首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
According to the selfish herd hypothesis, animals can decrease predation risk by moving toward one another if the predator can appear anywhere and will attack the nearest target. Previous studies have shown that aggregations can form using simple movement rules designed to decrease each animal's Domain of Danger. However, if the predator attacks from outside the group's perimeter, these simple movement rules might not lead to aggregation. To test whether simple selfish movement rules would decrease predation risk for those situations when the predator attacks from outside the flock perimeter, we constructed a computer model that allowed flocks of 75 simulated fiddler crabs to react to one another, and to a predator attacking from 7 m away. We attacked simulated crab flocks with predators of different sizes and attack speeds, and computed relative predation risk after 120 time steps. Final trajectories showed flight toward the center of the flock, but curving away from the predator. Path curvature depended on the predator's size and approach speed. The average crab experienced a greater decrease in predation risk when the predator was small or slow moving. Regardless of the predator's size and speed, however, predation risk always decreased as long as crabs took their flock-mates into account. We conclude that, even when flight away from an external predator occurs, the selfish avoidance of danger can lead to aggregation.  相似文献   

2.
The selfish herd hypothesis predicts that aggregations form because individuals move towards one another, and that this movement will minimize predation risk as measured by the domain of danger. To test the predictions of the selfish herd hypothesis in the field, we videotaped the movements of sand fiddler crab, Uca pugilator, flocks being attacked by predators. After recording 12 attacks on crabs by shorebird and human attackers, we digitized the video, and determined the positions of crabs before and after being frightened. We estimated the time of panic initiation by the rapid increase in the crabs' velocity. Crab flocks became more cohesive after panic initiation. The frequency distribution of the crabs' domains of danger shifted significantly towards smaller domains after panic initiation. The median domain of danger was significantly lower after panic initiation than beforehand. Two other indices of aggregation also showed statistically significant increases in flock cohesion following panic initiation. We conclude that fiddler crab behaviour is consistent with the selfish herd hypothesis. Therefore, our results support the selfish herd hypothesis as an explanation for gregarious behaviour. Copyright 2002 The Association for the Study of Animal Behaviour. Published by Elsevier Science Ltd. All rights reserved.  相似文献   

3.
The phenomenon of group escape cannot be explained by an argument of risk dilution, applied to gregarious behaviour of passive prey whose risk of predation is equally shared by all group members (Hamilton, 1971). Instead, individuals at the tail of an escaping group suffer the bulk of the group’s predation risk, and thus have the highest incentive to desert it. Just because of this, desertion, in this case, may serve as a signal of vulnerability for the pursuing predator. Under wide conditions, it is therefore shown that the predator is always expected to prefer the chasing of a deserter, whenever it is observed. Consequently, an individual who finds himself at the tail of the herd must compare the risk of remaining there with that of deserting the herd and thereby becoming a likely target for predation. If the first risk is higher than the latter, the herd disperses; if the latter is higher, the herd cohesively follows the fastest individuals in its lead (we deal also with cases in which only part of the herd disperses). We see, however, that the question which risk is higher depends not only on the terrain, but also on the route of escape that is decided by the fastest members at the lead of the herd, those that are least likely to be caught. Concentrating on herds without family structure, we assume that the route of escape is selfishly chosen by these ad hoc leaders to minimize their own predation risk, regardless of the others’ welfare. However, the predation risk of the leader depends very much on the willingness of other herd members to follow him, thus providing a buffer between him and the pursuing predator. Consequently, when choosing an escape route, the leader has also to consider the cohesion of the herd, i.e., the reaction of slower individuals to his choice. Under some plausible conditions, this choice may force the herd to follow, while other conditions may lead to its dispersal. In some cases the leader may choose a route that serves the needs of the entire group, and sometime only those of its more vulnerable members. In other cases the leader may choose a route that sacrifices the weakest members, thereby improving the survival probability of the others.We employ a model of a k+1 players game, a single predator, and k heterogeneous prey individuals. The predator aims to maximize the probability of a successful catch, and each individual aims to minimize his probability of being caught.  相似文献   

