worm Ophelia bicornis form two types of two-dimensional crystalline arrays. The hexagonal type exhibited a typical honeycomb pattern of top views with a center-to-center distance of 26.2 nm. Laterally oriented molecules formed rectangular crystals with lattice constants a = 26.7 run and b = 19.8 nm. The three-dimensional structure was determined from both crystal forms by reconstruction from images of tilt series. At the resolutions obtained, 1.8 nm for the hexagonal form and 2.5 nm for the rectangular form, flattening of the hemoglobin molecules against the support was observed. Nevertheless the two independent reconstructions provided information about the mass distribution within the main subunit and the connectivity between different parts of the molecule.  相似文献   

9.
Dynamic force microscopy (DFM) was used to image human rhinovirus HRV2 alone and complexed with single receptor molecules under near physiological conditions. Specific and site-directed immobilization of HRV2 on a model cell membrane resulted in a crystalline arrangement of virus particles with hexagonal symmetry and 35 nm spacing. High-resolution imaging of the virus capsid revealed about 20 resolvable structural features with 3 nm diameters; this finding is in agreement with protrusions seen by cryo-electron microscopy. Binding of receptor molecules to individual virus particles was observed after injection of soluble receptors into the liquid cell. Virus-receptor complexes with zero, one, two, or three attached receptor molecules were resolved. The number of receptor molecules associated to virions increased over time. Occasionally, dissociation of single receptor molecules from viral particles was also observed.  相似文献   

10.
The structure of D-erythro-C18 ceramide at the air-water interface   总被引:1,自引:0,他引:1       下载免费PDF全文
X-ray reflectivity (XR) and diffraction at grazing angles of incidence (GID) were conducted to determine the structure of synthetic D-erythro C18-ceramide films at the air-water interface at various surface pressures (pi). Analysis of the GID reveals that the monomolecular film, at the crystalline phase (pi > 0 mN/m), is predominantly hexagonal. In this crystalline phase, the analysis of the reflectivity yields an electron density profile that consists of three distinct homogeneous slabs, one associated with the headgroup region and the other two with the hydrocarbon chains. At large molecular areas (pi approximately 0), isolated crystalline domains coexist with two-dimensional gas phase. Within the crystalline domains, we find an orthorhombic arrangement of the chains that coexists with the hexagonal symmetry. It is argued that the two-dimensional orthorhombic crystals are induced by hydrogen bonding between headgroups even at very low surface pressures. Although their structure is incommensurate with the simple hexagonal arrangement, they act as nucleation centers for the conventional hexagonal phase which dominates at high pi.  相似文献   

11.
The three-dimensional structures of the crystalline surface layers of two species of Eubacteria have been determined by electron microscopy and computerized image processing. The S-layer of Eubacterium sp. ES4C has tetragonal symmetry, with a unit cell spacing of 10.6 nm and a thickness of 9.5 nm, while that of Eubacterium sp. AHN 990 has hexagonal symmetry a = b = 15.7 nm and a thickness of 13 nm. The resolutions in the reconstructions were 2.5 nm and 1.8 nm, respectively. The reconstruction of the S-layer of strain ES4C reveals a distinct domain structure: a major tetramer, arms connecting adjacent unit cells, and a minor tetramer. The S-layer of strain AHN 990, on the other hand, has a rather complex arrangement, centred around the six-fold axis.  相似文献   

12.
The interaction of aqueous phospholipid dispersions of negatively charged 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol, sodium salt (DMPG) with the divalent cations Mg(2+), Ca(2+) and Sr(2+) at equimolar ratios in 100 mM NaCl at pH 7 was investigated by Fourier transform infrared spectroscopy. The binding of the three cations induces a crystalline-like gel phase with highly ordered and rigid all-trans acyl chains. These features are observed after storage below room temperature for 24 h. When the gel phase is heated after prolonged incubation at low temperature phase transitions into the liquid crystalline phase are observed at 58 degrees C for the DMPG:Sr(2+), 65 degrees C for the DMPG:Mg(2+), and 80 degrees C for the DMPG:Ca(2+) complex. By subsequent cooling from temperatures above T(m) these complexes retain the features of a liquid crystalline phase with disordered acyl chains until a metastable gel phase is formed at temperatures between 38 and 32 degrees C. This phase is characterized by predominantly all-trans acyl chains, arranged in a loosely packed hexagonal or distorted hexagonal subcell lattice. Reheating the DMPG:Sr(2+) samples after a storage time of 2 h at 4 degrees C results in the transition of the metastable gel to the liquid crystalline phase at 35 degrees C. This phase transition into the liquid crystalline state at 35 degrees C is also observed for the Mg(2+) complex. However, for DMPG:Mg(2+) at higher temperatures, a partial recrystallization of the acyl chains occurs and the high temperature phase transition at 65 degrees C is also detected. In contrast, DMPG:Ca(2+) exhibits only the phase transition at 80 degrees C from the crystalline gel into the fluid state upon reheating. Below 20 degrees C, the rate of conversion from the metastable gel to a thermodynamically stable, crystalline-like gel phase decreases in the order Ca(2+)&z. Gt;Mg(2+)>Sr(2+). This conversion into the crystalline gel phase is accompanied by a complete dehydration of the phosphate groups in DMPG:Mg(2+) and by a reorientation of the polar lipid head groups in DMPG:Ca(2+) and in DMPG:Sr(2+). The primary binding sites of the cations are the PO(2)(-) groups of the phosphodiester moiety. Our infrared spectroscopic results suggest a deep penetration of the divalent cations into the polar head group region of DMPG bilayers, whereby the ester carbonyl groups, located in the interfacial region of the bilayers, are indirectly affected by strong hydrogen bonding of immobilized water molecules. In the liquid crystalline phase, the interaction of all three cations with DMPG is weak, but still observable in the infrared spectra of the DMPG:Ca(2+) complex by a slight ordering effect induced in the acyl chains, when compared to pure DMPG liposomes.  相似文献   

