首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pitfall traps were exposed between February 1993 andSeptember 1994 every 4th to 6th week near the highwater mark in a Ria Formosa salt marsh (Portugal).With only a few exceptions, peracarid crustaceansaccounted for more than 95% of the individualscaught. Three amphipod species (Orchestiagammarellus(Pallas), Orchestia mediterraneaCosta, Talorchestia deshayesii(Audouin)) and3 isopod species (Tylos ponticus(Arcangeli),Halophiloscia couchi(Kinahan) and Porcellio lamellatus(Uljanin) Budde-Lund) wereidentified. In general, these species were most activefrom spring to autumn.Data collected included information on growth rate,life expectancy and timing of reproduction. Theamphipods displayed more opportunistic life-historypatterns with high growth rates, reproductive activityduring most of the year, early sexual maturity andrelatively short life expectancies. The isopods weremore persistent with slower growth rates, morerestricted reproductive periods and longer lifeexpectancies.There is no indication in the literature that most ofthese species are particularly common in salt marshes.In addition, peracarid crustaceans are not mentionedas dominant taxa in most studies of salt marsh fauna.We suggest that the peracarids play an important rolein the degradation of organic matter in salt marshesand hypothesize that the high numbers of peracaridsfound in Ria Formosa is due to the high contributionof leaf shedding plants.  相似文献   

2.
Crustaceans are second intermediate hosts to several microphallid species (Trematoda). Some of these parasites are potentially pathogenic or manipulative. A laboratory experiment was performed to assess the impact of microphallids on the survival, growth and fecundity of Cyathura carinata, a protogynous hermaphroditic isopod, widespread within European estuaries. For nearly 12 weeks, experimental populations of infected and non-infected isopods were kept at 25 °C. C. carinata carrying microphallid cysts showed higher mortality rates than non-infected specimens and were not able to produce embryos. The reduced fecundity of infected isopods could be caused by parasite-induced castration and/or by mating failure due to behavioural modifications in one of the sexes. It might also be associated with lower growth rates and lower moulting frequencies, since infected C. carinata were significantly smaller than the non-infected after 9 weeks. This may imply a setback for the isopods to achieve sexual maturity (which may also affect the population sex ratio) and for females to lay their eggs in the marsupia. Regardless of the mechanisms involved, microphallids may have severe consequences for their host populations, through negative effects on survival, growth and fecundity. For species with direct development, such as C. carinata, parasite-induced reproduction failure may contribute to temporal fluctuations of abundance. Based on the present results, it is recommended to include parasites as an important factor influencing host populations from shallow-water ecosystems.  相似文献   

3.
Soil salinity and the salinity of trophic resources may alter the osmoregulatory processes of arthropod, challenging the smooth regulation of body water, and, ultimately, survival. The intra and extracellular build-up of osmolytes represent a common strategy to attenuate acute hyperosmotic stress in several arthropod species. In the present study, we aimed to determine the impact of substrate and trophic resource salinities on salt tolerance in the female wolf spider, Arctosa fulvolineata, which is considered a specialist salt marsh species. We evaluated adult female survival and egg laying, and quantified the osmo-induced accumulation of compatible solutes (GC-MS). Three concentrations of substrate salinity were tested (0‰, 35‰ and 70‰) under three trophic conditions (starved spiders, spiders fed with salt prey [intertidal amphipods] and spiders fed with unsalted prey [freshwater amphipods]). We found no support for diet preferences in female A. fulvolineata, which exhibited similar predation rates on freshwater and marine amphipods. Survival and egg-laying were significantly impaired when female A. fulvolineata were exposed to hypersaline conditions for 12days. Our results showed an increase in the level of several compatible solutes when spiders were exposed for 12days to saline conditions. For instance, α-alanine, β-alanine, arginine, asparagine, aspartate, homoserine, glutamine, glycine, proline and serine levels were 4-10 times higher under hypersaline conditions. The osmo-induced accumulation of amino acids may increase the osmolality of body fluids, thus enhancing the smooth regulation of body fluids and survival ability of wolf spider under extreme saline conditions.  相似文献   

