首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The seasonal and spatial dynamics of two groups of macroalgae, drift algae and rhizophytes, commonly found in tropical seagrass meadows were studied. The aim of this study was to provide insight into how freshwater discharges may be altering seagrass-dominated nearshore tropical habitats. Species composition, biomass, and percent cover of macroalgae were collected at six Thalassia testudinum König dominated sites within Biscayne Bay, Florida, representing three salinity regimes: canal-influenced, natural sheet-flow, and oceanic conditions. Mean annual salinities in these three regimes correspond to 10, 25 and 35 psu, respectively, with much greater variability in the canal and sheet-flow regimes, than in the oceanic condition. There were distinct changes in the composition of the macroalgal community along this salinity gradient. Drift algae (Chondria spp., Laurencia spp.) were most commonly found at canal-disturbed sites (10–85 g m−2), while rhizophytic calcareous green algae (Halimeda spp., Penicillus spp.) were most abundant at the higher salinity oceanic sites (20–105 g m−2). Seasonal patterns exhibited by the two groups differed also, with drift algae being more abundant in the cooler dry-season months, while rhizophytic algae were more abundant during the warmer wet-season months. These periods of higher abundance correlated with higher growth rates (drift = 2.3% day−1, rhizophytes = 0.85% day−1) measured in representative species for each group. Grazing rates on drift algae were found to be low for tropical habitats and did not differ much between canal (0.44% h−1) and oceanic sites (0.42% h−1).  相似文献   

2.
In this study we examine the influence of non-monsoon sediment arrival on the high-diversity SE Indian seagrass meadows of the Palk Bay and the Gulf of Mannar. We used a gradient-based approach to examine the influence of increasing sediment loads on species composition and shoot density. In addition, for the ubiquitous seagrass (Cymodocea serrulata), we tested the influence of sediment on its biomass and productivity. We identified three sites in Palk Bay and four sites in Gulf of Mannar (SE India) along a gradient of sediment input. At each of the seven locations, sediment traps were deployed to measure sedimentation rates. Nine seagrass cores were taken systematically along 50 m transects at a constant sub-tidal depth to measure shoot density and biomass. A few shoots of C. serrulata were marked to estimate the above ground seagrass growth rate. Our results indicate that sedimentation rates that ranged from 8.6 to 62.4 mg DW cm−2 d−1 could not explain species composition of the meadow or shoot density of the observed species. C. serrulata was, by far, the most abundant species and present in all sediment conditions. Sedimentation rates did not alter shoot elongation rates in C. serrulata, ranging from 1.54 ± 0.29 SD to 0.25 ± 0.02 SD cm d−1, but in contrast, increased vertical rhizome elongation rate. This increase was reflected in an increase in below ground biomass along the sediment gradient (R2 = 0.582, p = 0.01). C. serrulata appears to be able to adapt to the sediment dynamics in this area by allocating resources to rhizomes and roots to counteract burial and stabilizing sediments. Given that siltation is one of the most important threats to seagrass meadows, understanding the species-specific adaptive mechanisms of seagrass species in these high-sediment, high diversity South Asian meadows is an important first step in ensuring their long-term survival and functioning.  相似文献   

