共查询到20条相似文献,搜索用时 0 毫秒
1.
The shutoff of the phototransduction cascade in retinal rods requires the inactivation of light-activated rhodopsin. The underlying mechanisms were studied in functionally intact detached rod outer segments by testing the effect of either sangivamycin, an inhibitor of rhodopsin kinase, or phytic acid, an inhibitor of 48K protein binding to phosphorylated rhodopsin, on light responses recorded in whole-cell voltage clamp. The results suggest that isomerized rhodopsin is inactivated fully by multiple phosphorylation and that the binding of 48K protein accelerates recovery by quenching partially phosphorylated rhodopsin. Higher concentrations of sangivamycin cause changes in the light response that cannot be explained by selective inhibition of rhodopsin kinase and suggest that other protein kinases are needed for normal rod function. 相似文献
2.
Rapid affinity purification of retinal arrestin (48 kDa protein) via its light-dependent binding to phosphorylated rhodopsin 总被引:2,自引:0,他引:2
Arrestin (also named '48 kDa protein' or 'S-antigen') is a soluble protein involved in controlling light-dependent cGMP phosphodiesterase activity in retinal rods, and is also known for its ability to induce autoimmune uveitis of the eye. We report a rapid and simple purification method based on the property of arrestin to bind specifically and reversibly to illuminated and phosphorylated rhodopsin [(1984) FEBS Lett. 176, 473-478]. This method does not require column chromatography and yields about 2-4 mg purified arrestin from 15 bovine retinas. Pure arrestin can be resolved by isoelectric focusing into at least 10 distinct bands, all of which stain with a monoclonal antibody specific for S-antigen. 相似文献
3.
The major peripheral and soluble proteins in frog rod outer segment preparations, and their interactions with photoexcited rhodopsin, have been compared to those in cattle rod outer segments and found to be similar in both systems. In particular the GTP-binding protein (G) has the same subunit composition, the same abundance relative to rhodopsin (1/10) and it undergoes the same light and nucleotide-dependent interactions with rhodopsin in both preparations. Previous work on cattle rod outer segments has shown that photoexcited rhodopsin (R*), in a state identified with metarhodopsin II, associates with the G protein as a first step to the light-activated GDP/GTP exchange on G. The complex R*-G is stable in absence of GTP, but is rapidly dissociated by GTP owing to the GDP/GTP exchange reaction. Low bleaching extents (less than 10% R*) in absence of GTP therefore create predominantly R*-G complexes, whereas bleaching in presence of GTP creates free R*. We report here that, under conditions of complexed R*, two reactions of R* in frog rod outer segments are highly perturbed as compared to free R*: (a) the spectral decay of metarhodopsin II (MII) into later photoproducts, and (b) the phosphorylation of R* by an ATP-dependent protein kinase. a) The spectral measurements have been performed using linear dichroism on oriented frog rod outer segments; this technique allows discrimination between MII and later photoproducts absorbing at the same wavelength. Association of R* with G leads to a strong reduction of the amount of MIII formed and to an acceleration of the decay of MIII. Furthermore, MII is significantly stabilized, in agreement with the hypothesis that MII is the intermediate which binds to G. b) The phosphorylation of R* is strongly inhibited under conditions of R*-G complex formation as compared to free R*. Interferences between reactions at the three sites involved in R* are discussed: the retinal binding site in the hydrophobic core is sensitive to the presence of GTP-binding protein at its binding site on the cytoplasmic surface of R*; the kinase and the GTP-binding protein compete for access to their respective binding sites, both located on the surface of R*. We also observed a slow and nucleotide-dependent light-induced binding of a protein of molecular weight 50 000, which we consider as the equivalent of the 48 000 Mr light-dependent protein previously identified in cattle rod outer segments. 相似文献
4.
Invertebrate visual signal transduction involves photoisomerization of rhodopsin, activating a guanine nucleotide binding protein (G protein) of the G(q) class, iG(q), which stimulates a phospholipase C, increasing intracellular Ca2+. Arrestin binding to photoactivated rhodopsin is a key mechanism of desensitization. We have previously reported the cloning of a retina-specific arrestin cDNA from Loligo pealei displaying 56-64% sequence similarity to other reported arrestin sequences. Here, we report the purification of the 55-kDa squid visual arrestin. Purified squid visual arrestin is able to inhibit light-activated GTPase activity dose-dependently in arrestin-depleted rhabdomeric membranes and associate with the membrane in a light-dependent manner. Membrane association can be partially inhibited by inositol 1,2,3,4,5,6-hexakisphosphate (IP6), a soluble analog of the membrane lipid phosphatidylinositol 3,4,5-triphosphate. In reconstitution assays, we demonstrate arrestin phosphorylation by squid rhodopsin kinase, a novel function among the G protein-coupled receptor kinase family. Phosphorylation of purified arrestin requires squid rhodopsin kinase, membranes, light-activation, and the presence of Ca2+. This is the first large-scale purification of an invertebrate arrestin and biochemical demonstration of arrestin function in the invertebrate visual system. 相似文献
5.