4.
Primate life histories are strongly influenced by both body and brain mass and are mediated by food availability and perhaps dietary adaptations. It has been suggested that folivorous primates mature and reproduce more slowly than frugivores due to lower basal metabolic rates as well as to greater degrees of arboreality, which can lower mortality and thus fecundity. However, the opposite has also been proposed: faster life histories in folivores due to a diet of abundant, protein-rich leaves. We compared two primate taxa often found in sympatry: Asian colobines (folivores, 11 species) and Asian macaques (frugivores, 12 species). We first described new data for a little-known colobine (Phayre's leaf monkeys, Trachypithecus phayrei crepusculus) from Phu Khieo Wildlife Sanctuary, Thailand. We then compared gestation periods, ages at first birth, and interbirth intervals in colobines and macaques. We predicted that heavier species would have slower life histories, provisioned populations would have faster life histories, and folivores would have slower life histories than frugivores. We calculated general regression models using log body mass, nutritional regime, and taxon as predictor variables. Body mass and nutritional regime had the predicted effects for all three traits. We found taxonomic differences only for gestation, which was significantly longer in colobines, supporting the idea of slower fetal growth (lower maternal energy) compared to macaques and/or advanced dental or gut development. Ages at first birth and interbirth intervals were similar between taxa, perhaps due to additional factors (e.g., allomothering, dispersal). Our results emphasize the need for additional data from wild populations and for establishing whether growth data for provisioned animals (folivores in particular) are representative of wild ones.  相似文献   

5.
Summary The hypothesis that faeces recycling in isopods evolved as an adaption to facilitate maintenance of an adequate copper balance in terrestrial environments is examined. Experimental observations on the consumption, absorption and growth rates of Porcellio scaber fed Betula pendula leaf litter varying in copper content and extent of microbial decay are reported. Preventing the isopods from reingesting their faeces caused a reduction in the growth rates of experimental animals fed their natural low copper diet but also of those fed copper enriched diets. When the availability of copper in the primary food was increased consumption of the litter decreased and growth rates were significantly reduced. These results suggest that copper is not normally a critically limiting nutrient for terrestrial isopods.When the primary diet was supplemented with shredded carrot, faeces deprivation did not cause a decrease in growth rates. These experimental animals gained weight significantly faster than controls fed decaying leaf litter alone.Faeces formed a significantly greater proportion of the diet when the animals were fed freshly fallen rather than decayed litter.We conclude a) that enhanced microbial activity in the faeces increases their nutrient status in such a way that some coprophagy is necessary in order to optimize overall nutrient uptake, and b) that theability to vary the extent to which faeces are recycled in response to differences in food quality is important in that it introduces greater flexibility into the feeding strategies of these generalist macro-decomposers.  相似文献   

6.
The salt marsh harvest mouse (Reithrodontomys raviventris) is an endangered species, endemic to the marshes of the San Francisco Bay, California, USA. This species is thought to feed primarily on pickleweed (Salicornia pacifica), although its diet is poorly understood, and a large proportion of remaining habitat for salt marsh harvest mice is managed for non-pickleweed vegetation to provide habitat for waterfowl. Using 2 sets of cafeteria trials, we tested food preferences of the salt marsh harvest mouse when offered a variety of plants and invertebrates from the Suisun Marsh, Solano County, California. In a set repeated menu, and unique seasonal menus, salt marsh harvest mice showed strong preferences for food types commonly grown for waterfowl, and also for non-native plants; in contrast, pickleweed was the most preferred during only some of the set and some of the seasonal trials. These results suggest that salt marsh harvest mice have a more flexible diet than previously thought, and will allow land managers in areas such as the Suisun Marsh to promote the growth of plants that provide foods that are preferred by both waterfowl and salt marsh harvest mice. © 2019 The Authors. The Journal of Wildlife Management published by Wiley Periodicals, Inc. on behalf of The Wildlife Society.  相似文献   