3.
Increases in sediment and drift algae accumulations have caused degradation of coastal lagoons worldwide. It is well known that these factors are stressors of seagrass beds, sediment fauna and coral reefs. However, little is known about the impacts on temperate hard-bottom assemblages within soft-bottom lagoons. To test if accumulations of sediment and drift algae (stress) affected recruitment of sessile oyster reef organisms, we constructed cages in Hog Island Bay, Virginia that trapped drifting macroalgae (≈ 2.7 kg WW m2) and facilitated sedimentation (≈ 7 mm per 2-3 month). The stress treatments and unstressed controls were placed in front, between, and behind reefs (position) to represent wave exposed (≈ 0.3 m, windy conditions), current exposed (≈ 0.2 m s 1, peak tide) and protected (≈ 0 m, 0.0 m s 1) habitats. The percentage cover of recruited taxa onto bricks was mapped 4 times during a 1-year period. There were strong significant effects of stress on the total assemblage, plant (but not animal) richness, total plant and animal cover, and cover of the most common taxa. Unstressed bricks had high plant richness, high animal and plant cover, and high cover of the oyster Crassostrea virginica, the alien algae Gracilaria vermiculophylla and Codium fragile, the alga Agardhiella subulata, and high to medium cover of the opportunistic algae Ulva curvata and Enteromorpha spp. In comparison, sediment-stressed bricks had low plant richness, low animal and plant cover, and low cover of C. virginica, G. vermiculophylla, C. fragile, A. subulata, U. curvata and Enteromorpha spp. Similarly, algae-stressed bricks also had low cover of animals, C. virginica, G. vermiculophylla, C. fragile, and A. subulata, but intermediate plant richness and plant cover and high cover of U. curvata and Enteromorpha spp. Although reef position caused significant multivariate results, this factor was clearly less important than the stress factor. Our study shows that accumulations of sediments and drift algae have an adverse impact on sessile temperate reef organisms, reducing richness and abundance, but favoring a few small opportunistic taxa. As the reef-generating oysters themselves performed poorly under these stressors, the long-term impact of the causes of these stressors, eutrophication and urbanization, is likely to be diminished reefs with cascading adverse effects on sessile reef organisms.  相似文献   

4.
The coastal lagoons of south Florida, U.S., experience fluctuating levels of sedimentation and salinity and contain only a subset of the coral species found at the adjacent reefs of the Florida Reef Tract. The dominant species within these habitats is Siderastrea radians, which can reach densities of up to 68 colonies m- 2 and is commonly exposed to salinity extremes (< 10 psu to > 37 psu) and chronic sediment burial. In this study, we document the patterns of resistance and resilience of S. radians to sub-optimal salinity levels and sediment burial in a series of short-term, long-term, acute, chronic, single-stressor, and sequential-stressor experiments.S. radians displayed remarkable patterns of resistance and resilience and mortality was documented only under prolonged (≥ 48 h) continuous exposure to salinity extremes (15 and 45 psu) and chronic sediment burial. A reduction in photosynthetic rates was documented for all salinity exposures and the decrease in photosynthesis was linearly related to exposure time. Negative impacts on photosynthetic rates were more severe under low salinity (15 psu) than under high salinity (45 psu). Corals exposed to intermediate, low-salinity levels (25 psu), exhibited initial declines in photosynthesis that were followed by temporary increases that may represent transient acclimatization patterns. The impacts of sediment burial were influenced by the duration of the burial period and ranged from a temporary reduction in photosynthesis to significant reductions in growth and tissue mortality. The maintenance of P/R ratios > 1 and the rapid (< 24 h) recovery of photosynthetic rates after burial periods of 2-24 h indicates that S. radians is able to resist short-term burial periods with minor physiological consequences. However, as burial periods increase and colonies become covered at multiple chronic intervals, sediment burial resulted in extended photosynthetic recovery periods, reduced growth, and mortality. Under normal conditions (i.e., no salinity stress), S. radians was very effective at clearing sediments, and > 50% of the colonies' surface area was cleared within 1 h. However, clearing rates were influenced by physiological status, and prior exposure to sub-optimal salinity significantly reduced the clearing rates of stressed colonies.The response of S. radians to disturbance documented in this study characterizes this species as highly stress-tolerant and provides an explanation for its present high abundance in both reef and marginal environments. Moreover, the key life-history attributes of S. radians, such as brooding reproductive strategy, small colony size, high stress-tolerance, and high recruitment rates, suggest the potential for this species to replace reef-building taxa under increased disturbance scenarios in Florida and elsewhere in the region.  相似文献   