13.
The three purified proteins which are required for microsomal stearyl-CoA desaturation, NADH-cytochrome b5 reductase, cytochrome b5, and desaturase, have been combined with egg lecithin or dimyristyl lecithin vesicles to reconstruct a functional electron transport system capable of utilizing NADH and O2 in the desaturation of stearyl-CoA. Such preparations appear to consist of phospholipid vesicles which contain the three proteins bound to the outer surface of the vesicles. Acyl-CoA derivatives containing 12 to 19 carbon fatty acyl chains are required for desaturase activity while derivatives containing 9 to 20 carbons are capable of binding to the enzyme. Shorter chain acyl-CoA derivatives, free CoA, and free fatty acids do not appear to bind to the enzyme. Inhibition and analog studies suggest that the methylene chain of stearyl-CoA assumes an eclipsed ("gauche") conformation at carbon atoms 9,10 in the enzyme-substrate complex. Furthermore, isotope rate effects obtained with deuterated stearyl-CoA derivatives indicate that hydrogen removal is the rate-limiting step of desaturation. Stearyl-CoA binds to pure liposomes and desaturase-containing liposomes, and it is this form of stearyl-CoA which appears to be the substrate for desaturase. The Arrhenius plots of desaturase activity obtained using desaturase bound to egg lecithin liposomes, in which the liquid crystalline to crystalline phase transition temperature is -5 degrees, was linear between 15 and 35 degrees, while that obtained using desaturase bound to dimyristyl lecithin liposomes showed a break at 24 degrees coinciding with the liquid crystalline to crystalline phase transition temperature for this lipid. The decrease observed in the deuterium isotope rate effect below the transition temperature indicates that a step in the reaction sequence other than hydrogen abstraction becomes rate-limiting when the lipid is in the crystalline state. In this system translational diffusion does not emerge as the rate-limiting step. The liposomes contained sufficient reductase and cytochrome b5 so that translational diffusion was not rate-limiting.  相似文献   

14.
The wall of the egg case of the dogfish,Scyliorhinus canicula, contains a network-forming collagen assembled into a regular three-dimensional (3D) structure. It accomplishes supportive, protective and filtering functions for the embryo contained within it. The collagen molecules in the egg case are organized into a body-centred unit cell of dimensions (mean ± s.d.) (11.6 ± 1.0) nm X (11.6 ± 1.0) nm X (81.6 ± 3.2) nm, which belongs to the I422 space group. At a higher hierarchical level, the collagen molecules assemble into parallel arrays of fibrils, ca. 100 nm in diameter, which aggregate to form laminae ca. 0.5 μm thick. These laminae are organized into a plywood-like structure and account for 98% of the thickness of the wall of the egg case. X-ray diffraction patterns of the wall of the egg case were taken along mutually perpendicular directions, one being perpendicular to the surface of the egg case. Three different kinds of diffraction pattern were observed. One of the patterns was characteristic of an X-ray direction perpendicular to the laminae in the egg case (along the x-direction). The two other patterns were obtained with the X-rays directed parallel to the plane of the laminae, either along the capsule long axis (z) or perpendicular to this (y). These two patterns were observed interchangeably in either of the x- or y-directions depending on the specimen. The diffraction patterns were analysed and interpreted taking into consideration the 3D electron microscope data of the egg case. The results confirm and extend previous findings from transmission electron microscopy and low-angle X-ray diffraction and they suggest that there is only one major type of ordered collagen arrangement in the wall of the egg case.  相似文献   

15.
Liquid crystalline phases of sonicated type I collagen   总被引:1,自引:0,他引:1  
The assembly properties of concentrated solutions of type I collagen molecules are compared before and after a 5-min sonication, breaking the 300-nm triple helices into short segments of about 20 nm, with a strong polydispersity. The collagen concentration of these solutions, sonicated or not, was increased up to 100 mg/ml by slow evaporation of the solvent. Whereas the non-sonicated solutions remain isotropic, the sonicated solutions transform after a few hours into a twisted liquid crystalline phase, well recognizable in polarizing microscopy. The evidence of a twisted assembly of collagen triple helices in vitro is new and relevant in a biological context since it was reported in various collagen matrices.  相似文献   

