首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction between Oxaprozin-E and bovine serum albumin (BSA) was studied by spectroscopic methods including fluorescence and UV–vis absorption spectroscopy. The quenching mechanism of fluorescence of BSA by Oxaprozin-E was discussed to be a dynamic quenching procedure. The number of binding sites n and apparent binding constant K was measured by fluorescence quenching method. The thermodynamics parameter ΔH, ΔG, ΔS were calculated. The results indicate the binding reaction was mainly entropy-driven and hydrophobic forces played major role in the binding reaction. The distance r between donor (BSA) and acceptor (Oxaprozin-E) was obtained according to Förster theory of non-radioactive energy transfer.  相似文献   

2.
We have used picosecond absorption spectroscopy with low intensity (5 · 1011–5 · 1012 photons · pulse−1 · cm−2) continuously tunable infrared (800–900 nm) pulses to study the energy transfer dynamics in the isolated B800–850 pigment-protein complex of Rhodobacter sphaeroides. Our results suggest the following picture of the energy transfer dynamics: (i) a fast transfer, within approx. 1 ps, from BChl 800 to BChl 850; (ii) transfer among different BChl 800's with a rate which is at the most of the same order of magnitude as that of BChl 800 → BChl 850 transfer; (iii) very fast transfer (k > 1 · 1012 s−1) between BChl 850 molecules. Assuming Förster type of energy transfer maximum distances of about 22 and 15 Å are obtained for the BChl 800–BChl 850 and BChl 850–BChl 850 separations, respectively.  相似文献   

3.
We have studied the energy-transfer dynamics in chromatophores of Rhodobacter sphaeroides and Rhodospirillum rubrum at 77 K, with functional charge separation. Using low-intensity picosecond absorption recovery, we determined that transfer between the energetically low-lying antenna component BChl896 and the special pair of the reaction center occurs with a time constant of 37 ps in Rb. sphaeroides and 75 ps in R. rubrum. Assuming that a Förster energy-transfer mechanism applies to the process, this allows us to estimate the distance between BChl896 in the B875 complex and the special pair P870 in the reaction center to range between 26 and 39 Å in Rb. sphaeroides. Such a distance indicates that the BChl896 pigment and the special pair of the reaction center are at the minimum separation allowed by the size and shape of the reaction center and the light-harvesting polypeptides.  相似文献   

4.
Fluorescence, circular dichroism (CD), and UV-visible spectroscopic studies on horseradish peroxidase (HRP) and its calcium depleted derivative (CaD-HRP) are reported. CaD-HRP with its emission maximum at 338 nm is found to be six times as fluorescent as native HRP. The red shift relative to HRP emission observed at 328 nm indicates conformation change around trp towards more hydrophilic environment. CD spectrum of HRP in the 250–700 nm range shows that CD bands of HRP in the Soret region (403 nm) and in the aromatic region (280 nm) also undergo red shift on removal of endogenous calcium, indicating a change in conformation in the vicinity of both heme as well as aromatic residues. Comparison of CD of low spin HRP cyanide in the same region shows that CaD-HRP has some intermediate-spin character. CaD-HRP reconstituted with Tb3+ ion showed recovery of the enzyme activity by 89% of the original. Fluorescence of trp sensitized Tb3+ ion bound to apo-CaD-HRP was observed in the 450–700 nm wavelength region. trp-heme distance in CaD-HRP, calculated using the Förster theory of resonance energy transfer, was found to be 29.5 Å as opposed to 20.1 Å in HRP. The trp-Tb3+ distance was similarly estimated to be 7.1 Å.  相似文献   