5.
A two-dimensional biomarker approach, using stable isotopes (δ13C, δ15N) and fatty acids, was used to evaluate differences both amongst and within benthic primary producer types (seagrass, fleshy red algae, calcareous red algae, brown algae, and seagrass periphyton) that are typical of the nearshore, temperate Australian region. The primary source of variance (as examined by permutational ANOVA) for all biomarkers examined was amongst primary producer types, as opposed to amongst species within type. δ13C showed a clear separation (Monte Carlo p < 0.05) between seagrass (range of means = −10.1 to −14.0‰) and macroalgae (−14.6 to −25.2‰), but could not differentiate amongst the algal types examined. Similarly, distinct δ15N signatures (p < 0.05) were found only for seagrass (range of means = 3.6-4.1‰) versus calcareous red algae (4.6-5.5‰), with all other types overlapping in their mean δ15N values. In contrast, multivariate analysis of fatty acid data (using Canonical Analysis of Principal coordinates; CAP) distinguished not only between seagrass and macroalgae, but also between red and brown algae (and to a limited extent between the calcareous and fleshy red algal types). The principal unsaturated fatty acids in the samples were C20 polyunsaturates (found primarily in the macroalgae and periphyton), and C18 mono- and polyunsaturates, with high proportions of 18:2n-6 and 18:3n-3 typical of the seagrasses. The C18 monounsaturate 18:1n-7 was one of the most diagnostic compounds for the red algae examined, being present in very low amounts in seagrass and virtually absent in the brown algae. Conversely, brown algae were high in 18:4n-3, with 20:4n-3 particularly diagnostic of the kelp Ecklonia radiata. In contrast to stable isotopes, fatty acids helped distinguish different algal groups, thereby providing support that a two-dimensional approach using stable isotopes and fatty acids is likely to provide the most useful tool to distinguish primary producers in food web structure.  相似文献   

6.
Patches of dead seaweeds can deposit, bury, and age into the sediment. Decomposition and release of algal-derived nutrients can influence patterns of distribution of benthic organisms. Here, I investigated how small-scale burial of Ulva spp. affected spatial variation of macrofauna in intertidal sediment. I deliberately buried Ulva detritus under the surface of 50 × 50 cm2 patches of sediment in three intertidal flats of the Oosterschelde estuary (The Netherlands). Results showed that there was no accumulation of particulate organic carbon and nitrogen in the sediment at the scales examined. The biomass of microphytobenthos did not show any change and there was evidence that grazing was important all over the study area. Burial did not alter composition and diversity of macrofauna, but some animals (Corophium volutator, Eteone spp. and Scoloplos armiger) had less numbers in the plots where detritus was buried than in the controls. These findings showed that burial of macroalgal detritus does not represent a major source of variation at the scales examined. It is suggested that in these sediments, recycling of detritus is fast and it buffers the effects of excess organic matter in the system.  相似文献   

7.
Discrimination of stable isotopes of carbon (δ13C) and nitrogen (δ15N) was examined for the amphipod Allorchestes compressa Dana using controlled laboratory experiments. Amphipods were fed exclusively on single diets (fresh or decomposed macroalgae or seagrass) for three weeks. Macrophyte type (i.e. seagrass, brown algae or red algae) had a greater influence on the stable isotope ratios of A. compressa than the state of decomposition of the macrophyte material. The experiments revealed that δ13C in A. compressa stabilised at values lower than those of the diets, which contrasts to the general assumption that consumer-diet discrimination of δ13C ranges from 0 to + 1‰. Amphipods fed on seagrass yielded the lowest δ13C values, which were 9 to 10‰ lower than their diet, while amphipods fed on macroalgae had values 2 to 4‰ lower than their diet. In addition, contrary to the general assumption that consumer-diet discrimination of δ15N ranges from + 3 to + 5‰, discrimination of δ15N was as low as − 1 and + 1 when A. compressa was fed on brown and red algae, respectively, but as high as + 3‰ when fed on seagrass. The results show that discrimination of stable isotopes of carbon and nitrogen can vary considerably depending on the food source, demonstrating that validation of assumptions about discrimination are critical for interpreting stable isotope data from field studies.  相似文献   

