首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Degradation of nonane by bacteria from Antarctic marine sediment   总被引:4,自引:0,他引:4  
Powell  S. M.  Bowman  J. P.  Snape  I. 《Polar Biology》2004,27(10):573-578
A microbial enrichment culture tolerant of petroleum hydrocarbons was developed from sediment collected near Casey Station, Antarctica. To select cold-adapted microbes that would degrade diesel, enrichments were cultured at 0°C during six successive transfers to fresh medium, with Special Antarctic Blend diesel (SAB) as the sole carbon source. Biodegradation of components of the SAB was then measured in microcosms inoculated with the enrichment culture. After 16 weeks, the amount of biodegradation was small, but nonane (a C9 alkane) had degraded significantly more in inoculated microcosms than in sterile controls. DNA was then extracted from the enrichment cultures and a fragment of the 16S rRNA gene was amplified for denaturing gradient gel electrophoresis. Bands were excised from the gel and, following sequencing, were found to belong to the genera Pseudomonas and Colwellia.  相似文献   

2.
To investigate the impacts of synthetic lubricants on Antarctic infaunal communities, a field experiment was setup near Australia's Casey Station, East Antarctica. Two types of synthetic lubricants were tested: an ‘Unused’ and ‘Used’ conventional synthetic lubricant, and an alternative marketed as ‘biodegradable’. Clean defaunated sediment was contaminated with the lubricants, decanted into trays, and deployed by divers onto the seabed in a randomised block design. Sediments were sampled 5 and 56 weeks after deployment. After 5 weeks, benthic assemblages that had recruited to the lubricant contaminated sediments were significantly different to those in ‘Control’ sediments, and differences were more pronounced after 56 weeks. Total number of individuals did not significantly differ between treatments after 5 weeks. However, after 56 weeks total individuals in the ‘Control’ sediments were significantly greater than in the contaminated sediments. Nototanais antarcticus (tanaid) and to a lesser extent Monoculodes sp. (gammarid), Tanaid sp. IV and Eudorella sp. (cumacean) had significantly higher abundances in the control sediments after 56 weeks compared to the contaminated sediments. Copepods numerically dominated the benthic assemblages at both sampling times; however, their abundance did not significantly differ across treatments. The community recruiting to the contaminated sediments remained different from that in the ‘Control’ sediments for the duration of the experiment (1 year). The ‘biodegradable’ lubricant was just as environmentally harmful to the Antarctic infauna as the ‘conventional’ lubricant currently used at Australia's Antarctic stations. Our results demonstrate that changes to recruitment are one of the potential environmental consequences of a lubricant spill to Antarctic benthic communities, and reinforce the importance of preventative oil spill management and effective clean-up procedures. Further monitoring of this field experiment will provide much needed information about the long-term impacts by synthetic lubricants in the Antarctic marine environment.  相似文献   

3.
AIMS: To identify native Antarctic bacteria capable of oil degradation at low temperatures. METHODS AND RESULTS: Oil contaminated and pristine soils from Signy Island (South Orkney Islands, Antarctica) were examined for bacteria capable of oil degradation at low temperatures. Of the 300 isolates cultured, Pseudomonas strain ST41 grew on the widest range of hydrocarbons at 4 degrees C. ST41 was used in microcosm studies of low temperature bioremediation of oil-contaminated soils. Microcosm experiments showed that at 4 degrees C the levels of oil degradation increased, relative to the controls, with (i) the addition of ST41 to the existing soil microbial population (bioaugmentation), (ii) the addition of nutrients (biostimulation) and to the greatest extent with (iii) a combination of both treatments (bioaugmentation and biostimulation). Addition of water to oil contaminated soil (hydration) also enhanced oil degradation, although less than the other treatments. Analysis of the dominant species in the microcosms after 12 weeks, using temporal temperature gradient gel electrophoresis, showed Pseudomonas species to be the dominant soil bacteria in both bioaugmented and biostimulated microcosms. CONCLUSIONS: Addition of water and nutrients may enhance oil degradation through the biostimulation of indigenous oil-degrading microbial populations within the soil. However, bioaugmentation with Antarctic bacteria capable of efficient low temperature hydrocarbon degradation may enhance the rate of bioremediation if applied soon after the spill. SIGNIFICANCE AND IMPACT OF THE STUDY: In the future, native soil bacteria could be of use in bioremediation technologies in Antarctica.  相似文献   