6.
Squid visual arrestin: cDNA cloning and calcium-dependent phosphorylation by rhodopsin kinase (SQRK)
Arrestin binding to rhodopsin is one of the major mechanisms of termination of photoresponses in both vertebrates and invertebrates. Here we report the cDNA cloning and characterization of a 48-kDa visual arrestin from squid (Loligo pealei). The cDNA encoded a protein that had 56-64% amino acid sequence similarity to reported arrestin sequences. This protein does not encode any distinct modular domains but contains five fingerprint regions that have been identified within arrestins. Antibodies raised to the recombinant arrestin protein detected arrestin expression only in the eye and recognized a doublet in photoreceptor membranes, representing unphosphorylated and phosphorylated arrestin. In squid eye membranes, arrestin was phosphorylated in a Ca2+-dependent manner and this phosphorylation was inhibited by antibodies raised against squid rhodopsin kinase, but not by inhibitors of protein kinase C or calmodulin kinase. Addition of purified squid rhodopsin kinase to washed rhabdomeric membranes resulted in phosphorylation of rhodopsin, and arrestin was also phosphorylated when calcium was present. This is the first report of a rhodopsin kinase phosphorylating an arrestin substrate, and suggests a dual role for this kinase in the inactivation of the squid visual system. 相似文献
7.
The target proteins for arrestin (48 kDa protein) action during the quench of cGMP phosphodiesterase (PDE) activation in retinal rod disk membranes were identified by the use of a cross-linking reagent. A heterobifunctional, cleavable, photo-activatable cross-linker (sulfo-SADP) was coupled to purified arrestin. Under precise weak visible light bleach and nucleotide conditions of quench, the cross-linker was UV flash-activated at a time when quench was well established. The target proteins covalently linked to arrestin by cross-linker activation were identified by immunoblotting. In the presence of ATP arrestin cross-linked to both PDE and rhodopsin during the quench phenomenon. Removal of ATP from the reaction mixture essentially abolished the cross-link with PDE, just as ATP omission abolishes quench, but significantly increased the cross-link to rhodopsin. The absence of a cross-link to the plentiful beta-subunit of transductin, as well as the results of competition studies employing arrestin without attached cross-linker, suggest that the observed cross-links are specific and reflect true binding interactions of arrestin during quench. The data are consistent with a model of quench in which photolyzed rhodopsin (R*) catalyzes the formation of an activated form of arrestin, which dissociates from R* in the presence of ATP, and binds to PDEs, thereby deactivating them. 相似文献
8.
Exposure of an intact vertebrate eye to light bleaches the rhodopsin in the photoreceptor outer segments in spatially nonuniform patterns. Some axial bleaching patterns produced in toad rods were determined using microspectrophotometric techniques. More rhodopsin was bleached at the base of the outer segment than at the distal tip. The shape of the bleaching gradient varied with the extent of bleach and with the spectral content of the illuminant. Monochromatic light at the lambda max of the rhodopsin gave rise to the steepest bleaching gradients and induced the greatest changes in the form of the gradient with increasing extent of bleach. These results were consistent with a mathematical model for pigment bleaching in an unstirred sample. The model did not fit bleaching patterns resulting from special lighting conditions that promoted the photoregeneration of rhodopsin from the intermediates of bleaching. Prolonged light adaptation of toads could also produce axial rhodopsin gradients that were not fit by the bleaching model. Under certain conditions the axial gradient of rhodopsin in a rod outer segment reversed with time in the light: the rhodopsin content became highest at the base. This result could be explained by an interaction between the pattern of bleaching and the intracellular topography of regeneration. 相似文献
9.
On the origins of arrestin and rhodopsin 总被引:1,自引:0,他引:1
Carlos E Alvarez 《BMC evolutionary biology》2008,8(1):222
Background
G protein coupled receptors (GPCRs) are the most numerous proteins in mammalian genomes, and the most common targets of clinical drugs. However, their evolution remains enigmatic. GPCRs are intimately associated with trimeric G proteins, G protein receptor kinases, and arrestins. We conducted phylogenetic studies to reconstruct the history of arrestins. Those findings, in turn, led us to investigate the origin of the photosensory GPCR rhodopsin. 相似文献10.
