首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The knowledge about the combined effects of higher temperature and dietary nutrient quality on the diurnal nitrogenous excretion rates is very limited in farmed fish species including European sea bass. Therefore this study investigated the combined effects of increasing levels (30 vs. 60 %) of dietary fish oil replacement by equal mixture of cotton seed oil (CSO) and canola oils (CO) and two different ambient temperature (24 vs. 30 °C) on diurnal total ammonia and Urea–N excretion rates in European sea bass (Dicentrarchus labrax). Experimental diets were fed to fish three times (08:30–13:30–18:30 h) at a fixed rate of 3 % BW.d−1. The daily consumed nitrogen and energy intake of fish were similar during the investigation in different dietary treatments. However, the daily excretion rates of TAN, total nitrogen (TAN+Urea–N) and total nitrogen expressed as a proportion of consumed nitrogen by the European sea bass maintained at 30 °C were found to be significantly (P<0.001) higher (40 to 50%) than fish maintained at 24 °C in all the dietary treatments suggesting higher rates of deamination of ingested amino acids with increased temperature. Daily urea–nitrogen excretion of fish accounted for between 20–30 % of total ammonia–nitrogen excretion rates for each dietary treatment at 24 and 30 °C and appeared to be slightly increased by the temperature but neither the temperature nor the amount of plant oil mixture inclusion in diets or the interaction of these two factors had a significant effect on the urea nitrogen excretion rates of fish in different dietary treatments. However, Urea–N excretion rates in fish fed fish oil only (FO) diet were significantly higher (P<0.05) compared to that of fish fed diets containing increasing amount of plant oil mixture (VOM30 and VOM 60) during the light-on phase of the sampling period at 24 °C indicating periodic enhancement of permeability for urea at excretion sites. Further research is needed in order to elucidate the mechanism of nitrogenous excretion in European sea bass fed plant oil containing diets under extreme summer time temperatures employing total dietary fish oil replacement to reveal the possible effects of alteration in cell membrane phospholipid composition on enzymes responsible for nitrogenous excretion and/or detoxification.  相似文献   

2.
The formation of sea urchin ‘barrens’ on shallow temperate rocky reefs is well documented. However there has been much conjecture about the underlying mechanisms leading to sea urchin barrens, and relatively little experimentation to test these ideas critically. We conducted a series of manipulative experiments to determine whether predation mortality is an important mechanism structuring populations of the sea urchin Heliocidaris erythrogramma in Tasmania. Tethered juvenile and adult sea urchins experienced much higher rates of mortality inside no-take marine reserves where sea urchin predators were abundant compared to adjacent fished areas where predators were fewer. Mortality of tagged (but not tethered) sea urchins was also notably higher in marine reserves than in adjacent areas open to fishing. When a range of sizes of sea urchins was exposed to three sizes of rock lobsters in a caging experiment, juvenile sea urchins were eaten more frequently than larger sea urchins by all sizes of rock lobster, but only the largest rock lobsters (> 120 mm CL) were able to consume large adult sea urchins. Tagging (but not tethering) juvenile and adult sea urchins in two separate marine reserves indicated that adult sea urchins experience higher predation mortality than juveniles, probably because juveniles can shelter in cryptic microhabitat more effectively. In a field experiment in which exposure of sea urchins to rock lobster (Jasus edwardsii) and demersal reef fish predators was manipulated, rock lobsters were shown to be more important than fish as predators of adult sea urchins in a marine reserve. We conclude that predators, and particularly rock lobsters, exert significant predation mortality on H. erythrogramma in Tasmanian marine reserves, and that adult sea urchins are more vulnerable than smaller cryptic individuals. Fishing of rock lobsters is likely to reduce an important component of mortality in H. erythrogramma populations.  相似文献   