4.
A multivariate approach was used to evaluate the significance of synthetic oil-induced perturbations in the functional activity of sediment microbial communities. Total viable cell densities, ATP-biomass, alkaline phosphatase and dehydrogenase activity, and mineralization rates of glucose, protein, oleic acid, starch, naphthalene, and phenanthrene were monitored on a periodic basis in microcosms and experimental ponds for 11 months, both before and after exposure to synthetic oil. All variables contributed to significant discrimination between sediment microbial responses in control communities and communities exposed to a gradient of synthetic oil contamination. At high synthetic oil concentrations (4,000 ml/12 m3), a transient reduction in sediment ATP concentrations and increased rates of oleic acid mineralization were demonstrated within 1 week of exposure. These transient effects were followed within 1 month by a significant increase in rates of naphthalene and phenanthrene mineralization. After initial construction, both control and synthetic oil-exposed microbial communities demonstrated wide variability in community activity. All experimental microbial communities approached equilibrium and demonstrated good replication. However, synthetic oil perturbation was demonstrated by wide transient variability in community activity. This variability was primarily the result of the stimulation of polyaromatic hydrocarbon mineralization rates. In general, microcosms and pond communities demonstrated sufficient resiliency to recover from the effects of synthetic oil exposure within 3 months, although polyaromatic hydrocarbon mineralization rates remained significantly elevated.  相似文献   

5.
6.
Antarctic microbial diversity: the basis of polar ecosystem processes   总被引:3,自引:0,他引:3  
Microorganisms are fundamental to the functioning of Antarctic ecosystems. Although microbial biomass can be immense in Southern Ocean blooms and freshwater cyanobacterial mats, species richness is generally more restricted than it is in temperate regions. However, there are representatives of a broad variety of taxa providing a diverse gene pool. Species diversity may be low while metabolic flexibility is high so that a few strains can provide most necessary functions. In this context, biodiversity is the sum of biological potential. This Special Issue highlights aspects of microbial ecology that can be studied only in Antarctica or which are defined most clearly in Antarctic habitats. Relatively simple microbial communities, or conspicuous species within them, can be used as indicators of microbial processes and responses to environmental change. These include the palaeological record of benthic diatoms and response of soil cyanobacterial communities to regional warming and UV-B stress. The climatic conditions and relict babitats of the Antarctic dry valleys are a valuable analogue for detecting microbial life and diversity on Mars. The global microbial biodiversity initiative Diversitas and international Antarctic networks such as BIOTAS (Biological Investigations of Terrestrial Antarctic Systems) harness taxonomic and ecophysiological expertize to understand better these unique polar ecosystems.  相似文献   

7.
Sponge-associated microbial communities include members from the three domains of life. In the case of bacteria, they are diverse, host specific and different from the surrounding seawater. However, little is known about the diversity and specificity of Eukarya and Archaea living in association with marine sponges. This knowledge gap is even greater regarding sponges from regions other than temperate and tropical environments. In Antarctica, marine sponges are abundant and important members of the benthos, structuring the Antarctic marine ecosystem. In this study, we used high throughput ribosomal gene sequencing to investigate the three-domain diversity and community composition from eight different Antarctic sponges. Taxonomic identification reveals that they belong to families Acarnidae, Chalinidae, Hymedesmiidae, Hymeniacidonidae, Leucettidae, Microcionidae, and Myxillidae. Our study indicates that there are different diversity and similarity patterns between bacterial/archaeal and eukaryote microbial symbionts from these Antarctic marine sponges, indicating inherent differences in how organisms from different domains establish symbiotic relationships. In general, when considering diversity indices and number of phyla detected, sponge-associated communities are more diverse than the planktonic communities. We conclude that three-domain microbial communities from Antarctic sponges are different from surrounding planktonic communities, expanding previous observations for Bacteria and including the Antarctic environment. Furthermore, we reveal differences in the composition of the sponge associated bacterial assemblages between Antarctic and tropical-temperate environments and the presence of a highly complex microbial eukaryote community, suggesting a particular signature for Antarctic sponges, different to that reported from other ecosystems.  相似文献   