8.
One of the largest contiguous seagrass ecosystems in the world is located on the shallow continental shelf adjacent to the west coast of Florida, USA and is comprised of seasonally ephemeral Halophila decipiens meadows. Little is known about the demography of the west Florida shelf H. decipiens, which may produce 4.56 × 108 g C day−1 or more during the peak growing season. We documented seagrass distribution, biomass, and productivity, and density of sediment seed reserves, seedlings, flowers and fruits on the southeastern portion of the west Florida shelf by sampling along a transect at three stations in 10, 15, and 20 m water depth. Biomass, flower, fruit, seedling, and seed bank densities tended to be highest at stations in 10–15 m water depth and lowest at 20 m. Flowers and fruit were most prevalent during summer cruises (June and August 1999, July 2000). Seedling germination occurred during summer, fall (October 1999), and winter (January 2000) sampling events, with the highest seedling densities present during the winter. Seed bank density remained consistent through time. A Category I hurricane with sustained winds of 120 km h−1 passed over the stations, but only limited impact on H. decipiens biomass was observed. The presence of a persistent seed bank provides for recovery after storm disturbance, annual reestablishment of populations, and continual maintenance of the 20,000 km2 of deep water seagrass habitat present on the west Florida shelf.  相似文献   

9.
Although the Manila clam (Ruditapes philippinarum) culture grounds are occasionally located in Zostera japonica beds along the coasts of Korea, plant responses to the clamming activity have not been reported for this seagrass species. Intense Manila clam harvesting activity took place in the intertidal Z. japonica bed during April 2004. The Z. japonica bed at the study site has been monitored since January 2003. Thus, this study provided a unique opportunity to compare the structure of the Z. japonica population before and after the clamming activity, which was conducted for approximately 1 week in April 2004. All Z. japonica shoots were removed and buried in the sediment immediately after the clamming activity. However, a few shoots were found at the disturbed area in July 2004, 3 months after the clamming activity. By September 2004, 5 months after the disturbance, shoot density and biomass were almost recovered to the levels reported before the clamming activity. No Z. japonica seedlings were observed when the shoot density rapidly increased in August and September 2004, 4-5 months after the disturbance, because revegetation of the disturbed seagrass bed has occurred before the seed germination time which is typically winter or early spring in this area. Thus, the initial rapid revegetation of the disturbed area occurred via asexual reproduction through new shoot formation from the buried below-ground tissues. The reproductive shoot density and reproductive efforts of Z. japonica were significantly higher after the disturbance relative to the levels recorded before the disturbance, and the duration of the fertile period was approximately three times longer following the clamming activity. The belowground biomass after the disturbance was also significantly higher than that before the disturbance. These results suggest that Z. japonica allocated more energy to sexual reproduction, as well as the maintenance of belowground tissues, to persist their population under unstable environmental conditions.  相似文献   

10.
The discovery of natural and natural-based compounds has resulted in its application as an alternative to synthetic algicides to control harmful algae in aquatic systems. Of the many natural-product-based algicides, sorgoleone, a natural plant product from Sorghum bicolor root exudates has been investigated for its controlling effect on different algal species and its acute fish toxicity. Growth of the blue green algal species Microcystis aeruginosa Kützing was completely inhibited by the crude methanol extract of sorghum root at 20 μg mL−1. The most noticeable inhibition was observed in the bioassay of n-hexane soluble extract, where 98% growth inhibition occurred in M. aeruginosa at the concentration of 1.25 μg mL−1. Sorgoleone very effectively controlled blue green algae inhibiting 97% of M. aeruginosa at 0.5 μg mL−1 and 99% of Anabaena affinis Lemmermann at 4 μg mL−1. In contrast, inhibition of the green algae species Chlorella vulgaris Beijerinck and Scenedensmus spp. at 16 μg mL−1 sorgoleone was 87 and 68%, respectively. There were no mortalities or adverse effects observed in any of the fish exposed to water control, solvent control, and a nominal concentration of 1 μg mL−1 during the test period. The no observed effect concentration (NOEC) value was 1.5 μg mL−1 for the tested fish (O. latipes). Sorgoleone can be considered as an effective and an ecologically and environmentally sustainable approach to controlling harmful algae.  相似文献   