3.
External chemical signals used by scleractinian corals to recognize suitable substrata for larval settlement and metamorphosis were identified from crustose coralline red algae (CCA). A fragment of coral rubble with CCA induced larval metamorphosis of the scleractinian coral Pseudosiderastrea tayamai. A natural inducer and compounds that enhanced its effect in larval metamorphosis were isolated from the methanol extracts of coral rubble with CCA. A bromotyrosine derivative, 11-deoxyfistularin-3 (10− 7 M) isolated from the CCA, induced the metamorphosis of P. tayamai larvae (27.5 ± 24.0%). In the presence of fucoxanthinol (10− 9 M) and fucoxanthin (10− 9 M), the percentage of metamorphosis induced by the bromotyrosine derivative was further enhanced to 87.8 ± 13.0 and 88.4 ± 17.8%, respectively. Both carotenoids are also found in the coral rubble with CCA. These results suggest that bromotyrosine derivative and carotenoids have a synergistic effect in the metamorphosis of P. tayamai larvae. The synergistic effect provides a higher selectivity for recruitment than a single-component natural inducer for recognizing suitable substrata for larval metamorphosis. Thus, the effect might offer a survival advantage for benthic marine invertebrates.  相似文献   

4.
We ran field experiments to examine the responses of the black sea urchin Tetrapygus niger to predatory sea stars. Trials involving simulated attacks (one or several arms of a sea star being placed on top of half the urchin) showed that the urchin differentiated between the predatory sea stars, Heliaster helianthus and Meyenaster gelatinosus, and a non-predatory sea star, Stichaster striatus, and showed almost no response to a sea star mimic. We further compared the responses of the urchin to different threat levels presented by the two predatory sea stars. The highest threat level was a simulated attack, then mere contact, and subsequently sea stars being placed at different distances from the urchin. All urchins responded to simulated attacks and contact with both sea stars. The proportion responding decreased with distance and more rapidly in trials with H. helianthus (0% at a distance of 30 cm) than with M. gelatinosus (33% at a distance of 50 cm). At each of the threat levels where there was a response to both sea stars, the urchins responded more rapidly to M. gelatinosus than to H. helianthus. In a third experiment where a predatory sea star was added to a circular area (1-m diameter) in which either 4-8 or 11-19 undisturbed urchins were present, the urchins fled the area more rapidly when the added sea star was M. gelatinosus, but the rate of fleeing did not vary with density, as might occur if there was communication among urchins using alarm signals. Our observations suggest that M. gelatinosus presents a stronger predatory threat than H. helianthus. This corresponds to field observations showing that the urchins are more frequently consumed by M. gelatinosus. These are the first field experiments demonstrating distance chemodetection by a marine invertebrate under back-and-forth water flow from wave activity.  相似文献   

5.
Ecologically, sea urchins are an important species in marine habitats around the world. Economically, sea urchins are prized for their gonads (uni). With fisheries declining worldwide, intensive sea urchin culture has been proposed. For urchins in commercial culture, any factor that affects survivorship negatively should be addressed to maximize cost benefit. One potential obstacle to optimizing culture of sea urchins is cannibalism. Approximately 2000 adult and juvenile Lytechinus variegatus (1 g-45 g) were collected from Port Saint Joseph Peninsula State Park, FL between June and September 2009. Urchins were held in recirculating tanks at different sizes, densities, and feeding regimes for 4 weeks. Starvation and high density contributed to the highest level of cannibalism among small (12-21 g) urchins (percent cannibalism = 18.8%), whereas fed, high density conditions contributed to the highest level of cannibalism among large (32-37 g) urchins (percent cannibalism = 18.4%). These results suggest that (1) small urchins cannibalize at higher rates than large urchins, and (2) increased density is an important contributing factor leading to cannibalism. We quantified stress, defined as a decrease in production as a result of environmental conditions, by evaluating weight gain within each treatment and suggest that weight loss or minimal weight gain is an indicator of stress. We hypothesize increased stress caused by competitive interference can lead to increased cannibalism and decreased growth rates, even when food is not limiting. Ecologically, there are no reports of cannibalism of urchins in wild populations. Consequently, the role of cannibalism in regulating sea urchin community structure is not known. However, factors affecting cannibalism of L. variegatus in the laboratory may provide insight into the conditions that could result in cannibalism in wild populations. From an aquaculture perspective, it is important to determine those factors that contribute to the incidence of cannibalism in sea urchins so that the appropriate culture conditions can be maintained to reduce the incidence of cannibalism.  相似文献   