8.
Investigation of microbial communities of Antarctica soils is a very important field of research that expands our knowledge of microbial participation in primary soil formation and specific features of their communities in extreme habitats, and it is of considerable interest in directed search of for microorganisms as potential biotechnological objects. The results of long-term (2012–2017) complex studies on soil microbial communities of the Russian East Antarctica polar stations at Shirmakher oasis (Novolazarevskaya station), the Larsemann Hills (Progress station), and the Tala Hills (Molodezhnaya station) are presented in this review. The assessment of biomass of soil microorganisms by the methods of direct microscopy has been carried out for the first time for this region. The general amount of microbial biomass is small; the fungi dominate (77–99%). The unique features of Antarctic soils are the high content and morphological diversity of small forms of microorganisms: fungi are presented by mainly single-celled structures (small spores and yeasts), while bacteria by ultrafine (filtering) forms. At the same time, microorganisms can significantly contribute to such important ecological functions of soil as the emission of greenhouse gases, especially during the warm season with the stable positive temperatures of the soil. This should be considered during creation of models and forecasts of global warming. The use of various isolation techniques for the analysis of the soil microbial population, together with the succession approach, significantly expand the information about taxonomic diversity of cultivated fungi and bacteria in Antarctica soils.  相似文献   

9.
The 2-ethyhexyl nitrate (2-EHN) is currently added to diesel oil to improve ignition and boost cetane number. The biodegradability of this widely used chemical needed to be assessed in order to evaluate the environmental impact in case of accidental release. In aerobic liquid cultures, biodegradation of 2-EHN was assessed in biphasic liquid cultures using an inert non-aqueous phase liquid such as 2,2,4,4,6,8,8-heptamethylnonane (HMN) as solvent for the hydrophobic substrate. 2-EHN was found to be biodegradable by microbial communities from refinery wastewater treatment plants, but was recalcitrant to those of urban wastewater treatment facilities. Out of eighteen hydrocarbon-polluted or non-polluted soil samples, six microbial populations were also able to degrade 2-EHN. However, strain isolation from these microbial populations was rather difficult suggesting close cooperation between members of the microbial communities. Specific axenic bacterial strains selected for their ability to catabolize recalcitrant-hydrocarbons were also tested for their capacity to degrade 2-EHN. In liquid cultures with HMN phase as non-aqueous phase liquid, some Mycobacterium austroafricanum strains were found to degrade and mineralize 2–EHN significantly.  相似文献   

