首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
To examine how varying the distance between patch reefs affects reef fish assemblage structure, replicate concrete reef modules (∼ 1 m3 each) were deployed on sand bottom at 8 m depth off Ft. Lauderdale, Florida, USA (26°07N, 80°05W). Modules were positioned at the apices of one of four differently sized equilateral triangles. Triangular configurations had side lengths of: 25 m, 15 m, 5 m, and 0.33 m; each treatment with two replicates. Two additional configurations: (1) a solitary module (Single) and (2) two modules side by side (Double), also with two replicates, were deployed in order to examine the interaction of reef size with fish assemblages. SCUBA divers censused fishes monthly, for 2 years, recording the species present, their abundance and sizes (TL). Fishes were assigned to one of five length categories: < 2 cm, > 2-5 cm, > 5-10 cm, > 10-20 cm, and > 20 cm. In general and excluding the smallest three-module spacing treatment (0.33 m treatment), which may have provided unique treatment-specific refuge, total fish abundance and richness were shown to increase when isolation distance increased. However, there were also species-specific and size class differences in response to isolation distance. The second part of this study indicated varying reef size, by doubling and tripling the number of reef modules, increased total fish abundance and species richness. Nevertheless, fish abundance and species richness did not change by an identical multiplier (e.g., doubling modules ≠ double abundance). These results suggest that scientists and marine managers alike should consider reef size and isolation as habitat attributes capable of altering the structure and dynamics of reef fish assemblages.  相似文献   

2.
The previously sub‐dominant native marine macrophyte Caulerpa filiformis is now dominant on many sub‐tidal rocky reefs in New South Wales (NSW), Australia and is expanding its distribution. As C. filiformis is highly chemically defended and structurally different to co‐occurring habitat‐forming macrophytes, two key attributes that govern fish assemblages, we hypothesized that fish assemblages, particularly herbivorous fishes, would be different at sites where C. filiformis occurred from where it was previously absent and within sites, fish community structure would be correlated to the cover of C. filiformis. We investigated these hypotheses by determining reef‐associated fish assemblage attributes (assemblage structure, species richness, total abundance, Shannon‐Weiner diversity, abundance of herbivorous species) along transects within sites where C. filiformis was present and absent. Surprisingly, despite large patches and very high densities of C. filiformis on the reefs we sampled, at larger spatial scales (i.e., among sites) no fish assemblage metrics differed between sites with large stands of C. filiformis and sites without the alga. Moreover the abundance of one dominant herbivore, the rock cale Aplodactylus lophodon, was greater at sites within large beds of C. filiformis. At smaller spatial scales, however, i.e. within sites where C. filiformis was present, fish assemblages did vary as a function of C. filiformis cover along transects, although this was not consistent across sampling times. Overall, our results suggest that the potential effects of the spread of this alga on faunal communities warrants further investigation.  相似文献   

3.
Changes in the structure of many benthic habitats occur across a number of physical gradients and result in corresponding changes in the structure of associated epifaunal assemblages; however, investigations of faunal assemblages are often confounded by variation in the morphology of habitats. In this experiment, identical nests of nylon pan scourers were employed to examine changes in the structure of epifaunal assemblages across a depth gradient at two island sites within the Solitary Islands Marine Park (SIMP), NSW, Australia. Artificial substratum units (ASUs) were anchored to rocky reef at 8, 16 and 24 m for a period of five months over summer and winter. Data were subjected to univariate and multivariate statistical analyses to determine the similarity of assemblages across Depths, Islands and Times. A number of species displayed a distinct fidelity with depth across both islands and times. Although significant interactions between factors were apparent for most variables, very few significant differences across the main effects were identified for univariate analyses of summary community variables (S, N, H′), major taxonomic groups (bivalves, amphipods, polychaetes) or individual species analysed. In contrast, multivariate analyses revealed significant differences in assemblage structure for all comparisons of depth during each sampling period. Although the experiment was conducted both over summer and again over winter, depth-associated patterns were maintained at each island during each sampling period. The results highlight the importance of depth as a structuring factor for epifaunal assemblages of subtropical rocky reefs.  相似文献   