7.
The effects of intrinsic (sex, maturity stage and body size) and extrinsic (depth and region) factors on the diet of Bathyraja macloviana, in the south‐west Atlantic Ocean, were evaluated using a multiple‐hypothesis modelling approach. Bathyraja macloviana fed mainly on polychaetes followed by amphipods, isopods and decapods. Effects of intrinsic and extrinsic factors on diet composition of this species were found. The consumption of polychaetes had a humped relationship with total length (LT), and isopods and decapods increased with increasing LT. Immature individuals preyed on amphipods more heavily than mature individuals. Furthermore, region and depth had an important effect on the consumption of isopods, decapods and amphipods. Such ontogenetic changes and spatial patterns may provide insights into understanding the regulatory mechanisms of marine communities.  相似文献   

8.
Transitroides morsei new genus, new species, is described from late Oligocene Early Miocene amber deposits of Chiapas Province from southern Mexico. This new taxon is the first known fossil member of the amphipod family Talitridae and superfamily Talitroidea. It appears intermediate between regional extant palustral (salt‐marsh) genera and fully terrestrial landhoppers of the genus Caribitroides. These beetle‐like crustaceans form a significant part of the forest‐floor leaf‐litter communities in some tropical parts of the globe. Extant terrestrial amphipods occur in south‐central Mexico and adjacent rain forest habitats in Central America and the Caribbean. Their occasional use of arboreal habitats in search for decaying organic matter, which serves as food, explains their occurrence in fossilized resin.  相似文献   

9.
Summary In the field, Spinachia fed on four types of prey; copepods, isopods, mysids and amphipods. As fish size increased, mysids gradually succeeded amphipods as the most important food type in the diet. Prey dimensions and morphometry of the fish's mouth most accurately predicted capture efficiency for amphipods, whereas for mysids capture efficiency was determined by the prey's escape response and the fish's fast-start capability. Responses to model prey revealed the ability of fish to differentiate among contrasting prey characteristics, resulting in the adoption of appropriate predatory tactics. Amphipods were associated with a shorter gut evacuation time than mysids, although approximately equal proportions of energy were absorbed from each. Similar rations of mysids and amphipods were required to satiate fish. The lower energy content per unit dry mass of amphipods was off set by their lower water content. From pre-digestive behaviour, we predicted that mysids were more profitable than amphipods, and this was reflected in the fish's choice. Conversely, incorporating the net rate of energy uptake by the gut led us to predict that amphipods were more profitable. Although physiological constraints clearly influence the net rate of energy uptake, it appears that dietary preferences are based on pre-digestive predatory behaviour and hence on time minimisation.  相似文献   

10.
During coastal wetland restoration, foundation plant species are critical in creating habitat, modulating ecosystem functions, and supporting ecological communities. Following initial hydrologic restoration, foundation plant species can help stabilize sediments and jump‐start ecosystem development. Different foundation species, however, have different traits and environmental tolerances. To understand how these traits and tolerances impact restoration trajectories, there is a need for comparative studies among foundation species. In subtropical and tropical climates, coastal wetland restoration practitioners can sometimes choose between salt marsh and/or mangrove foundation species. Here, we compared the early life history traits and environmental tolerances of two foundation species: (1) a salt marsh grass (Spartina alterniflora) and (2) a mangrove tree (Avicennia germinans). In an 18‐month study of a recently restored coastal wetland in southeastern Louisiana (USA), we examined growth and survival along an elevation gradient and compared expansion and recruitment rates. We found that the rapid growth, expansion, and recruitment rates of the salt marsh grass make it a better species for quickly establishing ecological structure at suitable elevations. The slower growth, limited expansion, and lower recruitment of the mangrove species show its restricted capacity for immediate structural restoration, especially in areas where it co‐occurs with perennial salt marsh species. Our findings suggest that the structural attributes needed in recently restored areas can be achieved sooner using fast‐growing foundation species. Following salt marsh grass establishment, mangroves can then be used to further assist ecosystem development. This work highlights how appropriate foundation species can help jump‐start ecosystem development to meet restoration objectives.  相似文献   