6.
The sea urchin,Tripneustes gratilla, which feeds mainly on living leaves of the seagrass,Thalassia hemprichii, was studied in its habitat on the southern coast of Papua New Guinea, and its roles in decomposition and nutrient cycling in a seagrass bed were assessed through the excretion of ammonium and metabolism of feces produced by the sea urchin. Carbon content of the fresh feces (21% of dry weight) was similar to that of intact dead leaves of the same species (22–23%). Carbon/nitrogen and carbon/phosphorus ratios of the feces (21.7 and 466, respectively), however, were significantly lower than those of the dead leaves (25.9–27.7 and 656–804, respectively), indicating that the feces retain more nitrogen and phosphorus in comparison with carbon. Net consumption of ammonium and orthophosphate typically concurred with oxygen consumption during dark incubation of both the dead leaves and the sea urchin feces. Compared with the same oxygen consumption rate, however, the dead leaves consumed more orthophosphate than the feces. Under sunlight, dead leaves showed a net accumulation of carbon by epiphytic algae, while the feces showed a carbon loss. Ammonium excretion by this sea urchin (1.7–5.4 mg nitrogen/individual/day) would thus appear to make a significant contribution to nitrogen recycling since biological communities associated with dead leaves and sea urchin feces tend to demand an external supply of nitrogen, such as ammonium.  相似文献   

7.
We examined the potential of herbivory by the common periwinkle Littorina littorea to limit recruitment and vegetative re-growth of the invasive green alga Codium fragile ssp. tomentosoides in a series of manipulative field experiments in tidepools on a wave-exposed rocky shore in Nova Scotia, Canada. Snails were excluded or included from circular plots (14 to 20 cm diameter) with cages to compare growth and survival of C. fragile against procedural (partial cages) or natural (uncaged) control plots. Our results show that L. littorea may restrict growth and survival of C. fragile by grazing new recruits (< 2 cm thallus length), fronds of adult thalli that are bleached and necrotic, and residual holdfasts (< 2 mm thickness) of detached thalli (artificially severed to mimic wave dislodgement). Once recruits grow beyond a critical size (~ 3 cm), or damaged tissues or holdfasts regenerate, grazing of C. fragile by L. littorea appears to be limited and ineffectual. Our experimental results corroborate correlative evidence from previous studies that herbivory by L. littorea limits the abundance of C. fragile in tidepools on the Atlantic coast of Nova Scotia, particularly pools in the high intertidal zone where these snails are abundant. Lower on the shore, littorinid grazing and physical stressors that render algae more vulnerable to grazers (e.g. UV radiation and freezing) are less intensive, and probably have less of a regulatory effect on populations of C. fragile.  相似文献   

8.
Body size and prior residence can modulate agonistic interaction in several animal species, but scientists know little about these relationships in echinoderms. In this study, we tested the effects of these traits on interactions in the black sea urchin (Echinometra lucunter). After a sea urchin was isolated for 24-h in a glass tank to establish prior residence, we introduced an intruder animal adjacent to the resident in the tank and observed interactions for 30 min. The intruder animal was larger, smaller, or size-matched to the resident. We found body size and prior residence concomitantly modulated interactions among black sea urchins, with prior residence as the major determinant. Black sea urchins mainly exhibited opponent inspection and fleeing responses during interaction to avoid fights, especially when a fight could be seriously disadvantageous (small intruder vs. large resident).  相似文献   