11.
An experimental study was conducted in Tampa Bay, FL to examine the response to disturbance of two co-occurring subtidal plants: the alga Caulerpa prolifera and the seagrass Halodule wrightii (Ascherson). Some recent studies have called into question the assumption that fast-growing rhizoidal Caulerpa species have the potential to outcompete and rapidly replace local seagrasses. In the Fall of 2002 an abrupt appearance of Caulerpa prolifera was noted in a shallow embayment in Tampa Bay previously dominated by seagrasses. Natural disturbance events were simulated by excavating 0.5 × 0.5 m plots in an area with monospecific C. prolifera and mixed C. prolifera and H. wrightii. Above and below-ground biomass were removed, and recovery of above-ground cover into the newly created gaps was monitored over 15 months. In addition to measuring the recovery of both species, the spatial pattern of Caulerpa recovery from the simulated disturbances was also analyzed. Simulated gaps were rapidly (5-8 months, depending on sampling resolution) and exclusively reoccupied by C. prolifera, with the recovery occurring predominantly via lateral expansion from gap edges rather than colonization by fragments. Therefore, while rhizoidal algae may or may not be able to supplant existing seagrasses by overgrowth or other forms of direct competition, disturbance events that remove seagrass and create bare areas may allow C. prolifera to replace seagrasses over time via preemption of space should an algal bloom such as this be persistent.  相似文献   

12.
The epiphytic component of four monospecific seagrass beds from Papua New Guinea was studied structurally and functionally. The floristic composition and abundance of the epiphytes on leaves of four seagrass species (Cymodoceoideae) showed considerable variation, but on all four seagrass species, the same algae were among the five quantitatively most important epiphytes: encrusting coralline algae, Cyanophyta, Ceramium gracillimum (Harv.) Mazoyer, Polysiphonia savatierii Hariot and Audouinella spp. The temporal pattern of the epiphytic algae showed more or less the same features on the four seagrass species.Annual mean biomass of epiphytes and seagrass leaves ranged from 54 g ADW m?2 in a community of Cymodocea rotundata Ehrenb. and Hempr. ex Aschers. to 169 g ADW m?2 in a community of Syringodium isoetifolium (Aschers.) Dandy. The contribution of the epiphytic component to the total above-ground biomass ranged from 22 to 24%. Productivity of epiphytes was highest on leaves of Halodule uninervis (Forssk.) Aschers. (2.12 g ADW m?2 sediment surface day?1) and the epiphytic community contributed 35–44% of the total above-ground production of these four seagrass communities.  相似文献   

13.
Few works have examined the relative contributions of habitat variables to the distribution of coral reef urchins. In the present study, the spatial distribution of two common urchin species (Diadema setosum and Echinometra mathaei) was studied in the fringing reefs of two urban bays in New Caledonia (South Pacific). Urchins were surveyed at 105 stations with contrasted habitat structure/anthropic disturbance levels; 32 environmental variables (water/sediment characteristics, reef structuring species) were considered. Moderate densities were generally observed at station scale (mean 0.5 individuals m− 2). The combination of univariate and multivariate techniques highlighted patchy distributions for Diadema as well as Echinometra, with distinct species/habitat associations; environmental gradients occurring within the bays did not seem to influence the species patterns. For Diadema, the spatial variability was better explained by sediment type than by biotic cover; increasing densities occurred across habitats with larger sediment sizes and decreasing coral complexity/macrophytes cover. In contrast, the distribution of E. mathaei exhibited weak relationships with habitat variables. In coral reefs, small-scale heterogeneity may thus be responsible for most of urchins spatial variability.  相似文献   