4.
The origin and the evolutionary stability of cooperation between unrelated individuals is one of the key problems of evolutionary biology. In this paper, a cooperative defence game against a predator is introduced which is based on Hamilton's selfish herd theory and Eshel's survival game models. Cooperation is altruistic in the sense that the individual, which is not the target of the predator, helps the members of the group attacked by the predator and during defensive action the helper individual may also die in any attack. In order to decrease the long term predation risk, this individual has to carry out a high risk action. Here I show that this kind of cooperative behaviour can evolve in small groups. The reason for the emergence of cooperation is that if the predator does not kill a mate of a cooperative individual, then the survival probability of the cooperative individual will increase in two cases. If the mate is non-cooperative, then—according to the dilution effect, the predator confusion effect and the higher predator vigilance—the survival probability of the cooperative individual increases. The second case is when the mate is cooperative, because a cooperative individual has a further gain, the active help in defence during further predator attacks. Thus, if an individual can increase the survival rate of its mates (no matter whether the mate is cooperative or not), then its own predation risk will decrease.  相似文献   

5.
In this paper, we address the question of whether the presence of the burrowing crab Chasmagnathus granulatus affects the habitat use of the fiddler crab Uca uruguayensis. Field samples showed that the species have a disjoint spatial distribution. Male fiddler crab density decreased in zones with C. granulatus, however, female density increased. Male fiddler crabs avoided feeding on sediment affected by C. granulatus and were more preyed. Predation was higher during the fiddler crab reproductive season and, probably due to predation risk, males showed lower reproductive display in shared zones. Field experiments shows that when C. granulatus were excluded, densities of U. uruguayensis increased mainly due to an increase in density of males. Habitat differentiation of these species may be because C. granulatus affects U. uruguayensis in several ways, including direct predation, disturbance and behavioural changes associated to predation risk. Males and females are affected differentially probably because of the extreme sexual dimorphism of this crab species. Coloration on enlarged claw and waving activities are all factors that increase predation risk for male and the presence of only one feeding claw may increase sediment-mediated effects.  相似文献   

6.
It has been suggested that animals may escape attack from mobile parasites by aggregating in selfish herds. A selfish herd disperses the risk of being attacked among its members and the per individual risk of parasite infection should therefore decrease with increasing animal density through the encounter–dilution effect. Moreover, in a selfish herd, dominant and agile animals should occupy the best positions and thereby receive fewer attacks compared to lower ranked animals at the periphery. We tested these predictions on reindeer ( Rangifer tarandus tarandus ) parasitized by warble flies ( Hypoderma tarandi ). Warble flies oviposit their eggs on reindeer during summer and induce strong anti-parasitic behavioural responses in the herds. In this period, reindeer are sexually segregated; females and calves form large and dense herds while males are more solitary. After hatching, the warble fly larvae migrate under the skin of their host where they encyst. In the present study encysted larvae were counted on newly slaughtered hides of male calves and 1.5 year old males from 18 different reindeer herds in Finnmark, northern Norway with large contrasts in reindeer density. In reindeer, body mass is correlated with fitness and social status and we hypothesized that individual carcass mass reflected the animal's ability to occupy the best positions within the herd. Larval abundance was higher among the 1.5 year old males than among the calves. For calves we found in accordance with the selfish herd hypothesis a negative relationship between larval abundance and animal density and between larval abundance and body mass. These relationships were absent for the 1.5 year old males. We suggest that these differences were due to different grouping behaviour where calves and females, but not males, aggregated in selfish herds where they escaped parasitism.  相似文献   

7.
Single species aggregations are a commonly observed phenomenon. One potential explanation for these aggregations is provided by the selfish herd hypothesis, which states that aggregations result from individual efforts to reduce personnel predation risk at the expense of group-mates. Not all movement rules based on the selfish herd hypothesis are consistent with observed animal behavior. Previous work has shown that herd-like aggregations are not generated by movement rules limited to local interactions between nearest neighbors. Instead, rules generating realistic herds appear to require delocalized interactions. To date, it has been an open question whether or not the necessary delocalization can emerge from local interactions under natural selection. To address this question, we study an individual-based model with a single quantitative genetic trait that controls the influence of neighbors as a function of distance. The results indicate that predation-based selection can increase the influence of distant neighbors relative to near neighbors. Our results lend support for the idea that selfish herd behavior can arise from localized movement rules under natural selection.  相似文献   