10.
Aim  There is no previous direct evidence for the occurrence of lacustrine refuges for invertebrate fauna in Antarctica spanning the Last Glacial Maximum (LGM). In the absence of verified LGM lacustrine refuges many species are believed to result from Holocene dispersal from sub-Antarctic islands and continents further north. If freshwater lake environments were present throughout the LGM, extant freshwater species may have been associated with Antarctica prior to this glacial period. This study looked at faunal microfossils in a sediment core from an Antarctic freshwater lake. This lake is unusual in that, unlike most Antarctic lakes, the sediment record extends to c . 130,000 yr bp , i.e. prior to the LGM.
Location  Lake Reid, Larsemann Hills, East Antarctica (76°23' E; 69°23' S).
Methods  Palaeofaunal communities in Lake Reid were identified through examination of faunal microfossils in a sediment core that extended to c . 130,000 yr bp .
Results  Ephippia and mandibles from the cladoceran Daphniopsis studeri and loricae of the rotifer Notholca sp. were found at all depths in the sediment, indicating that these two species have been present in the lake for up to 130,000 years. Copepod mandibles were also present in the older section of the core, yet were absent from the most recent sediments, indicating extinction of this species from Lake Reid during the LGM.
Main conclusion  The presence of D. studeri and Notholca sp. microfossils throughout the entire Lake Reid core is the first direct evidence of a glacial lacustrine refugium for invertebrate animals in Antarctica, and indicates the presence of a relict fauna on the Antarctic continent.  相似文献   

11.
The diversity and composition of Antarctic cryptoendolithic microbial communities in the Mars-analogue site of Helliwell Hills (Northern Victoria Land, Continental Antarctica) are investigated, for the first time, applying both culture-dependent and high-throughput sequencing approaches. The study includes all the domains of the tree of life: Eukaryotes, Bacteria and Archaea to give a complete overview of biodiversity and community structure. Furthermore, to explore the geographic distribution of endoliths throughout the Victoria Land (Continental Antarctica), we compared the fungal and bacterial community composition and structure of endolithically colonized rocks, collected in >30 sites in 10 years of Italian Antarctic Expeditions. Compared with the fungi and other eukaryotes, the prokaryotic communities were richer in species, more diverse and highly heterogeneous. Despite the diverse community compositions, shared populations were found and were dominant in all sites. Local diversification was observed and included prokaryotes as members of Alphaproteobacteria and Crenarchaeota (Archaea), the last detected for the first time in these cryptoendolithic communities. Few eukaryotes, namely lichen-forming fungal species as Lecidella grenii, were detected in Helliwell Hills only. These findings suggest that geographic distance and isolation in these remote areas may promote the establishment of peculiar locally diversified microorganisms.  相似文献   

12.
Preliminary characterization of a biosurfactant-producing Azotobacter chroococcum isolated from marine environment showed maximum biomass and biosurfactant production at 120 and 132 h, respectively, at pH 8.0, 38°C, and 30‰ salinity utilizing a 2% carbon substrate. It grew and produced biosurfactant on crude oil, waste motor lubricant oil, and peanut oil cake. Peanut oil cake gave the highest biosurfactant production (4.6 mg/mL) under fermentation conditions. The biosurfactant product emulsified waste motor lubricant oil, crude oil, diesel, kerosene, naphthalene, anthracene, and xylene. Preliminary characterization of the biosurfactant using biochemical, Fourier transform infrared spectroscopy, and mass spectral analysis indicated that the biosurfactant was a lipopeptide with percentage lipid and protein proportion of 31.3:68.7.  相似文献   

13.
Changes in the rates of microbiological degradation of kerosene, diesel fuel, and fuel oil under the effect of UV irradiation were estimated by testing the respiratory activity of microbial communities. The strongest inhibitory effect was observed upon simultaneous UV irradiation of both natural water and petroleum products. Concentrations of CO2 in the microbial communities (microcosms) decreased from 6.7 to 3.6 vol. % upon oxidation of kerosene, from 5.9 to 0.8 vol. % upon oxidation of diesel fuel, and from 5.7 to 0.05 vol. % upon oxidation of fuel oil.  相似文献   