The distribution of NAD kinase and glucose-6-phosphate dehydrogenase within membranes of both outer and inner retina rod segments was studied by the sucrose gradient centrifugation of crude outer segment preparations. Rhodopsin and retinoldehydrogenase served as markers for outer segment membranes, whereas succinate dehydrogenase was a marker for inner ones. It is shown that NAD kinase and glucose-6-phosphate dehydrogenase are localized within inner segment membranes of the photoreception cell and that the activity of these enzymes in the crude preparations is due to contamination of the inner segments. 相似文献
11.
Phosphorylation modulates the affinity of light-activated rhodopsin for G protein and arrestin 总被引:2,自引:0,他引:2
Reduced effector activity and binding of arrestin are widely accepted consequences of GPCR phosphorylation. However, the effect of receptor multiphosphorylation on G protein activation and arrestin binding parameters has not previously been quantitatively examined. We have found receptor phosphorylation to alter both G protein and arrestin binding constants for light-activated rhodopsin in proportion to phosphorylation stoichiometry. Rod disk membranes containing different average receptor phosphorylation stoichiometries were combined with G protein or arrestin, and titrated with a series of brief light flashes. Binding of G(t) or arrestin to activated rhodopsin augmented the 390 nm MII optical absorption signal by stabilizing MII as MII.G or MII.Arr. The concentration of active arrestin or G(t) and the binding constant of each to MII were determined using a nonlinear least-squares (Simplex) reaction model analysis of the titration data. The binding affinity of phosphorylated MII for G(t) decreased while that for arrestin increased with each added phosphate. G(t) binds more tightly to MII at phosphorylation levels less than or equal to two phosphates per rhodopsin; at higher phosphorylation levels, arrestin binding is favored. However, arrestin was found to bind much more slowly than G(t) at all phosphorylation levels, perhaps allowing time for phosphorylation to gradually reduce receptor-G protein interaction before arrestin capping of rhodopsin. Sensitivity of the binding constants to ionic strength suggests that a strong membrane electrostatic component is involved in both the reduction of G(t) binding and the increase of arrestin binding with increasing rhodopsin phosphorylation. 相似文献
12.
Light-induced binding of 48-kDa protein to photoreceptor membranes is highly enhanced by phosphorylation of rhodopsin 总被引:13,自引:0,他引:13
The 48-kDa protein, a major protein of rod photoreceptor cells, is soluble in the dark but associates with the disk membranes when some (5-10%) of their rhodopsin has absorbed light and if this rhodopsin is additionally phosphorylated by ATP and rhodopsin kinase. If rhodopsin has been phosphorylated and regenerated prior to the protein binding experiment, the binding of 48-kDa protein depends on light but no longer on the presence of ATP. Another photoreceptor protein, GTP-binding protein, associates with both phosphorylated and unphosphorylated rhodopsin upon illumination. Excess GTP-binding protein thereby displaces 48-kDa protein from phosphorylated disks; this indicates competition between these two proteins for binding sites on illuminated phosphorylated rhodopsin molecules. 相似文献
13.
M Mirshahi A Razaghi A Vandewalle F Cluzeaud M Tarraf J P Faure 《Biology of the cell / under the auspices of the European Cell Biology Organization》1992,76(2):175-184
S-antigen (arrestin) is a cytosolic protein which regulates phototransduction in retinal rods. A protein immunologically related to S-antigen was identified in fractions from soluble extract of bovine kidney enriched by gel filtration or by immunoaffinity chromatography using a polyclonal antibody to retinal S-antigen. On immunoblots, this protein was recognized by a panel of monoclonal antibodies (mAbs S2D2, S1A3 and S9E2) directed against different S-antigen epitopes and displayed the same apparent molecular mass (48 kDa) as retinal S-antigen. All three mAbs revealed a specific immunoreactivity by indirect immunocytochemical technique on rat kidney sections. The three mAbs recognized some but not all glomerular cells, identified as epithelial cells by immunoelectron microscopy using the mAb S9E2. Both mAbs S2D2 and S1A3 gave a diffuse cytoplasmic staining in all tubule cells. Proximal tubule cells exhibited a weak immunoreactivity, whereas distal and collecting tubule cells were strongly labeled. In contrast, the mAb S9E2 immunoreaction was restricted to a cell subpopulation from distal and collecting tubules corresponding to intercalated cells identified by immunoelectron microscopy. With the mAb S9E2, the labeling of proximal tubule cells was localized in the apical region of the cytoplasm. These results suggest that two or more 48-kDa proteins immunologically cross-reactive with retinal S-antigen are present in kidney. The observed pattern of distribution is in keeping with the hypothesis that such proteins could play a role in the regulation of G-protein-related receptors present in renal glomerulus and tubule epithelial cells. 相似文献
14.