4.
This study was carried out on the “Faro/Ancão” artificial reef (AR), located off Faro, deployed in May 2003. We aimed to characterise early macrobenthic community colonisation of two concrete AR groups located at different depths (16 m and 20 m depth) and to test the effect of reef structure on these communities. The non-colonial organisms were counted; barnacles and colonial species were quantified using biomass. Multivariate analyses indicated that early macrobenthic communities (6 months of immersion) were affected by depth, and that barnacles and colonial species were also affected by reef structure. Univariate analyses showed that the biomass of barnacles and colonial species was significantly different among reefs and layers of modules. Both AR groups were characterised by the species Balanus amphitrite, Gregariella subclavata, Musculus cf. subpictus, Paleanotus cf. bellis and Syllidia armata. Jassa marmorata and Bugula neritina were characteristic species at 16 m depth, particularly on the AR Upper layer of modules, whereas Anomia ephippium was particularly common at 20 m, especially on the Lower layer of modules.  相似文献   

5.
Ecosystems are linked by the movement of organisms across habitat boundaries and the arrangement of habitat patches can affect species abundance and composition. In tropical seascapes many coral reef fishes settle in adjacent habitats and undergo ontogenetic habitat shifts to coral reefs as they grow. Few studies have attempted to measure at what distances from nursery habitats these fish migrations (connectivity) cease to exist and how the abundance, biomass and proportion of nursery species change on coral reefs along distance gradients away from nursery areas. The present study examines seascape spatial arrangement, including distances between habitats, and its consequences on connectivity within a tropical seascape in Mozambique using a seascape ecology approach. Fish and habitat surveys were undertaken in 2016/2017 and a thematic habitat map was created in ArcGIS, where cover and distances between habitat patches were calculated. Distance to mangroves and seagrasses were significant predictors for abundance and biomass of most nursery species. The proportions of nursery species were highest in the south of the archipelago, where mangroves were present and decreased with distance to nurseries (mangroves and seagrasses). Some nursery species were absent on reef sites farthest from nursery habitats, at 80 km from mangroves and at 12 km from seagrass habitats. The proportion of nursery/non-nursery snapper and parrotfish species, as well as abundance and biomass of seagrass nursery species abruptly declined at 8 km from seagrass habitats, indicating a threshold distance at which migrations may cease. Additionally, reefs isolated by large stretches of sand and deep water had very low abundances of several nursery species despite being within moderate distances from nursery habitats. This highlights the importance of considering the matrix (sand and deep water) as barriers for fish migration.  相似文献   