5.
John Whitmarsh  R.P. Levine 《BBA》1974,368(2):199-213
We have investigated the process of intermolecular excitation energy transfer and the relative orientation of the chlorophyll molecules in the unicellular green alga Chlamydomonas reinhardi. The principal experiments involved in vivo measurements of the fluorescence polarization as a function of the exciting-light wavelength in the presence and in the absence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea. We found that as the fluorescence lifetime increases upon the addition of 3-(3,4-dichlorophenyl)-1,1-dimethylurea that the degree of fluorescence polarization decreases over the excitation region from 600 to 660 nm. This result, we argue, implies that a Förster mechanism of excitation energy transfer is involved for Photosystem II chlorophyll molecules absorbing primarily below 660 nm. We must add that our results do not exclude the possibility of a delocalized transfer process from being involved as well. Fluorescence polarization measurements using chloroplast fragments are also discussed in terms of a Förster transfer mechanism. As the excitation wavelength approaches 670 nm the fluorescence polarization is nearly constant upon the addition of 3-(3,4-dichlorophenyl)-1,1-dimethylurea.Experiments performed using either vertically or horizontally polarized exciting light show that the fluorescence polarization increases as the exciting light wavelength increases from 650 to 673 nm. This suggests the possibility that chlorophyll molecules absorbing at longer wavelengths have a higher degree of relative order. Furthermore, these studies imply that chlorophyll molecules exist in discrete groups that are characterized by different absorption maxima and by different degrees of the fluorescence polarization. In view of these results we discuss different models for the Photosystem II antenna system and energy transfer between different groups of optically distinguishable chlorophyll molecules.  相似文献   

6.
In vitro studies of the carotenoid peridinin, which is the primary pigment from the peridinin chlorophyll-a protein (PCP) light harvesting complex, showed a strong dependence on the lifetime of the peridinin lowest singlet excited state on solvent polarity. This dependence was attributed to the presence of an intramolecular charge transfer (ICT) state in the peridinin excited state manifold. The ICT state was also suggested to be a crucial factor in efficient peridinin to Chl-a energy transfer in the PCP complex. Here we extend our studies of peridinin dynamics to reconstituted PCP complexes, in which Chl-a was replaced by different chlorophyll species (Chl-b, acetyl Chl-a, Chl-d and BChl-a). Reconstitution of PCP with different Chl species maintains the energy transfer pathways within the complex, but the efficiency depends on the chlorophyll species. In the native PCP complex, the peridinin S1/ICT state has a lifetime of 2.7 ps, whereas in reconstituted PCP complexes it is 5.9 ps (Chl-b) 2.9 ps (Chl-a), 2.2 ps (acetyl Chl-a), 1.9 ps (Chl-d), and 0.45 ps (BChl-a). Calculation of energy transfer rates using the Förster equation explains the differences in energy transfer efficiency in terms of changing spectral overlap between the peridinin emission and the absorption spectrum of the acceptor. It is proposed that the lowest excited state of peridinin is a strongly coupled S1/ICT state, which is the energy donor for the major energy transfer channel. The significant ICT character of the S1/ICT state in PCP enhances the transition dipole moment of the S1/ICT state, facilitating energy transfer to chlorophyll via the Förster mechanism. In addition to energy transfer via the S1/ICT, there is also energy transfer via the S2 and hot S1/ICT states to chlorophyll in all reconstituted PCP complexes.  相似文献   

7.
We use femtosecond transient absorption spectroscopy to study chlorophyll (Chl)-Chl energy transfer in the peridinin-chlorophyll protein (PCP) reconstituted with mixtures of either chlorophyll b (Chlb) and Chld or Chla and bacteriochlorophyll a (BChla). Analysis of absorption and transient absorption spectra demonstrated that reconstitution with chlorophyll mixtures produces a significant fraction of PCP complexes that contains a different Chl in each domain of the PCP monomer. The data also suggest that binding affinity of Chla is less than that of the other three Chl species. By exciting the Chl species lying at higher energy, we obtained energy transfer times of 40 ± 5 ps (Chlb-Chld) and 59 ± 3 ps (Chla-BChla). The experimental values match those obtained from the Förster equation, 36 and 50 ps, respectively, showing that energy transfer proceeds via the Förster mechanism. Excitation of peridinin in the PCP complex reconstituted with Chla/BChla mixture provided time constants of 2.6 and 0.4 ps for the peridinin-Chla and peridinin-BChla energy transfer, matching those obtained from studies of PCP complexes reconstituted with single chlorophyll species.  相似文献   