8.
Interaction and habitat partition between the soldier crab Mictyris brevidactylus (prey) and the fiddler crab Uca perplexa (predator) were examined at a sandy tidal flat on Okinawa Island, Japan, where they co-occur. Both live in dense colonies. When the soldier crabs were released in the densely populated habitat of the fiddler crab, male fiddler crabs, which maintain permanent burrows in hard sediment, preyed on small soldier crabs and repelled large ones. Thus, the fiddler crabs prevented the soldier crabs from trespassing. It was also observed whether soldier crabs burrowed successfully when they were released 1) where soldier crab burrows just under the sand were abundant, 2) in a transition area between the two species, 3) an area without either species, and 4) where artificial tunnels simulated soldier crabs' feeding tunnels were made by piling up sand in the area lacking either species. In contrast to the non-habitat area, many soldier crabs burrowed in the sediment near the release point in the tunnel, transition and artificial tunnel areas. This indicates that the feeding tunnels on the surface attracted other crabs after emergence. When the large male fiddler crabs were transplanted into the artificial burrows made in soft sediment of the soldier crab habitat, all left their artificial burrows by 2 days. In the fiddler crab habitat, however, about one-third of the transplanted male fiddler crabs remained in the artificial burrows after 3 days. The soldier crabs regularly disturb the sediment by the up and down movement of their burrow (small air chamber) between tides. This disturbance probably prevents the fiddler crab from making and occupying permanent burrows. Thus, it appears that these crabs divide the sandy intertidal zone by sediment hardness and exclude each other by different means.  相似文献   

9.
Many animals respond to predation risk by forming groups. Evolutionary explanations for group formation in previously ungrouped, but loosely associated prey have typically evoked the selfish herd hypothesis. However, despite over 600 studies across a diverse array of taxa, the critical assumptions of this hypothesis have remained collectively untested, owing to several confounding problems in real predator–prey systems. To solve this, we manipulated the domains of danger of Cape fur seal (Arctocephalus pusillus pusillus) decoys to provide evidence that a selfish reduction in a seals'' domain of danger results in a proportional reduction in its predation risk from ambush shark attacks. This behaviour confers a survival advantage to individual seals within a group and explains the evolution of selfish herds in a prey species. These findings empirically elevate Hamilton''s selfish herd hypothesis to more than a ‘theoretical curiosity’.  相似文献   

10.
Blue crabs Callinectes sapidus are voracious predators in Chesapeake Bay and other estuarine habitats. The rapa whelk Rapana venosa is native to Asian waters but was discovered in Chesapeake Bay in 1998. This predatory gastropod grows to large terminal sizes (in excess of 150 mm shell length (SL)) and has a thick shell that may contribute to an ontogenetic predation refuge. However, juvenile rapa whelks in Chesapeake Bay may be vulnerable to predation by the blue crab given probable habitat overlap, relative lack of whelk shell architectural defenses, and the relatively large size of potential crab predators. Feeding experiments using three size classes of blue crab predators in relation to a size range of rapa whelks of two different ages (Age 1 and Age 2) were conducted. Blue crabs of all sizes tested consumed Age 1 rapa whelks; 58% of all Age 1 whelks offered were eaten. Age 2 rapa whelks were consumed by medium (67% of whelks offered were eaten) and large (70% of whelks offered were eaten) blue crabs but not by small crabs. The attack methods of medium and large crabs changed with whelk age and related shell weight. Age 1 whelks were typically crushed by blue crabs while Age 2 whelk shells were chipped or left intact by predators removing prey. Rapa whelks less than approximately 35 mm SL are vulnerable to predation by all sizes of blue crabs tested. Rapa whelk critical size may be greater than 55 mm SL in the presence of large blue crabs indicating that a size refugia from crab predation may not be achieved by rapa whelks in Chesapeake Bay until at least Age 2 or Age 3. Predation by blue crabs on young rapa whelks may offer a natural control strategy for rapa whelks in Chesapeake Bay and other estuarine habitats along the North American Atlantic coast.  相似文献   