9.
Subtropical seagrass beds can be subject to relatively high levels of direct herbivory and large blooms of drift algae, both of which can have important effects on the floral and faunal components of the community. Caging experiments were used to investigate these factors in a Thalassia testudinum bed in Biscayne Bay, Florida. Abundance of sea urchins, Lytechinus variegatus, and drift algae was manipulated within the cages. Naturally occurring levels of urchin grazing do not appear to affect the T. testudinum population. With experimentally increased urchin densities in the winter, seagrass shoot density and aboveground biomass decreased significantly. Similar effects were not detected in the summer, indicating that the impact of grazing on T. testudinum is lessened during this time of year. Shoot density was more vulnerable to grazing than aboveground biomass. This may be a result of grazing-induced increases in seagrass productivity, in which the remaining shoots produce more or longer leaves. In the winter, drift algal blooms form large mats that cover the seagrass canopy. Under the normal grazing regime these algal blooms do not have significant negative effects on the seagrass. With increased grazing pressure, however, there is a synergistic effect of grazing and drift algae on seagrass shoot density. At intermediate urchin density (10 per m(-2)), cages without algae did not undergo significant decreases in shoot density, while those with algae did. At the high density of urchins, the number of seagrass shoots in cages both with and without algae decreased, but the effect was more pronounced for cages with algae. Invertebrate abundance at the field site was low relative to other seagrass beds. There were no discernible effects, either positive or negative, of urchin and algae manipulations on the sampled invertebrate community.  相似文献   

10.
Crude glycerol is a major byproduct of the biodiesel industry; previous research has proved the feasibility of producing docosahexaenoic acid (DHA, 22:6 n − 3) through fermentation of the algae Schizochytrium limacinum on crude glycerol. The objective of this work is to investigate the cell growth kinetics, substrate utilization efficiency, and DHA production of the algae through a continuous culture. Steady-state biomass yield, biomass productivity, growth yield on glycerol, specific glycerol consumption rate, and fatty acid composition were investigated within the range of dilution rate (D) from 0.2 to 0.6 day−1, and the range of feed crude glycerol concentration (S0) from 15 to 120 g/L. The maximum specific growth rate was determined as 0.692 day−1. The cells had a true growth yield of 0.283 g/g but with a relatively high maintenance coefficient (0.2216 day−1). The highest biomass productivity of 3.88 g/L-day was obtained at D = 0.3 day−1 and S0 = 60 g/L, while the highest DHA productivity (0.52 g/L-day) was obtained at D = 0.3 day−1 and S0 = 90 g/L due to the higher DHA content at S0 = 90 g/L. The biomass and DHA productivity of the continuous culture was comparable to those of batch culture, while lower than the fed-batch culture, mainly because of the lower DHA content obtained by the continuous culture. Overall, the results show that continuous culture is a powerful tool to investigate the cell growth kinetics and physiological behaviors of the algae growing on biodiesel-derived crude glycerol.  相似文献   

11.
Removing predatory fishes has effects that cascade through ecosystems via interactions between species and functional groups. In Kenyan reef lagoons, fishing-induced trophic cascades produce sea urchin-dominated grazing communities that greatly reduce the overall cover of crustose coralline algae (CCA). Certain species of CCA enhance coral recruitment by chemically inducing coral settlement. If sea urchin grazing reduces cover of settlement-inducing CCA, coral recruitment and hence juvenile coral abundance may also decline on fished reefs. To determine whether fishing-induced changes in CCA influence coral recruitment and abundance, we compared (1) CCA taxonomic compositions and (2) taxon-specific associations between CCA and juvenile corals under three fisheries management systems: closed, gear-restricted, and open-access. On fished reefs (gear-restricted and open-access), abundances of two species of settlement-inducing CCA, Hydrolithon reinboldii and H. onkodes, were half those on closed reefs. On both closed and fished reefs, juveniles of four common coral families (Poritidae, Pocilloporidae, Agariciidae, and Faviidae) were more abundant on Hydrolithon than on any other settlement substrate. Coral densities were positively correlated with Hydrolithon spp. cover and were significantly lower on fished than on closed reefs, suggesting that fishing indirectly reduces coral recruitment or juvenile success over large spatial scales via reduction in settlement-inducing CCA. Therefore, managing reefs for higher cover of settlement-inducing CCA may enhance coral recruitment or juvenile survival and help to maintain the ecological and structural stability of reefs.  相似文献   