A Ruiz-Gómez M L Vaello F Valdivieso F Mayor 《The Journal of biological chemistry》1991,266(1):559-566
The postsynaptic glycine receptor purified from rat spinal cord is rapidly and specifically phosphorylated by protein kinase C. The target for phosphorylation is the strychnine-binding subunit of the receptor (molecular mass of approximately 48 kDa), which is phosphorylated on serine residues to a final stoichiometry of approximately 0.8 mol of phosphate/mol of subunit. The 48-kDa phosphoprotein was analyzed by proteolytic cleavage and peptide mapping in order to localize the site of phosphorylation within the receptor molecule. Examination of the 32P-labeled receptor fragments generated by digestion with N-chlorosuccinimide, cyanogen bromide, and endoproteinase lysine C and of the deduced amino acid sequence of the 48-kDa protein (Grenningloh, G., Rienitz, A., Schmitt, B., Methfessel, C., Zensen, M., Beyreuther, K., Gundelfinger, E. D., and Betz, H. (1987) Nature 328, 215-220) indicates that the phosphorylation site is located in a region corresponding to the major intracellular loop of the predicted structure of the glycine receptor subunit and suggests serine 391 as the phosphorylated residue. In fact, a synthetic peptide corresponding to residues 384-392 of the 48-kDa subunit was specifically phosphorylated by protein kinase C. Moreover, tryptic digests of this phosphopeptide and of the phosphorylated 48-kDa subunit of the glycine receptor migrated to the same position in two-dimensional peptide mapping. Furthermore, antibodies elicited against peptide 384-392 were shown to inhibit the protein kinase C-dependent phosphorylation of the 48-kDa polypeptide. Interestingly, the relative position of the phosphorylated domain is similar to those known or proposed to be phosphorylated in other ligand-gated ion channel receptor subunits, thus suggesting further the existence of a homologous regulatory region in these receptor proteins. 相似文献
15.
In the first step of the visual transduction cascade a photoexcited rhodopsin molecule, R*ret, binds to a GDP-carrying transducin molecule, TGDP. The R*-T interaction causes the opening of the nucleotide site in T and catalyzes the GDP/GTP exchange by allowing the release of the GDP. We have studied the influences on this R*-T transitory complex of the occupancies of the nucleotide site in T and the retinal site in rhodopsin. After elimination of the GDP released from the bound transducin, the complex, named R*ret-te (ret for retinal present, e for nucleotide site empty) remains stabilized almost indefinitely in a medium whose ionic composition is close to physiological. In this complex the bound Te retains a lasting ability to interact with GDP or GTP, and R*ret remains spectroscopically in the meta-II state, by contrast with free R*ret which decays to opsin and free retinal. Hence the R*-T interaction which opens the nucleotide site in T conversely blocks the retinal site in R*ret. Upon prolonged incubation in a low-ionic-strength medium the R*ret-Tc complex dissociates partially, but the liberated Te is then unable to rebind GDP or GTP, even in the presence of R*ret, it is probably denaturated. Upon treatment of the R*ret-Te complex by a high concentration of hydroxylamine, the retinal can be removed from the rhodopsin. The Re-Te complex remains stable and the complexed transducin keeps its capacity to bind GTP. TGTP then dissociates from Re. The liberated Re loses its capacity to interact with a new transducin. These data are integrated into a discussion of the development of the cascade. We stress that affinities, i.e. dissociation equilibrium constants, are insufficient to describe the flow of reactions triggered by one R*ret molecule. It depends on a few critical rapid binding and dissociation processes, and is practically insensitive to other slow ones, hence to the values of affinities that express only the ratio of kinetics constants. The effect of the R*-T interaction on the retinal site in rhodopsin is analogous to the effect of the binding of a G-protein on the apparent affinity of a receptor for its agonist. 相似文献
16.
The gene for retinal S-antigen (48-kDa protein) maps to the centromeric portion of mouse chromosome 1 near Idh-1 总被引:2,自引:0,他引:2
S-antigen (48-kDa protein) is a soluble protein of the retina and the pineal gland that is believed to play an important role in the visual process. S-antigen is involved in the regulation of the activity of rod photoreceptor-specific cGMP-phosphodiesterase (cGMP-PDE). The activity of this enzyme has been shown to be deficient in the retina of the rd mouse, which is affected by an autosomal recessive disease characterized by degeneration of the photoreceptor cells. The abnormal cGMP-PDE activity could result from, among other things, a lesion in the enzyme itself or in any of the proteins that regulate it, such as the S-antigen. We have used a mouse cDNA clone for the S-antigen to map the corresponding gene, Sag, to mouse chromosome 1 near Idh-1. Since the rd gene is located on mouse chromosome 5, our results suggest that Sag is not the site of the rd mutation. 相似文献
17.