14.
Three areas of the Indian River Lagoon, Florida (USA) were surveyed to show seasonal changes in the distribution and biomass of macroalgae and seagrass. Acoustic seafloor discrimination based on first and second echo returns of a 50 kHz and 200 kHz signal, and two different survey systems (QTCView and ECHOplus) were used. System verification in both the field and a controlled environment showed it was possible to distinguish acoustically between seagrass, sparse algae, and dense algae. Accuracy of distinction of three classes (algae, seagrass, bare substratum) was around 60%. Maps were produced by regridding the survey area to a regular grid and using a nearest-neighbor interpolation to provide filled polygons. Biomass was calculated by counting pixels assigned to substratum classes with known wet-weight biomass values (sparse algae 250 g m− 2, dense algae 2000 g m− 2, seagrass 100 g m− 2) that were measured in the field. In three study areas (Melbourne, Sebastian Inlet, and Cocoa Beach), a dependence of algal biomass on depth and season was observed. Seagrass most frequently occurred in water less than 1 m deep, and in November, seagrass beds tended to be covered by dense algae that also extended up- and downstream of shoals in the Lagoon. In March, the pattern was similar, with the exception that some areas of previously dense algae had started thinning into sparse algae. Macrophyte biomass was lowest in May in the Melbourne and Cocoa Beach study areas, with the opposite situation in the Sebastian Inlet study area. In May, seagrass areas were largely devoid of dense algae and most algae accumulations were sparse. In August, dense algae covered large areas of the deep Lagoon floor while shoals were largely free of algae or had only sparse cover. We suggest this summer pattern to reflect moribund algae being washed from the shallows to deeper channels and from there being removed from the lagoonal ecosystem either through tidal passages into the open ocean or by degradation and breakdown in situ. The differences between the study areas indicate high spatial and temporal variability in biomass and distribution of macrophyte biomass in the Indian River Lagoon.  相似文献   

15.
The tidal flats of the Banc d’Arguin, Mauritania, are covered by vast beds of Zostera noltii. At low tide these seagrass beds appear to be interspersed with partly vegetated, circular pools of 5–25 m diameter. Between February and May 2001 we described these pools and studied their possible origin. Several hypotheses regarding the origin have been developed. The first group of hypotheses assumes that the pools result from erosion activity. Since human disturbance of seagrass beds at the Banc d’Arguin is virtually non-existent, causes should be found in natural bed disturbances and/or tide or wave action. Therefore, small gaps, simulating holes dug by the crab Callinectes marginatus, were made to see if they would further erode by tidal currents or waves. The experiments showed no erosion. Neither we found support for other hypotheses assuming erosion to be the cause of circular pools. The alternative group of hypotheses stated that sedimentation on the flats would be responsible. We conclude that accretion of creek remnants is the most likely process behind the development of the pools; this conclusion is based on both mapping of the pattern of pools, the sediment profile in and around the pools and the distribution of seagrass biomass. Also the disturbance experiments showed bed accretion rather than bed erosion and support this hypothesis.  相似文献   

16.
Thirteen seagrass beds located over a 80-km range in the brackish waters of SW, Finland, northern Baltic Sea were investigated in order to determine the environmental variables important for univariate community measures and for number, composition and redundancy of functional groups of benthic macrofauna. For species assemblages, fetch and shore angle were the best explanatory variables, followed by sediment granulometry (fine gravel) and then sediment organics. Similarly, fetch, shore angle and Zostera marina shoot density were the best explanatory variables for functional group patterns. Small (< 50 m2) inner-archipelago beds were functionally and structurally equal to the most extensive (500 to > 1000 m2) seagrass beds in the study area. Community measures (density, number of species and diversity) and functional diversity (number of functional groups) equalled or exceeded levels previously recorded in deeper, non-vegetated communities in the northern Baltic Sea. In comparison with marine seagrass assemblages, the total number of species and number of species per function were low. However, species density and derived diversity measures (Shannon-Wieners index H′) equalled or exceeded those reported for other seagrass ecosystems. It is concluded that in terms of seagrass infauna, the Baltic Sea should not be regarded species poor, as is often generally stated, and that conservation initiatives and management strategies should consider both minor as well as more extensive occurrences of seagrasses in coastal waters.  相似文献   

17.
A fully factorial pond experiment was designed using two irradiance levels and two phosphorus concentrations to investigate irradiance and phosphorus effects on the growth of three submerged macrophytes: common waterweed (Elodea canadensis), Eurasian water milfoil (Myriophyllum spicatum), and water stargrass (Zosterella dubia). Results revealed that higher irradiance (230 μmol s−1 m−2 vs. 113 μmol s−1 m−2 at 2 m depth) had significant positive effects on submerged macrophyte growth: increasing the number of individuals (seven-fold), the number of species surviving (two-fold), aboveground biomass (11-fold), belowground biomass (10-fold), and total biomass (11-fold), whereas elevated sediment phosphorus (2.1–3.3 mg g−1 vs. 0.7 mg g−1 dry sediment) did not have any significant impact. However, responses to irradiance differ among macrophyte species due to their morphology and physiology. Waterweed increased in numbers of individuals and total biomass under high irradiance while biomass per individual remained the same (∼0.02 g). The other species increased both in numbers and biomass per individual. These results suggest that increased irradiance rather than decreased phosphorus loading is the main driver of changes in submerged macrophytes in North American temperate lake ecosystems.  相似文献   