12.
This study investigated the possibility of utilizing detoxified sugarcane bagasse hydrolysate (DSCBH) as an alternative carbon source to culture Yarrowia lipolytica Po1g for microbial oil and biodiesel production. Sugarcane bagasse hydrolysis with 2.5% HCl resulted in maximum total sugar concentration (21.38 g/L) in which 13.59 g/L is xylose, 3.98 g/L is glucose, and 2.78 g/L is arabinose. Detoxification of SCBH by Ca(OH)2 neutralization reduced the concentration of 5-hydroxymethylfurfural and furfural by 21.31% and 24.84%, respectively. Growth of Y. lipolytica Po1g in DSCBH with peptone as the nitrogen source gave maximum biomass concentration (11.42 g/L) compared to NH4NO3 (6.49 g/L). With peptone as the nitrogen source, DSCBH resulted in better biomass concentration than d-glucose (10.19 g/L), d-xylose (9.89 g/L) and NDSCBH (5.88 g/L). The maximum lipid content, lipid yield and lipid productivity of Y. lipolytica Po1g grown in DSCBH and peptone was 58.5%, 6.68 g/L and 1.76 g/L-day, respectively.  相似文献   

13.
This study shows results of nitrogen and phosphorus removal by microalgae (tertiary treatment) in a prototype of tubular photobioreactor tested under controlled and uncontrolled conditions. The wastewater was the supernatant coming from a secondary settler of a municipal wastewater activated sludge treatment plant without nitrification and denitrification units. The algal biomass was directly selected from the supernatant and it was principally composed of genus Scenedesmus (autochthonous algae). All the experiments evaluated both nitrogen and phosphorus removal and biomass and lipid production. A satisfactory nutrients removal - about 99.9% for the nitrogen and phosphorus - and a specific biomass productivity of 0.25 g/l d have been obtained in the indoor photobioreactor; less satisfactory results have been reached in the outdoor photobioreactor because of ambient condition instability and limiting nutrients concentration.  相似文献   

14.
We previously identified the cellulase SnEG54 from Japanese purple sea urchin Strongylocentrotus nudus, the molecular mass of which is about 54 kDa on SDS-PAGE. It is difficult to express and purify a recombinant cellulase protein using bacteria such as Escherichia coli or yeast. In this study, we generated mammalian expression vectors encoding SnEG54 to transiently express SnEG54 in mammalian cells. Both SnEG54 expressed in mammalian cells and SnEG54 released into the culture supernatant showed hydrolytic activity toward carboxymethyl cellulose. By using a retroviral expression system, we also established a mammalian cell line that constitutively produces SnEG54. Unexpectedly, SnEG54 released into the culture medium was not stable, and the peak time showing the highest concentration was approximately 1-2 days after seeding into fresh culture media. These findings suggest that non-mammalian sea urchin cellulase can be generated in human cell lines but that recombinant SnEG54 is unstable in culture medium due to an unidentified mechanism.  相似文献   

15.
We investigated the effect of five day exposure to CO2-acidified sea water treatments (pHNBS = 7.89 [control], 7.44, 7.16 and 6.78, T = 9.5 °C) on the extracellular acid-base balance of the northern sea urchin Strongylocentrotus dröebachiensis. In each case there was an uncompensated respiratory acidosis which increased in intensity with decreasing environmental pH. This was very similar to results for another sea urchin species, Psammechinus miliaris (8 d exposure, T = 15 °C). However, there were some important differences in the response to low seawater pH between the two urchin species S. dröebachiensis and P. miliaris. At the lowest pH tested (6.78) there was a metabolic component to this acidosis recorded (correlated with a significant increase in l-lactate) in S. dröebachiensis but not P. miliaris. The acidosis was accompanied by a very small, but significant increase in coelomic fluid calcium. Also the water used in our study was (controlling for pH) markedly undersaturated with respect to carbonate compared with that used in the Psammechinus study, highlighting the need for the environmental context to be assessed in future comparative studies.  相似文献   