18.
Arrestin (also named 48-kDa protein or S-antigen) binds to photoexcited and phosphorylated rhodopsin and thereby prevents activation of cGMP phosphodiesterase (EC 3.1.4.35) by transducin in retinal rods. We report here that retinal arrestin consists of several subspecies (isoelectric points between pH 5.5-6.2), which can be separated by FPLC anion-exchange chromatography and by FPLC chromatofocusing resulting in highly enriched individual subspecies. The entire heterogeneity pattern of arrestin is present in rod outer segments, independently of whether arrestin orginated from the outer or mostly from the inner segment of rod cells. The different subspecies show a similar binding behavior to photoexcited rhodopsin phosphorylated to various degrees and they quench the cGMP phosphodiesterase activity equally well. In the presence of rod outer segment membranes, arrestin is phosphorylated light-dependently by protein kinase C (0.2 mol phosphate/mol arrestin). This implies that the heterogeneity of arrestin is not primarily due to phosphorylation. Arrestin from different individuals exists as four isoelectric focusing patterns which occur with remarkably different frequencies in calf and cattle. The complexity of the IEF pattern does not increase with aging. Distinct subspecies of arrestin may reflect differences in their primary structure, or may result from differentially regulated post-translational modifications in individuals. 相似文献
19.
Kisselev OG Downs MA McDowell JH Hargrave PA 《The Journal of biological chemistry》2004,279(49):51203-51207
Phosphorylation of activated G-protein-coupled receptors and the subsequent binding of arrestin mark major molecular events of homologous desensitization. In the visual system, interactions between arrestin and the phosphorylated rhodopsin are pivotal for proper termination of visual signals. By using high resolution proton nuclear magnetic resonance spectroscopy of the phosphorylated C terminus of rhodopsin, represented by a synthetic 7-phosphopolypeptide, we show that the arrestin-bound conformation is a well ordered helix-loop structure connected to rhodopsin via a flexible linker. In a model of the rhodopsin-arrestin complex, the phosphates point in the direction of arrestin and form a continuous negatively charged surface, which is stabilized by a number of positively charged lysine and arginine residues of arrestin. Opposite to the mostly extended structure of the unphosphorylated C-terminal domain of rhodopsin, the arrestin-bound C-terminal helix is a compact domain that occupies a central position between the cytoplasmic loops and occludes the key binding sites of transducin. In conjunction with other binding sites, the helix-loop structure provides a mechanism of shielding phosphates in the center of the rhodopsin-arrestin complex and appears critical in guiding arrestin for high affinity binding with rhodopsin. 相似文献
20.
Protein kinase activity of dark-adapted bovine rod outer segments is partitioned by centrifugation into soluble and membrane-bound fractions. The soluble kinases are separated by DEAE-cellulose chromatography into three peaks of activity, which can be classified by substrate specificity and cyclic nucleotide dependence into two categories. One peak of protein kinase activity has the characteristics reported for rhodopsin kinase (category one); it phosphorylates only bleached rhodopsin, and its activity is not affected by light, exogenous adenosine cyclic 3',5'--monophosphate (cAMP), guanosine cyclic 3',5'-monophosphate (cGMP), or a protein kinase inhibitor from skeletal muscle. Rhodopsin kinase has an apparent molecular weight of 68 000. The second category of kinase includes two peaks of activity which are stimulated severalfold by cAMP or cGMP but not by light. These protein kinases phosphorylate soluble proteins including histones and a protein kinase substrate prepared from rat intestine but not rhodopsin. The two peaks elute from DEAE-cellulose with 0.09 and 0.20 M KCl, suggesting that they are similar respectively to type I and type II cyclic nucleotide dependent protein kinases that have been characterized in other tissues. The activity of type I kinase is variable and much less than that of the type II enzyme; its molecular weight was not determined. The type II protein kinase has an apparent molecular weight of 165 000. This study confirms that different protein kinase enzymes catalyze selectively the phosphorylation of bleached rhodopsin and soluble proteins, and it repudiates the speculation in a previous publication [Farber, D. B., Brown, B. M., & Lolley, R. N. (1979) Biochemistry 18, 370-378] that a single protein kinase might catalyze both phosphorylation reactions. 相似文献