11.
The hypothesis of the selfish herd has been highly influential to our understanding of animal aggregation. Various movement strategies have been proposed by which individuals might aggregate to form a selfish herd as a defence against predation, but although the spatial benefits of these strategies have been extensively studied, little attention has been paid to the importance of predator attacks that occur while the aggregation is forming. We investigate the success of mutant aggregation strategies invading populations of individuals using alternative strategies and find that the invasion dynamics depend critically on the time scale of movement. If predation occurs early in the movement sequence, simpler strategies are likely to prevail. If predators attack later, more complex strategies invade. If there is variation in the timing of predator attacks (through variation within or between individual predators), we hypothesize that groups will consist of a mixture of strategies, dependent upon the distribution of predator attack times. Thus, behavioural diversity can evolve and be maintained in populations of animals experiencing a diverse range of predators differing solely in their attack behaviour. This has implications for our understanding of predator–prey dynamics, as the timing of predator attacks will exert selection pressure on prey behavioural responses, to which predators must respond.  相似文献   

12.
Crab shell-crushing predation and gastropod architectural defense   总被引:5,自引:0,他引:5  
The shell-breaking behavior of the crabs Ozius verreauxii Saussure 1853 and Eriphia squamata, Stimpson 1859 from the Bay of Panama is described. The master claws of both these crabs are well designed for breaking shells. Small shells, relative to the size of a crab predator, are crushed by progressively breaking off larger segments of a shell's apex, while larger shells are peeled by inserting a large dactyl molar into the aperture of a shell and progressively chipping away the lip of the shell.

Heavy gastropod shells are shown to be less vulnerable to crab predators than lighter shells, and narrow shell apertures and axial shell sculpture are demonstrated to be architectural features that deter crab predation. The incidence of architectural features which deter crab predation appears to be higher for smaller gastropod species than for larger gastropods which are too large for most crab predators. Large fish predators prey upon both gastropods and shell-crushing crabs. To avoid fish predators, both these prey groups seek refuge under rocks when covered by the tide. Fish predation thus appears to enforce a close sympatry between smaller gastropods and their crab predators.  相似文献   


13.
Predator-prey relationships between the panopeid crab, Dyspanopeus sayi, and the mytilid, Musculista senhousia, were investigated. Through laboratory experiments, prey-handling behavior, prey size selection, predator foraging behavior and preferences for two types of prey (M. senhousia and the Manila clam Ruditapes philippinarum) were assessed. Handling time differed significantly with respect to the three prey sizes offered (small: 15.0-20.0 mm shell length, SL; medium: 20.1-25.0 mm SL; and large: 25.1-30.0 mm SL); mud crabs were more efficient in predating medium-small than large prey. Although differences in prey profitability were not evident, D. sayi exhibited a marked reluctance to feed on larger-sized prey whilst smaller, more easily predated mussels were available. Size selection may be the result of a mechanical process in which encountered prey are attacked but rejected if they remain unbroken after a certain number of opening attempts. D. sayi exhibited inverse density-dependent foraging. A significant higher mortality of prey was evident at low prey density. Thus, at low predator density, the D. sayi-M. senhousia interaction was a destabilizing type II functional response. Interference responses affected the magnitude of predation intensity by D. sayi on M. senhousia, since as the density of foraging crabs increased, their foraging success fell. At high density (4 crabs tank−1), crabs engaged in a high amount of agonistic activity when encountering a conspecific specimen, greatly diminished prey mortality. Finally, presenting two types of prey, Manila clam juveniles were poorly predated by mud crabs, which focused their predation mostly on M. senhousia. It is hypothesized that, when more accessible prey is available, mud crabs will have a minimal predatory impact on commercial R. philippinarum juvenile stocks.  相似文献   

14.
Abstract: Numerous studies have documented how prey may use antipredator strategies to reduce the risk of predation from a single predator. However, when a recolonizing predator enters an already complex predator—prey system, specific antipredator behaviors may conflict and avoidance of one predator may enhance vulnerability to another. We studied the patterns of prey selection by recolonizing wolves (Canis lupus) and cougars (Puma concolor) in response to prey resource selection in the northern Madison Range, Montana, USA. Elk (Cervus elaphus) were the primary prey for wolves, and mule deer (Odocoileus hemionus) were the primary prey for cougars, but elk made up an increasingly greater proportion of cougar kills annually. Although both predators preyed disproportionately on male elk, wolves were most likely to prey on males in poor physical condition. Although we found that the predators partitioned hunting habitats, structural complexity at wolf kill sites increased over time, whereas complexity of cougar kill sites decreased. We concluded that shifts by prey to structurally complex refugia were attempts by formerly naïve prey to lessen predation risk from wolves; nevertheless, shifting to more structurally complex refugia might have made prey more vulnerable to cougars. After a change in predator exposure, use of refugia may represent a compromise to minimize overall risk. As agencies formulate management strategies relative to wolf recolonization, the potential for interactive predation effects (i.e., facilitation or antagonism) should be considered.  相似文献   