8.
9.
It is proposed that different spectral varieties of chlorophylls exist in the photosynthetic unit of green plants in order to accelerate the transfer of excitation energy to the reaction center, and thus allow the operation of physically larger units with greater light-harvesting power. This proposal is supported by computer calculation of trapping probabilities on model arrays containing three spectral forms of antenna chlorophyll in addition to reaction center chlorophyll. The calculations assume nearest neighbor transfer steps only, and pairwise dipolar interactions of the sort that feature in the inductive resonance mechanism of Förster. Mutual orientation of transition moment vectors also affects the number of jumps and the time needed for energy trapping. Spectral variety increases the trapping rate by a factor of 4 to 5 over the uniform chlorophyll rate on the arrays examined, and the proper use of orientation may introduce a similar factor. The arguments here provide a plausible explanation not only for the existence of the more abundant forms of chlorophyll a, but also for the specialized form “C705” and for chlorophyll b.  相似文献   

10.
We present a detailed theoretical analysis of the Förster energy transfer process when a pair of molecules (donor and acceptor) is located nearby a cluster of two metallic nanospheres (dimer). We consider the case in which plasmonic resonances are within the overlap between the donor emission and acceptor absorption spectra, as well as the case that excludes such resonances from the aforementioned spectral overlap. Moreover, we explore the dependence of the Förster energy transfer rate on different dimer configurations (size and separation of nanospheres) and several dipole orientations of molecules. The dimer perturbs strongly the Förster energy transfer rate when plasmons are excited, donor dipole is oriented along the longitudinal axis of the dimer, and the radii of nanospheres and the sphere-gap distance are on the order of a few nanometers. In case of plasmonic excitation, the Förster energy transfer rate is degraded as the sphere-gap distance and size of the nanoparticles increase due to the dephasing of electronic motion arising from ohmic losses of metal. Also, we study the Förster efficiency influenced by the dimer, finding that the high efficiency region (delimited by the Förster radius curve) is reduced as a consequence of significant enhancement of the direct donor decay rate. Our study could impact applications that involve Förster energy transfer.  相似文献   

11.
The problem of singlet excitation kinetics and dynamics, especially at high excitation intensities, among a small number of chromophores of a given system has been addressed. A specific scheme for the kinetics is suggested and applied to CPII, a small chlorophyll (Chl)a/b antenna complex the fluorescence lifetime of which has been reported to be independent of excitation intensity over a wide intensity range of picosecond pulses. We have modeled the kinetics from the point of view that Chla molecules in CPII are Förster coupled so that a second excitation received by the group of Chla's either creates a state with two localized excitons or raises the first one to a doubly excited state. The data on CPII can be understood on the basis of a kinetic model that does not exclude exciton annihilation during the excitation pulse. The implied annihilation rate is consistent with our theoretical estimates of that rate obtained by applying excitation transfer theory to pairs of molecules both initially excited.  相似文献   

12.
An ability to measure the biochemical parameters and structures of protein complexes at defined locations within the cellular environment would improve our understanding of cellular function. We describe widely applicable, calibrated Förster resonance energy transfer methods that quantify structural and biochemical parameters for interaction of the human estrogen receptor α-isoform (ERα) with the receptor interacting domains (RIDs) of three cofactors (SRC1, SRC2, SRC3) in living cells. The interactions of ERα with all three SRC-RIDs, measured throughout the cell nucleus, transitioned from structurally similar, high affinity complexes containing two ERαs at low free SRC-RID concentrations (<2 nm) to lower affinity complexes with an ERα monomer at higher SRC-RID concentrations (∼10 nm). The methods also showed that only a subpopulation of ERα was available to form complexes with the SRC-RIDs in the cell. These methods represent a template for extracting unprecedented details of the biochemistry and structure of any complex that is capable of being measured by Förster resonance energy transfer in the cellular environment.  相似文献   

13.
K. Csatorday  E. Lehoczki  L. Szalay 《BBA》1975,376(2):268-273
The process of energy transfer was studied in the chlorophyll a-containing detergent micelle, serving as a possible model of the photosynthetic unit. Chlorophyll a was added to aqueous solutions of the detergent Triton X-100 and incorporated into the micelles. The energy transfer process was studied by investigating the concentration depolarization of fluorescence of chlorophyll a. On the basis of the experimental depolarization curves as well as the value of the Förster parameter R0 = 56 A? calculated from the overlap of absorption and fluorescence spectra it was concluded that energy transfer between chlorophyll a molecules in this model follows the Förstertype mechanism of inductive resonance. Furthermore it was found that the local concentration of chlorophyll a in the micelles is higher by 1–3 orders of magnitude than its overall concentration in the solution and by choosing the appropriate ratio between the concentration of chlorophyll a and the detergent it is possible to reach the in vivo chlorophyll concentration of 0.1 M within the micelles. Thus the chlorophyll-detergent micelle model may be applied as a model of the separate package-type photosynthetic unit.  相似文献   