16.
Feng D  Knight DP 《Tissue & cell》1992,24(5):773-790
The egg capsule of the dogfish is a unique, collagcnous, layered structure secreted by the nidamental gland which has nine, remarkably discrete, transverse zones of tubular glands. The present paper traces the origin of the four layers of the capsule to particular zones within the gland. Evidence is presented for the existence of DOPA, DOPA oxidase. protein(s) rich in tyrosyl residues and a peroxidase within the same storage granules within the secretory cells of the C and E zones. It is suggested that these interact when secreted to cross-link the inner and outer surfaces of the egg capsule. Evidence is presented that the middle layer which forms the bulk of the thickness of the egg capsule and has the highest collagen content may be partly stabilized by the peroxidation of tyrosyl residues. The mechanical significance of crosslinking in this system and the possible cytological mechanisms involved in the secretion of the tanning agents and enzymes are discussed.  相似文献   

17.
Current fluctuations in black bilayers from phosphatidyl ethanolamine obtained from egg lecithin were registered in the temperature region of the main phase transition of this phospholipid and the bilayer--hexagonal phase transition about 35 degrees; they correspond to the conductivity changes of hundreds of pSm. This transition takes place in the same temperature region as shown by 31P-NMR and depolarization of light-scattering method in phosphatidyl ethanolamine multilamellar liposomes. The scheme of bilayer transformation into hexagonal phase in the temperature region of lipid polymorphic transition is discussed.  相似文献   

18.
The wall of the egg case of the dogfish (Scyliorhinus canicula) contains an analogue of collagen Types IV and VIII organised into a regular 3-dimensional network. It presumably provides both a protective and a filtering role for the eggs contained within it. Electron micrographs of longitudinal and transverse sections, including systematically tilted sections, have been used both to define, for the first time, the space group symmetry of the lattice and to carry out 3-D reconstruction of the unit cell contents. This cell was found to be tetragonal, space group I422, with a = b = 11 ± 1 nm, and c = 74 ± 4 nm. Consistent with this, projection symmetries were c2mm for the [1,0,0] view, p2mm for the [1,1,0] view, and p4mm for the projection down the c axis (the [0,0,1] view), and all observed reflections in the computed Fourier transform obeyed the ruleh+k+l= 2n(ninteger) for body-centred lattices. The 3-D reconstruction, the first electron micrograph 3-D reconstruction of a collagen-containing material, is interpreted in terms of variations of previous molecular models for this structure. Type IV collagen is a constituent of the basal lamina, where it forms a network with both structural and filtering properties. The dogfish egg case structure may throw light on the (less regular) collagen IV structure of the basal lamina.  相似文献   

19.
The mechanism of the subtransitions (Lc to L beta') in L-dipalmitoylphosphatidylcholine bilayers in excess water has been investigated by time-resolved X-ray diffraction using synchrotron radiation. The temperature dependence of the diffraction patterns closely correlate with the asymmetric excess specific heat variation recorded by differential scanning calorimetry. During the subtransition two prominent wide-angle reflections, characteristic of the low-temperature crystalline phase, Lc, gradually change such that a sharp peak at a spacing of 0.430 nm decreases in intensity and ultimately disappears while a broader peak initially located at 0.375 nm progressively shifts to an eventual spacing of 0.410 nm. This behaviour is interpreted as a lateral deformation of the acyl chain packing subcell as the chains begin to rotate until a state is reached where the chains pack on a regular hexagonal array characteristic of the L beta phase. An increase in lamellar repeat distance from 6.0 to 6.4 nm takes place simultaneously with the acyl chain rearrangement at relatively low (5 K/min) as well as high (6 K/s) heating rates. As judged from the shape of the wide-angle peak, transformation to L beta' phase occurs some minutes after transition to the L beta phase. The X-ray data characterise the subtransition as a continuous (second order) phase transition in which a presumably orthorhombic subcell is transformed into a hexagonal subcell in a gradual process. In temperature jump experiments at 6 K/s between 0 degree C and 80 degrees C the relaxation time of the subtransition was found to be about 5 s while the relaxation time of the main gel to liquid-crystalline transition was about 2 s.  相似文献   

20.
Summary The addition of calcium to suspensions of egg phosphatidylcholine and cardiolipin converts multiwalled liposomes to the hexagonal (HII) phase (Rand, R.P., Sengupta, S. (1972)Biochim. Biophys. Acta 255:484–492). We have studied this lamellar to hexagonal phase transition by freeze-fracture, thin-section electron microscopy, and X-ray diffraction and have morphologically characterized the intermediate stages. The first step in the transition involves the invagination and fusion of bilayers, marked by the appearance of lipidic intramembrane particles and crater-like indentations, as the large liposomes are converted to smaller flattened and elongated vesicles. The next step is the formation of tightly packed hexagonal arrays of tubules, each tubule being about 11 to 15 nm in diameter. These tubules are filled with fluid and a lipid bilayer forms the wall of each cylinder. Finally this tubular bilayer phase is converted to the hexagonal (HII) phase, where the distance between tubes is 5.5 to 7.5 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号