18.
The clonal structure of the tropical seagrass Thalassia testudinum was studied at 16 sites along the Mexican Atlantic coast, situated in back-reef, shallow coastal and lagoon habitats. Thalassia testudinum was highly clonal, with an overall average clonal richness (R) of 0.55. The largest genet found in this study extended throughout the sampling area (∼230 m), with an estimated max age almost reaching 600 years. Lagoons with higher nutrient availability reflected by nutrient content of leaves (mean leaf C:N ratio 11.4) and lower hydrodynamic regimes reflected by the percentage of fine sediments (on average 23%), sustained larger genets of T. testudinum (mean of the largest genets over populations was 167.3 m) than the shallow coastal areas (C:N 12.3, 6.2% fine sediment, mean largest genet 10.3 m) and the more oligotrophic back-reefs (C:N 16.3, 2.7% fine sediment, mean largest genet 6.5 m). Population genetic analysis showed different levels of clonality, genotypic diversity and spatial genetic relatedness for this seagrass per habitat, with the lagoons presenting much lower levels of clonal diversity than the other two habitats.  相似文献   

19.
Egeria najas Planch. is the dominant native submersed macrophyte of the Upper Paraná River in Brazil, while Hydrilla verticillata (L.f.) Royle has recently invaded this area. From January 2006 to December 2007, comprising two annual flood cycles, we conducted monthly surveys at two river stations and two lakes connected to the river within this stretch of the Paraná River, aiming to understand how the hydrological regime influences the distribution and abundance of these native and invasive Hydrocharitaceae species. Hydrilla did not develop in the lakes, possibly due to the elevated proportion of organic matter in the sediment (∼10% DW). However, the exotic species dominated the river sites apparently suppressing E. najas. In the lakes E. najas reached a maximum biomass of 628 ± 82 g DW m−2 but did not surpass 333 ± 83 g DW m−2 in the river, where H. verticillata peaked at 1415 ± 255 g DW m−2. Macrophyte biomass development was greatest during low-water periods, with transparent water and high temperatures. Floods probably affected submersed macrophytes (especially in 2007, when an extreme flood caused by an El Niño Southern Oscillation (ENSO) event occurred) via sediment movement and plant scouring (uprooting) effects, coupled with reduced water transparency. Macrophyte recovery started soon after the (less intense) 2006 flood but was delayed in 2007. In the river recovery started five months after the major flood, but in the lakes no significant plant regeneration was found even nine months after the disturbance. E. najas and H. verticillata started regeneration practically at the same time but H. verticillata had much higher rates of biomass increase.  相似文献   

20.
Our study aim was to elucidate the effects of different species of submerged macrophytes and biomass levels on sediment resuspension. For this purpose experiments were conducted in four different enclosures (Potamogeton maackianus enclosure-PE, Vallisneria spinulosa enclosure-VE, manipulated enclosure-ME and aquaculture enclosure-AE). A sediment trap method was employed and the experiments were conducted from summer to winter in a shallow freshwater lake located in central China. A total of 813, 1277, 613 and 693 g DW m−2 of sediment was resuspended in VE, AE, ME and PE, respectively. Our results showed that P. maackianus was more effective than V. spinulosa in restraining sediment resuspension. Macrophytes reached their maximum effectiveness of reducing resuspension at a certain species-specific biomass threshold above which biomass effects on resuspension were negligible. The threshold biomass was estimated as 300 g m−2 for P. maackianus. Accordingly, within a lake management and aquaculture aspect, we conclude that as long as biomass does not fall below this threshold its consumption will not influence sediment resuspension. In the mid-lower reaches of the Yangtze River macrophyte coverage protects the lake sediment against adverse effects of monsoon wind; if the vegetation is eroded aquaculture sediment resuspension increases significantly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号