14.
Time-resolved fluorescence anisotropy spectroscopy has been used to study the chlorophyll a (Chl a) to Chl a excitation energy transfer in the water-soluble peridinin-chlorophyll a-protein (PCP) of the dinoflagellate Amphidinium carterae. Monomeric PCP binds eight peridinins and two Chl a. The trimeric structure of PCP, resolved at 2 A (, Science. 272:1788-1791), allows accurate calculations of energy transfer times by use of the F?rster equation. The anisotropy decay time constants of 6.8 +/- 0.8 ps (tau(1)) and 350 +/- 15 ps (tau(2)) are respectively assigned to intra- and intermonomeric excitation equilibration times. Using the ratio tau(1)/tau(2) and the amplitude of the anisotropy, the best fit of the experimental data is achieved when the Q(y) transition dipole moment is rotated by 2-7 degrees with respect to the y axis in the plane of the Chl a molecule. In contrast to the conclusion of, Biochemistry. 23:1564-1571) that the refractive index (n) in the F?rster equation should be equal to that of the solvent, n can be estimated to be 1.6 +/- 0.1, which is larger than that of the solvent (water). Based on our observations we predict that the relatively slow intermonomeric energy transfer in vivo is overruled by faster energy transfer from a PCP monomer to, e.g., the light-harvesting a/c complex.  相似文献   

15.
The binding of doxepin hydrochloride (DH) to bovine serum albumin (BSA) was investigated by spectroscopic (fluorescence, UV–vis absorption and circular dichroism) techniques. The binding parameters have been evaluated by fluorescence quenching method. The thermodynamic parameters, ΔH°, ΔS° and ΔG° calculated at different temperatures indicated that the hydrogen bond and hydrophobic forces played a major role in the interaction of DH with BSA. Based on the Förster's theory of non-radiation energy transfer, the binding average distance, r between the donor (BSA) and acceptor (DH) was evaluated and found to be 2.7 nm. Spectral results observed showed that the binding of DH to BSA induced conformational changes in BSA. The effect of common ions on the binding of DH to BSA was also examined.  相似文献   

16.
The energy transfer between C-phycocyanin chromophores in intact phycobilisomes of Synechococcus 6301 is shown to lead to an anisotropy relaxation with a lifetime of 10 ± 2 ps. However, due to the molecular order within the hexameric units of C-phycocyanin the anisotropy does not decay to zero. The Förster dipole-dipole mechanism of energy transfer can qualitatively explain these data provided that there is no back transfer of excitation energy and that the chromophore distribution is non-random. The rate of energy transfer in phycobilisomes between C-phycocyanin and allophycocyanin can best be described by a double exponential with lifetimes of 12 ± 3 and 84 ± 8 ps.  相似文献   

17.
A high-throughput Förster resonance energy transfer (FRET) study was performed on the approximately 100 amino acids long N-terminal domain of the photosynthetic complex CP29 of higher plants. For this purpose, CP29 was singly mutated along its N-terminal domain, replacing one-by-one native amino acids by a cysteine, which was labeled with a BODIPY fluorescent probe, and reconstituted with the natural pigments of CP9, chlorophylls and xanthophylls. Picosecond fluorescence experiments revealed rapid energy transfer (~20–70 ps) from BODIPY at amino-acid positions 4, 22, 33, 40, 56, 65, 74, 90, and 97 to Chl a molecules in the hydrophobic part of the protein. From the energy transfer times, distances were estimated between label and chlorophyll molecules, using the Förster equation. When the label was attached to amino acids 4, 56, and 97, it was found to be located very close to the protein core (~15 Å), whereas labels at positions 15, 22, 33, 40, 65, 74, and 90 were found at somewhat larger distances. It is concluded that the entire N-terminal domain is in close contact with the hydrophobic core and that there is no loop sticking out into the stroma. Most of the results support a recently proposed topological model for the N-terminus of CP29, which was based on electron-spin-resonance measurements on spin-labeled CP29 with and without its natural pigment content. The present results lead to a slight refinement of that model.  相似文献   