14.
Criteria selected for screening of biosurfactant production by Bacillus megaterium were hemolytic assay, bacterial cell hydrophobicity and the drop-collapse test. The data on hemolytic activity, bacterial cell adherence with crude oil and the drop-collapse test confirmed the biosurfactant-producing ability of the strain. Accordingly, the strain was cultured at different temperatures, pH values, salinity and substrate (crude oil) concentration in mineral salt medium to establish the optimum culture conditions, and it was shown that 38°C, 2.0% of substrate concentration, pH 8.0 and 30‰ of salt concentration were optimal for maximum growth and biosurfactant production. Laboratory scale biosurfactant production in a fermentor was done with crude oil and cheaper carbon sources like waste motor lubricant oil and peanut oil cake, and the highest biosurfactant production was found with peanut oil cake. Characterization of partially purified biosurfactant inferred that it was a glycolipid with emulsification potential of waste motor lubricant oil, crude oil, peanut oil, diesel, kerosene, naphthalene, anthracene and xylene.  相似文献   

15.
Biotic communities and ecosystem dynamics in terrestrial Antarctica are limited by an array of extreme conditions including low temperatures, moisture and organic matter availability, high salinity, and a paucity of biodiversity to facilitate key ecological processes. Recent studies have discovered that the prokaryotic communities in these extreme systems are highly diverse with patchy distributions. Investigating the physical and biological controls over the distribution and activity of microbial biodiversity in Victoria Land is essential to understanding ecological functioning in this region. Currently, little information on the distribution, structure and activity of soil communities anywhere in Victoria Land are available, and their sensitivity to potential climate change remains largely unknown. We investigated soil microbial communities from low- and high-productivity habitats in an isolated Antarctic location to determine how the soil environment impacts microbial community composition and structure. The microbial communities in Luther Vale, Northern Victoria Land were analysed using bacterial 16S rRNA gene clone libraries and were related to soil geochemical parameters and classical morphological analysis of soil metazoan invertebrate communities. A total of 323 16S rRNA gene sequences analysed from four soils spanning a productivity gradient indicated a high diversity (Shannon-Weaver values > 3) of phylotypes within the clone libraries and distinct differences in community structure between the two soil productivity habitats linked to water and nutrient availability. In particular, members of the Deinococcus/Thermus lineage were found exclusively in the drier, low-productivity soils, while Gammaproteobacteria of the genus Xanthomonas were found exclusively in high-productivity soils. However, rarefaction curves indicated that these microbial habitats remain under-sampled. Our results add to the recent literature suggesting that there is a higher biodiversity within Antarctic soils than previously expected.  相似文献   

16.
AIMS: The aim of the present study was to isolate and characterize a bacterium, strain EN3, capable of using diesel oil as a major carbon and energy source, and to analyse the enhancement of diesel oil degradation by this organism using synthetic mycolic acid (2-hexyl-3-hydroxyldecanoic acid). METHOD AND RESULTS: An actinomycete with the ability to degrade diesel oil was isolated from oil contaminated soil and characterized. The strain had phenotypic properties consistent with its classification in the genus Rhodococcus showing a 16S rRNA gene similarity of 99.7% with Rhodococcus baikonurensis DSM 44587(T). The ability of the characterized strain to degrade diesel oil at various concentrations (1000, 5000, 10 000 and 20 000 mg l(-1)) was determined. The effect of synthetic mycolic acid on the biodegradation of diesel oil was investigated at the 20 000 mg l(-1) concentration; the surfactant was added to the flask cultures at three different concentrations (10, 50 and 100 mg l(-1)) and degradation followed over 7 days. Enhanced degradation was found at all three concentrations of the surfactant. In addition, the enhancement of diesel oil degradation by other surfactants was observed. CONCLUSIONS: The synthetic mycolic acid has potential for the remediation of petroleum-contaminated sites from both an economic and applied perspective as it can stimulate biodegradation at low concentrations. SIGNIFICANCE AND IMPACT OF THE STUDY: This study showed that the synthesized mycolic acid can be used for potential applications in the bioremediation industries, for example, in oil spill clean-up, diesel fuel remediation and biostimulation.  相似文献   