11.
Garfish, Belone belone (L.), were collected from commercial fishermen between May and September of 1987 from around the Swedish coast. Fish belonging to the year classes of 1983, 1984 and 1985 dominated the catch, with very few fish from the year classes of 1980, 1981 and 1982. Maturity stages and condition were investigated, and estimates of fecundity calculated; these ranged from 2193 to 10804 eggs per ripe female. Examination of gut contents showed fish, especially juvenile clupeids and gasterosteids, as well as isopods and amphipods, to be the most important components of their diet. Garfish populations from both the Baltic and the west coasts were parasitized by copepods of the genus Caligus . A study of meristic characteristics showed a significant difference between the number of vertebrae in fish from the Baltic and those captured on the west coast of Sweden.  相似文献   

12.
Functional responses of estuarine fish species to environmental perturbations such as wetland impoundment, changes in water quality, and sediment accretion are investigated. The study focuses on the feeding, growth and habitat use by California killifish (Fundulus parvipinnis), topsmelt (Antherinops affinis), and juvenile California halibut (Paralichthys californicus) in impacted coastal wetlands to provide an ecological basis for guidance on the management and restoration of these ecosystems. The ecology of California killifish, Fundulus parvipinnis, is closely tied with the marsh surface, which they access at high tide to feed and grow. Field estimates of food consumption show that killifish can increase their food intake by two-fold to five-fold by adding marsh surface foods to their diet. Bioenergetics modeling predicts that killifish can grow over an order of magnitude faster if they add intertidal marsh surfaces to their subtidal feeding areas. Tidal inlet closures and increased marsh surface elevations due to sediment accretion can restrict killifish access to the marsh surface, affecting its growth and fitness. An open tidal inlet and tidal creek networks that allow killifish to access the marsh at high tide must be incorporated into the restoration design. Topsmelt and California halibut are also adversely affected by tidal inlet closures. Food consumption rates of topsmelt are 50% lower when the tidal inlet is closed, compared to when the estuary is tidally-flushed. Tidal inlet closures inadvertently induce variations in water temperature and salinity and negatively affect growth of juvenile California halibut. Tidal creek networks which consist of channels and creeks of various orders are also important to halibut. Large halibut (>200 mm TL) inhabit deeper, high order channels for thermal refuge, while small halibut (<120 mm TL) are abundant in lower order channels where they can feed on small-sized prey which are typically less abundant in high order channels. Maintaining an open tidal inlet, implementing sediment management programs and designing coastal wetlands with tidal creek networks adjacent to intertidal salt marsh habitat (for fish access) are key elements that need to be considered during the planning and implementation of coastal wetland restoration projects.  相似文献   