15.
We investigated the effect of substrate (glass bottom, sand, granule, pebble) on predation of juvenile sea scallops (Placopecten magellanicus) by sea stars (Asterias vulgaris) and rock crabs (Cancer irroratus) at two prey sizes (11-15 mm and 24-28 mm shell height), and two prey densities (10 and 30 scallops per aquarium) in laboratory experiments. Specifically, we quantified predation rate and underlying behaviours (proportion of time a predator spent searching for and handling prey, encounter rate between predators and prey, and various outcomes of encounters). We detected a significant gradual effect of particle size of natural substrates on sea star predation: specifically, predation rate on and encounter rate with small scallops tended to decrease with increasing particle size (being highest for sand, intermediate for granule, and lowest for pebble). Substrate type did not significantly affect predation rates or behaviours of sea stars preying on large scallops or of rock crabs preying on either scallop size classes. Other factors, such as prey size and density, were important in the scallop-sea star and scallop-rock crab systems. For example, predation rate by sea stars and crabs and certain sea star behaviours (e.g. probability of consuming scallops upon capture) were significantly higher with small scallops than with large scallops. As well, in interactions between small scallops and sea stars, predation rate and encounter rate increased with prey density, and the proportion of time sea stars spent searching was higher at low prey density than high prey density. Thus, substrate type may be a minor factor determining predation risk of seeded scallops during enhancement operations; prey size and prey density may play a more important role. However, substrate type still needs to be considered when choosing a site for scallop enhancement, as it may affect other scallop behaviours (such as movement).  相似文献   

16.
In the western Baltic Sea, the highly competitive blue mussel Mytilus edulis tends to monopolize shallow water hard substrata. In many habitats, mussel dominance is mainly controlled by the generalist predator Carcinus maenas. These predator-prey interactions seem to be affected by mussel size (relative to crab size) and mussel epibionts.There is a clear relationship between prey size and predator size as suggested by the optimal foraging theory: Each crab size class preferentially preys on a certain mussel size class. Preferred prey size increases with crab size.Epibionts on Mytilus, however, influence this simple pattern of feeding preferences by crabs. When offered similarly sized mussels, crabs prefer Balanus-fouled mussels over clean mussels. There is, however, a hierarchy of factors: the influence of attractive epibiotic barnacles is weaker than the factor ‘mussel size’. Testing small mussels against large mussels, presence or absence of epibiotic barnacles does not significantly alter preferences caused by mussel size. Balanus enhanced crab predation on mussels in two ways: Additional food gain and, probably more important, improvement in handling of the prey. The latter effect is illustrated by the fact that artificial barnacle mimics increased crab predation on mussels to the same extent as do live barnacles.We conclude that crab predation preferences follows the optimal foraging model when prey belong to different size classes, whereas within size classes crab preferences is controlled by epibionts.  相似文献   

17.
The ability of prey to detect and adequately respond to predation risk influences immediate survival and overall fitness. Chemical cues are commonly used by prey to evaluate risk, and the purpose of this study was to elicit the nature of cues used by prey hunted by generalist predators. Nucella lapillus are common, predatory, intertidal snails that evaluate predatory risk using chemical cues. Using Nucella and a suite of its potential predators as a model system, we explored how (1) predator type, (2) predator diet, and (3) injured conspecifics and heterospecifics influence Nucella behavior. Using laboratory flumes, we determined that Nucella responded only to the invasive green crab (Carcinus maenas), the predator it most frequently encounters. Nucella did not respond to rock crabs (Cancer irroratus) or Jonah crabs (Cancer borealis), which are sympatric predators but do not frequently encounter Nucella because these crabs are primarily subtidal. Predator diet did not affect Nucella responses to risk, although starved predator response was not significantly different from controls. Since green crabs are generalist predators, diet cues do not reflect predation risk, and thus altering behavior as a function of predator diet would not likely benefit Nucella. Nucella did, however, react to injured conspecifics, a strategy that may allow them to recognize threats when predators are difficult to detect. Nucella did not react to injured heterospecifics including mussels (Mytilus edulis) and herbivorous snails Littorina littorea, suggesting that they are responding to chemical cues unique to their species. The nature of cues used by Nucella allows them to minimize costs associated with predator avoidance.  相似文献   