17.
A high seasonality characterizes Antarctic environments, and generates marked differences in availability and composition of food for benthic filter feeders. During a year-round period at Potter Cove, Antarctica, algal pigment concentration (chlorophyll a) and organic matter were measured in water column and sediment samples. Chemical composition of gut contents of the ascidian Cnemidocarpa verrucosa was also analyzed. Despite the low standing stock, capture and absorption of organic matter were detected year-round, suggesting intake of other particles besides microalgae. The mechanism that provides food to the ascidians and epibenthic communities may be related to the supply of allochtonous particles, bottom resuspension events, and microbial community dynamics. Sea-ice cycles may affect food availability in terms of water-column mixing and benthic resuspension. The scarce primary production and the high amount of sedimented material are not limiting conditions in Potter Cove, which presents a rich ascidian community.  相似文献   

18.
The diversity and ecological distribution of cyanobacteria in the northern, deglaciated part of James Ross Island were studied during the Antarctic summer season 2005–2006. Seventy-five cyanobacterial morphotypes were observed in various habitats of this area. The identified cyanobacterial taxa belong to the characteristic and dominant types of coastal Antarctica, and majority of them appeared connected to special habitats and formed distinct populations and ecologically delimited communities. The results are compared and discussed with respect to phenotypically characterised cyanobacterial microflora of maritime Antarctica and to recent molecular analyses of cyanobacterial strains from different Antarctic regions. The existence of a specificity and characteristic composition of Antarctic cyanobacterial communities was demonstrated.  相似文献   

19.
On 28 January 1989 the Bahia Paraiso ran aground and sank near Palmer Station, Antarctica. At least 6.8 × 105 liters of diesel fuel arctic (DFA) were released into semi-enclosed Arthur Harbor and deposited in the nearby intertidal regions. Approximately 6 weeks later, a group of scientists was deployed to evaluate the impact of the oil spill on the surrounding coastal marine ecosystem.Microbial hydrocarbon oxidation potential (14CO2 evolved from 14C-labeled hexadecane) was detected throughout both the oil-impacted and control regions. Hexadecane was mineralized at extremely low rates (0.13–1.21 pmol g–1 sediment dry weight day–1); microbiological turnover time exceeded 2 years. The acute effects of DFA (measured over exposure periods of 3–7 days) on the metabolic activities of sedimentary microorganisms appear to be negligible even at seawater saturation concentrations of DFA. Long-term exposure (120 days) to varying concentrations of DFA resulted in significant decreases (>90%) in total ATP, but had either no effect or a slight stimulatory effect on metabolic activity and production. In contrast to planktonic microbial communities, increasing incubation temperatures of between 0 and 30°C had a positive effect on rates of metabolism and production of sedimentary assemblages. These results may influence the overall weathering rates of hydrocarbons deposited in the intertidal and supratidal regions of Arthur Harbor and other polar regions.  相似文献   

20.
The rapidly changing climate in Antarctica is impacting the ecosystems. Since records began, climate changes have varied considerably throughout Antarctica with both positive and negative trends in temperatures and precipitation observed locally. However, over the course of this century a more directional increase in both temperature and precipitation is expected to occur throughout Antarctica. The soil communities of Antarctica are considered simple with most organisms existing at the edge of their physiological capabilities. Therefore, Antarctic soil communities are expected to be particularly sensitive to climate changes. However, a review of the current literature reveals that studies investigating the impact of climate change on soil communities, and in particular nematode communities, in Antarctica are very limited. Of the few studies focusing on Antarctic nematode communities, long-term monitoring has shown that nematode communities respond to changes in local climate trends as well as extreme (or pulse) events. These results are supported by in situ experiments, which show that nematode communities respond to both temperature and soil moisture manipulations. We conclude that the predicted climate changes are likely to exert a strong influence on nematode communities throughout Antarctica and will generally lead to increasing abundance, species richness, and food web complexity, although the opposite may occur locally. The degree to which local communities respond will depend on current conditions, i.e., average temperatures, soil moisture availability, vegetation or more importantly the lack thereof, and the local species pool in combination with the potential for new species to colonize.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号