6.
The effect of depth on the distribution and sex-specific energy allocation patterns of a common coral reef fish, Chrysiptera rollandi (Pomacentridae), was investigated using depth-stratified collections over a broad depth range (5–39 m) and a translocation experiment. C. rollandi consistently selected rubble habitats at each depth, however abundance patterns did not reflect the availability of the preferred microhabitat suggesting a preference for depth as well as microhabitat. Reproductive investment (gonado-somatic index), energy stores (liver cell density and hepatocyte vacuolation), and overall body condition (hepato-somatic index and Fulton’s K) of female fish varied significantly among depths and among the three reefs sampled. Male conspecifics displayed no variation between depth or reef. Depth influenced growth dynamics, with faster initial growth rates and smaller mean asymptotic lengths with decreasing depth. In female fish, relative gonad weight and overall body condition (Fulton’s K and hepato-somatic index) were generally higher in shallower depths (≤10 m). Hepatic lipid storage was highest at the deepest sites sampled on each reef, whereas hepatic glycogen stores tended to decrease with depth. Depth was found to influence energy allocation dynamics in C. rollandi. While it is unclear what processes directly influenced the depth-related patterns in energy allocation, this study shows that individuals across a broad depth gradient are not all in the same physiological state and may contribute differentially to the population reproductive output. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
Nonreef habitats such as mangroves, seagrass, and macroalgal beds are important for foraging, spawning, and as nursery habitat for some coral reef fishes. The spatial configuration of nonreef habitats adjacent to coral reefs can therefore have a substantial influence on the distribution and composition of reef fish. We investigate how different habitats in a tropical seascape in the Philippines influence the presence, density, and biomass of coral reef fishes to understand the relative importance of different habitats across various spatial scales. A detailed seascape map generated from satellite imagery was combined with field surveys of fish and benthic habitat on coral reefs. We then compared the relative importance of local reef (within coral reef) and adjacent habitat (habitats in the surrounding seascape) variables for coral reef fishes. Overall, adjacent habitat variables were as important as local reef variables in explaining reef fish density and biomass, despite being fewer in number in final models. For adult and juvenile wrasses (Labridae), and juveniles of some parrotfish taxa (Chlorurus), adjacent habitat was more important in explaining fish density and biomass. Notably, wrasses were positively influenced by the amount of sand and macroalgae in the adjacent seascape. Adjacent habitat metrics with the highest relative importance were sand (positive), macroalgae (positive), and mangrove habitats (negative), and fish responses to these metrics were consistent across fish groups evaluated. The 500‐m spatial scale was selected most often in models for seascape variables. Local coral reef variables with the greatest importance were percent cover of live coral (positive), sand (negative), and macroalgae (mixed). Incorporating spatial metrics that describe the surrounding seascape will capture more holistic patterns of fish–habitat relationships on reefs. This is important in regions where protection of reef fish habitat is an integral part of fisheries management but where protection of nonreef habitats is often overlooked.  相似文献   

8.
Abstract Catch per unit effort (CPUE) in fisheries science and visual counts in marine ecology are widely used to provide estimates of relative abundance. Concurrent use of these techniques therefore offers an opportunity for cross-validation. This study compares CPUE to underwater visual census (UVC) estimates of relative species abundance in a multispecies fishery: coral-reef fish in the Solomon Islands. Multivariate analyses showed large differences between CPUE and UVC estimates of abundance. The families Acanthuridae and Scandae tended to be the primary cause of differences between the techniques when the full assemblage offish was analysed. However, the relationship between CPUE and UVC did not improve when these families were excluded from the data set and the analyses repeated on families (Serranidae, Lutjamdae, Lethrinidae) caught by the predominant gear type, handlining. This result highlights the point that the choice and use of particular methods require careful consideration in conjunction with the nature of factors being investigated. Many problems of sampling are specific to particular methods and some investigations may benefit from a more pluralistic approach.  相似文献   

9.
Artificial reefs are increasingly being promoted as a means to mitigate impacts from human activities in coastal urban areas. Coastal defense structures such as breakwaters are becoming recognized as large-scale artificial reefs that support abundant and diverse marine communities and play important roles in coastal ecology and management. However, there is limited understanding of how substrate materials used to construct artificial reefs or breakwaters can influence the development of habitat-forming benthic organisms. To assess the influence of substrata on coral recruitment and overall benthic community development, we deployed standard-size tiles of materials used in the construction of breakwaters and artificial reefs (concrete, gabbro, granite, and sandstone), along with terra-cotta for comparative purposes, at two breakwaters (DDD, PRT) and two natural reef sites (NR1, NR2) in Dubai, United Arab Emirates, for one year. Kruskal-Wallis ANOVA with post-hoc Mann-Whitney U-tests were used to examine differences in coral recruitment among sites and materials. Coral recruitment was highest at the DDD (4.9 ± 0.5 recruits 100 cm− 2), while recruitment was low and did not differ among other sites (PRT: 0.1 ± 0.04, NR1:0.3 ± 0.1, NR2: 0.1 ± 0.03 recruits 100 cm− 2). There were significant differences in coral recruitment among materials at DDD, where gabbro had higher recruit densities than concrete and sandstone; sandstone also contained less coral recruits than terra-cotta. Variability associated with low coral recruit densities precluded significant differences among materials at other sites. Overall benthic community structure differed more as a result of differences among sites than among substrate materials. Higher community dissimilarity was observed among sites than among material in SIMPER analysis, and significant differences were only observed among sites in ANOSIM. Univariate comparison of the benthos correlated with community differences in NMS ordination also showed significant differences among sites but not material. Overall, these results indicate that site-specific differences in recruitment patterns are more important in determining early benthic community structure and coral recruitment than are differences among substrate material. However, where coral recruitment is high, these results suggest that gabbro should be used preferentially over concrete or sandstone where it is feasible, but that granite may be a suitable alternative where it is the dominant stone. Coral recruitment on terra-cotta was comparable to all materials but sandstone, supporting its continued use in recruitment studies. These results also indicate that using stone amenable to coral recruitment is unlikely to influence the wider benthic community.  相似文献   