16.
Previous work demonstrated that a mixture of NH4Cl and KNO3 as nitrogen source was beneficial to fed-batch Arthrospira (Spirulina) platensis cultivation, in terms of either lower costs or higher cell concentration. On the basis of those results, this study focused on the use of a cheaper nitrogen source mixture, namely (NH4)2SO4 plus NaNO3, varying the ammonium feeding time (T = 7-15 days), either controlling the pH by CO2 addition or not. A. platensis was cultivated in mini-tanks at 30 °C, 156 μmol photons m−2 s−1, and starting cell concentration of 400 mg L−1, on a modified Schlösser medium. T = 13 days under pH control were selected as optimum conditions, ensuring the best results in terms of biomass production (maximum cell concentration of 2911 mg L−1, cell productivity of 179 mg L−1 d−1 and specific growth rate of 0.77 d−1) and satisfactory protein and lipid contents (around 30% each).  相似文献   

17.
The role of green sea urchin Strongylocentrotus droebachiensis as a source of fecal particulate organic matter (POM) for the benthic nearshore ecosystems has been studied over a 3.5-month period. Three macroalgae were tested as food sources: Alaria esculenta, Laminaria longicruris and Ulvaria obscura. Urchins were fed ad libitum with either a single alga species or a mixture of all three algae. Consumption and defecation rates were determined as well as the feces/alga ratio in term of biomass and biochemical composition. Consumption rate increased exponentially with urchin size and also varied with alga species. In the single alga trial, consumption rate was higher for both brown algae (Laminaria and Alaria) compared to Ulvaria. Urchins feeding on the mixture of algae maintained their total ingestion rate (sum of the three algae) at the same level to those feeding on a single alga diet. The mixed algae trial showed that urchins clearly preferred Laminaria (72% of total ingestion) over Alaria (22%) and Ulvaria (6%). The defecation rate was tightly correlated with the food consumption rate and thus increased with urchin size. On average, 75% of the ingested algal biomass was released as fecal POM. The percentage of food defecated changed with alga species, with the highest value for Alaria (81%) and the lowest for Laminaria (67%). The percentage of food defecated by urchins feeding on the mixture of algae was generally comparable to those feeding on single alga diet. Biochemical composition (in soluble carbohydrates, proteins and lipids) of urchin fecal POM reflected that of the algae content. From 40% to 80% of macronutrients in algal food persisted in fecal matter. This proportion varied with the alga species and macronutrient considered. This study shows that the green sea urchin plays a significant role in the production of POM within nearshore benthic ecosystems, and it is a potentially nutritious food source for detritivores.  相似文献   

18.
Temperate marine rocky habitats may be alternatively characterized by well vegetated macroalgal assemblages or barren grounds, as a consequence of direct and indirect human impacts (e.g. overfishing) and grazing pressure by herbivorous organisms. In future scenarios of ocean acidification, calcifying organisms are expected to be less competitive: among these two key elements of the rocky subtidal food web, coralline algae and sea urchins. In order to highlight how the effects of increased pCO2 on individual calcifying species will be exacerbated by interactions with other trophic levels, we performed an experiment simultaneously testing ocean acidification effects on primary producers (calcifying and non-calcifying algae) and their grazers (sea urchins). Artificial communities, composed by juveniles of the sea urchin Paracentrotus lividus and calcifying (Corallina elongata) and non-calcifying (Cystoseira amentacea var stricta, Dictyota dichotoma) macroalgae, were subjected to pCO2 levels of 390, 550, 750 and 1000 µatm in the laboratory. Our study highlighted a direct pCO2 effect on coralline algae and on sea urchin defense from predation (test robustness). There was no direct effect on the non-calcifying macroalgae. More interestingly, we highlighted diet-mediated effects on test robustness and on the Aristotle''s lantern size. In a future scenario of ocean acidification a decrease of sea urchins'' density is expected, due to lower defense from predation, as a direct consequence of pH decrease, and to a reduced availability of calcifying macroalgae, important component of urchins'' diet. The effects of ocean acidification may therefore be contrasting on well vegetated macroalgal assemblages and barren grounds: in the absence of other human impacts, a decrease of biodiversity can be predicted in vegetated macroalgal assemblages, whereas a lower density of sea urchin could help the recovery of shallow subtidal rocky areas affected by overfishing from barren grounds to assemblages dominated by fleshy macroalgae.  相似文献   