13.
The choice of food plants often assumes critical importance for a herbivore. Although many studies have investigated host‐plant choice behavior, few have examined preferences (vs. growth and survival) at multiple stages of the life cycle, notwithstanding the importance of identifying the critical stage(s) in an animal’s life history. Fern moths Herpetogramma theseusalis (Lepidoptera: Crambidae) provide an excellent opportunity to test host‐plant choice at several stages. Fern moth larvae feed on distantly related ferns, sensitive Onoclea sensibilis and marsh fern Thelypteris palustris, and adults oviposit on both species. We examined newly hatched larvae, overwintered larvae and ovipositing females to test hypotheses predicting when host‐plant choice takes place (overwintering and mobility hypotheses: overwintering stage determines choice of substrate vs. most mobile stage chooses) and the basis for choice (optimal oviposition and enemy‐free space hypotheses: resource producing highest fecundity vs. lowest losses to enemies). We also evaluated the hypothesis that host‐associated fitness trade‐offs explain host specialization. Only ovipositing females, the most mobile stage, exhibited a clear preference (for marsh fern), consistent with the mobility hypothesis. However, their preference for marsh fern fits neither the optimal oviposition hypothesis nor the enemy‐free space hypothesis; although some larvae initially grew faster on marsh fern, adults reared from the two ferns did not differ significantly in mass and experienced marginally lower parasitism on sensitive fern. Thus, we found no host‐associated fitness trade‐offs. Overwintering losses in marsh fern plots exceeded those in sensitive fern, and mixed plots supported the most overwintered larvae. Preference for marsh fern suggests that early success drives host‐plant choice, an advantage that later disappears. Temporal variability may prevent closer fits to the hypotheses, because both ferns provide the moths with acceptable resources throughout their life cycles.  相似文献   

14.
The aim of this study was to evaluate the effects of sex, maturity stage, and body size on the diet of the Magellan skate, Bathyraja magellanica, in the Southwest Atlantic off Argentina, by examining stomach contents using a multiple hypothesis modeling approach. Relationships between the number of prey and sex, maturity stage, and total length (TL) were assessed by built generalized linear models (GLM). Furthermore, we tested whether there was a threshold size at which B. magellanica started or quit consuming a given prey. The overall diet of B. magellanica was mainly consisted of teleosts, followed by amphipods, isopods, and decapods. Ontogenetic diet shifts were independent of sex and maturity stage. However, discrete shifts in diet with TL were found, with individuals larger than 554 and 623 mm TL ceasing to consume amphipods and isopods, respectively. The consumption of teleosts progressively increased with increasing predator size. Likewise, ontogenetic shifts in foraging behavior were also observed with smaller individuals showing specialization on amphipods with larger specimens consuming teleosts. These results confirm that ontogenetic shifts in diet of B. magellanica are more a function of predator size rather than any other life-history traits. We propose that these food shifts are probably related to morphological limitations and abilities associated with feeding habits of skate, so when specimens of B. magellanica reach an optimum body size, they may have access to higher quality trophic resources. Our results suggest that evaluating the importance of life-history stages on the feeding habits of a species is essential for understanding how that species exploits food resources, which, in turn, is an important factor in developing a suitable plan of marine ecosystem conservation.  相似文献   

15.
The nutritional morphology, physiology and ecology of terrestrial isopods (Isopoda: Oniscidea) is significant in two respects. (1) Most oniscid isopods are truly terrestrial in terms of being totally independent of the aquatic environment. Thus, they have evolved adaptations to terrestrial food sources. (2) In many terrestrial ecosystems, isopods play an important role in decomposition processes through mechanical and chemical breakdown of plant litter and by enhancing microbial activity. While the latter aspect of nutrition is discussed only briefly in this review, I focus on the evolutionary ecology of feeding in terrestrial isopods. Due to their possessing chewing mouthparts, leaf litter is comminuted prior to being ingested, facilitating both enzymatic degradation during gut passage and microbial colonization of egested faeces. Digestion of food through endogenous enzymes produced in the caeca of the midgut glands (hepatopancreas) and through microbial enzymes, either ingested along with microbially colonized food or secreted by microbial endosymbionts, mainly takes place in the anterior part of the hindgut. Digestive processes include the activity of carbohydrases, proteases, dehydrogenases, esterases, lipases, arylamidases and oxidases, as well as the nutritional utilization of microbial cells. Absorption of nutrients is brought about by the hepatopancreas and/or the hindgut epithelium, the latter being also involved in osmoregulation and water balance. Minerals and metal cations are effectively extracted from the food, while overall assimilation efficiencies may be low. Heavy metals are stored in special organelles of the hepatopancreatic tissue. Nitrogenous waste products are excreted via ammonia in its gaseous form, with only little egested along with the faeces. Nonetheless, faeces are characterized by high nitrogen content and provide a favourable substrate for microbial colonization and growth. The presence of a dense microbial population on faecal material is one reason for the coprophagous behaviour of terrestrial isopods. For the same reason, terrestrial isopods prefer feeding on decaying rather than fresh leaf litter, the former also being more palatable and easier to digest. Acceptable food sources are detected through distance and contact chemoreceptors. The 'quality' of the food source determines individual growth, fecundity and mortality, and thus maintenance at the population level. Due to their physiological adaptations to feeding on and digesting leaf litter, terrestrial isopods contribute strongly to nutrient recycling during decomposition processes. Yet, many of these adaptations are still not well understood.  相似文献   