10.
Active restoration is being practiced to supplement conservation activities for the purpose of reversing the trend of reef degradation. In the last decade, the feasibility of different restoration approaches such as coral transplantation and restocking of other marine biota has been the focus of research and relatively few have examined experimentally its effects on the resultant communities. In this study, coral transplantation and giant clam restocking were applied on 25 degraded patch reefs (~ 25 m2) inside a marine sanctuary in Pangasinan, northwestern Philippines to examine their effects on the community structure of reef fishes. Five interventions or treatments were employed: 1) “coral” consisted of transplantation of a combination of Acropora spp. and Pocillopora spp. on concrete blocks; 2) “clam” consisted of restocking of Tridacna gigas; 3) “clam+coral” consisted of restocking of T. gigas with Acropora spp. transplanted on their shells; 4) “shell” consisted of deployment of T. gigas shells; and 5) “control” consisted of no intervention. Fish communities on the patch reefs were monitored monthly for 3 months before the intervention and were monitored further for 11 months after the intervention, including 1 recruitment season. After the intervention, the coral cover and the “other biota” category increased in the coral and clam+coral treatments, due to the transplanted corals and deployed giant clams. Consequently, the complexity of the substrate was enhanced. A month after the intervention, a rapid increase in the abundance and species richness of reef fishes on the coral, clam+coral and clam treatments was observed compared to the shell and control treatments. A change in species composition of reef fish assemblage was also apparent in the coral and clam+coral treatments relative to the clam, shell and control, especially 4 months after the intervention. The present experiment demonstrates the feasibility of improving the condition of degraded patch reefs, which can subsequently enhance the fish community. Results also show the importance of the underlying substratum and the abundance of live corals and clams to reef fishes.  相似文献   

11.
Due to an increasing emphasis for fish population survey and regulation, efficient tools for evaluating the abundance and diversity of fish from various life stages are needed, especially for coral reef species that present a high taxonomic diversity. The characteristics of six different techniques used for sampling pelagic larvae (a plankton-net and two light-traps), newly settled juveniles (one type of artificial reef), and older juveniles (an underwater seine net in seagrass and macroalgal beds, and rotenone poisoning in coral patches) are described in this study. Larvae belonging to 70 families and juveniles belonging to 34 families were collected. An analysis of similarity (ANOSIM) showed that the taxonomic composition of assemblages collected with the plankton-net and the two light-traps were overlapping but clearly different, due to the higher occurrence of Gobiidae in the plankton-net and of Pomacentridae in both light-traps. Larvae being 2–4 mm standard length (SL) dominated in the plankton-net, whereas larvae being 9–11 mm SL dominated in both light-traps. Pomacentridae juveniles were more abundant in rotenone samples, whereas Labridae dominated in the underwater seine. Juvenile fish collected with the artificial reefs, the underwater seine, and rotenone poisoning largely overlapped in size, with mean sizes of 22, 38, and 33 mm SL, respectively. Seven families were caught by the six sampling techniques, but with unequal success. This study provides ecologists and managers with a unique review of six techniques for sampling a wide range of developmental stages of young fish in different habitats of a coral reef lagoon.
Laure CarassouEmail:
  相似文献   