18.
We characterized the fluorescence resonance energy transfer (FRET) from pyrene (donor) to perylene (acceptor) for nucleic acid assays under homogeneous solution conditions. We used the hybridization between a target 32mer and its complementary two sequential 16mer deoxyribonucleotides whose neighboring terminals were each respectively labeled with a pyrene and a perylene residue. A transfer efficiency of ~100% was attained upon the hybridization when observing perylene fluorescence at 459 nm with 347-nm excitation of a pyrene absorption peak. The Förster distance between two dye residues was 22.3 Å (the orientation factor of 2/3). We could change the distance between the residues by inserting various numbers of nucleotides into the center of the target, thus creating a gap between the dye residues on a hybrid. Assuming that the number of inserted nucleotides is proportional to the distance between the dye residues, the energy transfer efficiency versus number of inserted nucleotides strictly obeyed the Förster theory. The mean inter-nucleotide distance of the single-stranded portion was estimated to be 2.1 Å. Comparison between the fluorescent properties of a pyrene–perylene pair with those of a widely used fluorescein–rhodamine pair showed that the pyrene–perylene FRET is suitable for hybridization assays.  相似文献   

19.
M. Kitajima  W.L. Butler 《BBA》1975,408(3):297-305
The parameters listed in the title were determined within the context of a model for the photochemical apparatus of photosynthesis.

The fluorescence of variable yield at 750 nm at −196 °C is due to energy transfer from Photosystem II to Photosystem I. Fluorescence excitation spectra were measured at −196 °C at the minimum, FO, level and the maximum, FM, level of the emission at 750 nm. The difference spectrum, FMFO, which represents the excitation spectrum for FV is presented as a pure Photosystem II excitation spectrum. This spectrum shows a maximum at 677 nm, attributable to the antenna chlorophyll a of Photosystem II units, with a shoulder at 670 nm and a smaller maximum at 650 nm, presumably due to chlorophyll a and chlorophyll b of the light-harvesting chlorophyll complex.

Fluorescence at the FO level at 750 nm can be considered in two parts; one part due to the fraction of absorbed quanta, , which excites Photosystem I more-or-less directly and another part due to energy transfer from Photosystem II to Photosystem I. The latter contribution can be estimated from the ratio of FO/FV measured at 692 nm and the extent of FV at 750 nm. According to this procedure the excitation spectrum of Photosystem I at −196 °C was determined by subtracting 1/3 of the excitation spectrum of FV at 750 nm from the excitation spectrum of FO at 750 nm. The spectrum shows a relatively sharp maximum at 681 nm due to the antenna chlorophyll a of Photosystem I units with probably some energy transfer from the light-harvesting chlorophyll complex.

The wavelength dependence of was determined from fluorescence measurements at 692 and 750 nm at −196 °C. is constant to within a few percent from 400 to 680 nm, the maximum deviation being at 515 nm where shows a broad maximum increasing from 0.30 to 0.34. At wavelengths between 680 and 700 nm, increases to unity as Photosystem I becomes the dominant absorber in the photochemical apparatus.  相似文献   


20.
Enzyme clustering into compact agglomerates could accelerate the processing of intermediates to enhance metabolic pathway flux. However, enzyme clustering is still a challenging task due to the lack of universal assembly strategy applicable to all enzymes. Therefore, we proposed an alternative enzyme assembly strategy based on functional inclusion bodies. First, functional inclusion bodies in cells were formed by the fusion expression of stomatin/prohibitin/flotillin/HflK/C (SPFH) domain and enhanced green fluorescent protein, as observed visually and by transmission electron microscopy. The formation of SPFH-induced functional inclusion bodies enhanced intermolecular polymerization as revealed by further analysis combined with Förster resonance energy transfer and bimolecular fluorescent complimentary. Finally, the functional inclusion bodies significantly improved the enzymatic catalysis in living cells, as proven by the examples with whole-cell biocatalysis of phenyllactic acid by Escherichia coli, and the production of N-acetylglucosamine by Bacillus subtilis. Our findings suggest that SPFH-induced functional inclusion bodies can enhance the cascade reaction of enzymes, to serve as a potential universal strategy for the construction of efficient microbial cell factories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号