16.
Seasonal changes in the distribution and feeding behaviour of dark-bellied brent geese Branta b. bernicla (L.) and the biomass of their food plants were studied in three successive winters on the Norfolk coast. The data was used, in conjunction with published information, to show how depletion, productivity and mortality of food plants drive the pattern of habitat switching in this species. It is then possible to explain the habitat shifts observed over the last 35 years and predict future changes. On arrival, geese fed first on algal beds and then on salt marsh, grass and arable fields before returning to feed entirely on the salt marsh in spring. The biomass of green algae, and subsequently the salt marsh vegetation, declined during the autumn and this could be attributed to depletion through goose grazing and natural mortality. As depletion occurred the geese fed more intensively, for a greater percentage of time and with an increasing pace rate, the net result, however, was a declining intake rate (as measured by defaecation rate). The algal biomass at which the geese switched from the algal beds to salt marsh was consistent between years, with heavy storm-induced loss of algae in one year resulting in an earlier switch. That the timing of habitat switches may be explained by depletion of food plants was further supported by historical data: the number of brent geese wintering at the site has increased dramatically over the last 30–35 years and the time of switching from algal beds to salt marsh and from salt marsh to salt marsh and fields has become progressively earlier, as expected from the increased depletion. The expected further increase in brent goose numbers will increase the rate of depletion of intertidal vegetation so that the switches between habitats will be more rapid and the geese will move inland earlier and remain inland longer. The expected increase in the brent goose population will thus result in a disproportionate increase in the levels of conflict between brent geese and agriculture.  相似文献   

17.
To clarify the feeding habits of reed fishes, the gut contents of 13 fish species collected in a Phragmites australis belt in Lake Shinji were examined. Six species showed ontogenetic and/or seasonal changes in food use patterns. Smaller individuals generally preyed on small planktonic items (e.g., calanoid and cyclopoid copepods) or small crustaceans (gammaridean amphipods), subsequently changing to other prey items (e.g., mysids and filamentous algae) with growth. The most important dietary items for the reed fish assemblage comprised planktonic copepods, gammaridean amphipods and mysids. However, the relative importance of these changed seasonally, gammaridean amphipods being the most important in autumn and winter, and planktonic copepods and mysids the most important in spring and in summer. Cluster analysis based on dietary overlaps showed that the reed fish assemblage comprised five feeding guilds (planktonic-copepod, mysid, gammaridean-amphipod, filamentous-algae, and detritus feeders). Of these, the three former guilds were the most abundantly represented, whereas detritivores were represented by a single species.  相似文献   