18.
The ability to assign lethal traces left on prey to particular durophagous predators enhances our understanding of predation pressure in the fossil record. To determine whether stone crabs (Menippe mercenaria Say 1818) leave diagnostic traces in the act of feeding on hard clams (Mercenaria mercenaria Linnaeus 1758), live clams were offered to crabs in laboratory aquaria over several months and the fragments produced during predation were examined for diagnostic breakage patterns. These fragments were then compared both macroscopically and using scanning electron microscopy to the fracture patterns produced by tumbling clams in a rock tumbler which simulated breakage during transport in the surf zone, and crushing clams using an Instron which simulated breakage resulting from sediment compaction. Fossil specimens of Mercenaria mercenaria were also examined to determine whether the criteria for recognizing predation traces generated experimentally could be recognized. While not all acts of predation produce diagnostic traces, when larger fragments (greater than 50% shell remaining) are produced during feeding, predatory-diagnostic breakage ranges from 70 to 80%. Macroscopic breakage patterns generated during the predation experiments were also present in fossil specimens. Damage caused by abiotic mechanisms (tumbling and crushing) is highly unlikely to be confused with damage produced by this predator.  相似文献   

19.
The fiddler crab Uca panamensis (Stimpson, 1959) inhabits rocky shores. We examined its preference for feeding substratum—sand or rock—and its manner of feeding. The crab made its burrow in the sand among rocks but preferred to feed on rocks. The feeding time decreased as the distance between the burrow and the rock increased. We consider this to be a result of exclusive interaction among the crabs because they defended their feeding area on the rocks against others.The crab wetted a small area of rock with water held in the branchial chambers before and during feeding. It pinched up the wetted surface in the minor chelipeds, which have bundles of setae on the posterior tips of the dactyl and pollex, and put the material into its buccal cavity. It never expelled sand pellets while feeding on rock, which indicates that it swallowed the food particles directly, without sorting. The bundles of setae retained water by capillary attraction, which suggests that they capture the suspended fine food particles scraped from the rock. The wetting action may prevent the fine materials from dispersing. We consider that morphological alteration of the minor chelipeds, the application of water from the branchial chambers, and direct swallowing permit the fiddler crab to feed on fine materials attached to rocks.  相似文献   

20.
The roles of sediment characteristics and the pattern of recruitment in influencing the abundance of the fiddler crab Uca uruguayensis on Argentinean mudflats were evaluated. The density of adult crabs showed a patchy distribution related to the sediment thickness (depth at which a layer of fossil shells are buried), but the density of juvenile crabs was not coupled with the density of adult crabs. In a field experiment, fossil shells were removed and the density of crabs significantly increased, which demonstrates that the presence of the layer of shells is a structure that may hinder the establishment of burrows. The density of crabs was related to sediment thickness, sediment torque and organic matter content. The importance of each of these variables was different for adult and juvenile crabs, indicating that the distribution of adult crabs may be caused by mechanisms affecting adult crabs themselves and is not established by the recruitment pattern. Moreover, in a field experiment, the density of juveniles decreased when adult crabs were added, and increased when adult crabs were removed.The morphology of burrows was related to sediment characteristics. Burrows were deeper, longer and more voluminous when sediment thickness was high. The volume of burrows decreased with increasing sediment torque. These results suggest that the morphology of burrows is related to the space available and the ease with which sediment it can be excavated. However, an important amount of variability remained unexplained, suggesting the presence of additional environmental variables or behavioural plasticity not considered by this study. Together, these results demonstrate that the spatial heterogeneity in the environmental factors can be translated to a spatial heterogeneity in the distribution of fiddler crabs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号