19.
Pathogenic properties of the natural isolate of Shewanella algae from the coelomic fluid of the sea cucumber Apostichopus japonicus (Peter the Great Bay, Sea of Japan) were investigated. The isolate had oxydative metabolism, was positive for ornithine decarboxylase, cytochrome oxidase, catalase, DNase and gelatinase, hemolytically active, did not produce acid from carbohydrates, and did not hydrolyze urea and esculin. The strain was resistant to penicillin, amoxicillin, and ampicillin and susceptible to tetracycline and carbenicillin. Among cellular fatty acids, 13:0-i, 15:0-i, 16:0, 16:1(n-7), 17:0-i, and 17:0-ai dominated. These biochemical properties made it possible to attribute the isolated bacteria to the genus Shewanella and identified as S. algae. The cells of this bacterium were introduced into the coelomic cavity of another echinoderm, the sea urchin Strongylocentrotus nudus. As a result, in about 24 h the animals became slow and 3-8 days after the inoculation died. Dividing bacteria were being found during the experiment in the coelomic fluid as well as in the phagosomes of amoebocytes, i.e. cells acting as phagocytes in the coelomic fluid. The studies of the invasive properties of strain 156 showed that bacterial cells entered the subcuticular space of S. nudus and A. japonicus through the cuticle and stayed there for a long time without penetrating epithelium and exerting toxic effect upon the organisms of the laboratory animals. Pathogenic effect of S. algae can be manifested only if the cutaneous epithelium is destroyed permitting it to penetrate the lower tissue layers. The toxicity of S. algae is confirmed by in vitro experiments. The inoculation of the embryonic cells of S. nudus with samples of this bacterium caused the death of 10% of cells within an hour and 100% of cells within 12 h after inoculation. The results of the investigations demonstrate that S. algae could produce opportunistic infection in the sea cucumber A. japonicus and the sea urchin S. nudus, which may be natural reservoirs of this human pathogen.  相似文献   

20.
The discovery of natural and natural-based compounds has resulted in its application as an alternative to synthetic algicides to control harmful algae in aquatic systems. Of the many natural-product-based algicides, sorgoleone, a natural plant product from Sorghum bicolor root exudates has been investigated for its controlling effect on different algal species and its acute fish toxicity. Growth of the blue green algal species Microcystis aeruginosa Kützing was completely inhibited by the crude methanol extract of sorghum root at 20 μg mL−1. The most noticeable inhibition was observed in the bioassay of n-hexane soluble extract, where 98% growth inhibition occurred in M. aeruginosa at the concentration of 1.25 μg mL−1. Sorgoleone very effectively controlled blue green algae inhibiting 97% of M. aeruginosa at 0.5 μg mL−1 and 99% of Anabaena affinis Lemmermann at 4 μg mL−1. In contrast, inhibition of the green algae species Chlorella vulgaris Beijerinck and Scenedensmus spp. at 16 μg mL−1 sorgoleone was 87 and 68%, respectively. There were no mortalities or adverse effects observed in any of the fish exposed to water control, solvent control, and a nominal concentration of 1 μg mL−1 during the test period. The no observed effect concentration (NOEC) value was 1.5 μg mL−1 for the tested fish (O. latipes). Sorgoleone can be considered as an effective and an ecologically and environmentally sustainable approach to controlling harmful algae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号