18.
1. Accumulation of organic material by the zebra mussel Dreissena polymorpha is assumed to be the source of a biodeposition‐based food web. However, only little is known about the importance of the biodeposited material as a food source and its contribution to increased abundances of macroinvertebrates in the presence of D. polymorpha. 2. Feeding, assimilation and growth of the amphipods Gammarus roeselii and Dikerogammarus villosus on food sources directly and indirectly associated with D. polymorpha (biodeposited material and chironomids) and on conditioned alder leaves were measured. The stoichiometry of carbon, nitrogen and phosphorus of the diets was measured as an important determining factor of food quality. 3. Chironomids had the highest nitrogen and phosphorus contents, alder leaves were depleted in nitrogen and phosphorus, and the stoichiometry of biodeposited material was intermediate. 4. Both amphipod species had highest feeding rates and assimilation efficiencies on chironomids. Gammarus roeselii fed more on biodeposited material than on alder leaves, but assimilation efficiencies were similar; D. villosus also had similar feeding rates and assimilation efficiencies on the two diets. 5. Both amphipod species had highest growth rates on chironomids and lowest growth rates on alder leaves. Both grew at intermediate rates on biodeposited material of D. polymorpha. The growth rates of the amphipod species were related to food stoichiometry. Overall, the invasive D. villosus grew faster than the indigenous G. roeselii. 6. Food resources directly and indirectly associated with D. polymorpha are potential diets for amphipods, providing further evidence for a D. polymorpha biodeposition‐based food web.  相似文献   

19.
The goal of this study was to compare the feeding rates of Balloniscus sellowii on leaves of different decomposition stages according to their phenolic and flavonoid content. Leaves from the visually most abundant plants were offered to isopods collected from the same source site. Schinus terebinthifolius,the plant species consumed at the highest rate, was used to verify feeding rates at different decomposition stages. Green leaves were left to decompose for one, two, or three months, and then were offered to isopods. The total phenolic and flavonoid contents were determined for all decomposition stages. Consumption and egestion rates increased throughout decomposition, were highest for two-month-old leaves, and decreased again in the third month. The assimilation rate was highest for green leaves. The mode time of passage through the gut was two hours for all treatments. Ingestion of leaves occurred after two or three days for green leaves, and on the same day for one-, two- and three-month-old leaves. The speed of passage of leaves with different decomposition stages through the gut does not differ significantly when animals are fed continuously. However, it is possible that the amount retained in the gut during starvation differs depending on food quality. The digestibility value was corrected using a second food source to empty the gut of previously ingested food, so that all of the food from the experiment was egested. The digestibility value was highest for green leaves, whereas it was approximately 20% for all other stages. This was expected given that digestibility declines during decomposition as the metabolite content of the leaves decreases. The phenolic content was highest in the green leaves and lowest in three-month-old leaves. The flavonoid content was highest in green leaves and lowest after two months of decomposition. Animals ingested more phenolics when consumption was highest. The estimated amount of ingested flavonoids followed the same trend as assimilation rate. Flavonoids accounted for a large portion of total phenolics, and the estimated amount of flavonoids consumed was similar for one-, two- and three-month-old leaves. Our results suggest that the high phenolic and flavonoid concentrations in green leaves are feeding deterrents. Isopods may discriminate among concentrations of flavonoids and modify their consumption rates to maintain their intake of flavonoids when ingesting leaves with lower flavonoid content.  相似文献   

20.
Six species of isopods and 18 species of amphipods were collectedin the neuston of the Bay of Fundy and adjacent waters. Collectionswere made over a grid of stations covering 2.4x104 km2 duringthree spring, three summer and two autumn surveys. No isopodsand only five species of amphipods were found in spring surveys.Isopods and amphipods were diverse and plentiful in the neustonin summer and autumn. Dominant isopods were Idotea baltica andI.metallica, and dominant amphipods were Calliopius laeviusculusand Parathemisto gaudichaudi. Amphipods and isopods reach theneuston of the Bay of Fundy in three ways. Idotea metallica,the only euneustonic species present, was probably advectedinto the Bay of Fundy from southern waters in summer, and didnot appear to overwinter in the Bay. Most species, includingI.baltica, were collected with drifting littoral vegetation,and we suggest that transport by surface currents is an importantfactor in dispersal of some shoreline crustaceans. Midwaterplankton, such as Parathemisto gaudichaudi, reached the neustoneither by advection in upwelling waters or by an extension oftheir normal diel vertical distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号