12.
Dramatic coral loss has significantly altered many Caribbean reefs, with potentially important consequences for the ecological functions and ecosystem services provided by reef systems. Many studies examine coral loss and its causes—and often presume a universal decline of ecosystem services with coral loss—rather than evaluating the range of possible outcomes for a diversity of ecosystem functions and services at reefs varying in coral cover. We evaluate 10 key ecosystem metrics, relating to a variety of different reef ecosystem functions and services, on 328 Caribbean reefs varying in coral cover. We focus on the range and variability of these metrics rather than on mean responses. In contrast to a prevailing paradigm, we document high variability for a variety of metrics, and for many the range of outcomes is not related to coral cover. We find numerous “bright spots,” where herbivorous fish biomass, density of large fishes, fishery value, and/or fish species richness are high, despite low coral cover. Although it remains critical to protect and restore corals, understanding variability in ecosystem metrics among low‐coral reefs can facilitate the maintenance of reefs with sustained functions and services as we work to restore degraded systems. This framework can be applied to other ecosystems in the Anthropocene to better understand variance in ecosystem service outcomes and identify where and why bright spots exist.  相似文献   

13.
Little is known about how fishes and other non-calcifying marine organisms will respond to the increased levels of dissolved CO2 and reduced sea water pH that are predicted to occur over the coming century. We reared eggs and larvae of the orange clownfish, Amphiprion percula, in sea water simulating a range of ocean acidification scenarios for the next 50–100 years (current day, 550, 750 and 1030 ppm atmospheric CO2). CO2 acidification had no detectable effect on embryonic duration, egg survival and size at hatching. In contrast, CO2 acidification tended to increase the growth rate of larvae. By the time of settlement (11 days post-hatching), larvae from some parental pairs were 15 to 18 per cent longer and 47 to 52 per cent heavier in acidified water compared with controls. Larvae from other parents were unaffected by CO2 acidification. Elevated CO2 and reduced pH had no effect on the maximum swimming speed of settlement-stage larvae. There was, however, a weak positive relationship between length and swimming speed. Large size is usually considered to be advantageous for larvae and newly settled juveniles. Consequently, these results suggest that levels of ocean acidification likely to be experienced in the near future might not, in isolation, significantly disadvantage the growth and performance of larvae from benthic-spawning marine fishes.  相似文献   

14.
Cross‐ecosystem nutrient subsidies play a key role in the structure and dynamics of recipient communities, but human activities are disrupting these links. Because nutrient subsidies may also enhance community stability, the effects of losing these inputs may be exacerbated in the face of increasing climate‐related disturbances. Nutrients from seabirds nesting on oceanic islands enhance the productivity and functioning of adjacent coral reefs, but it is unknown whether these subsidies affect the response of coral reefs to mass bleaching events or whether the benefits of these nutrients persist following bleaching. To answer these questions, we surveyed benthic organisms and fishes around islands with seabirds and nearby islands without seabirds due to the presence of invasive rats. Surveys were conducted in the Chagos Archipelago, Indian Ocean, immediately before the 2015–2016 mass bleaching event and, in 2018, two years following the bleaching event. Regardless of the presence of seabirds, relative coral cover declined by 32%. However, there was a post‐bleaching shift in benthic community structure around islands with seabirds, which did not occur around islands with invasive rats, characterized by increases in two types of calcareous algae (crustose coralline algae [CCA] and Halimeda spp.). All feeding groups of fishes were positively affected by seabirds, but only herbivores and piscivores were unaffected by the bleaching event and sustained the greatest difference in biomass between islands with seabirds versus those with invasive rats. By contrast, corallivores and planktivores, both of which are coral‐dependent, experienced the greatest losses following bleaching. Even though seabird nutrients did not enhance community‐wide resistance to bleaching, they may still promote recovery of these reefs through their positive influence on CCA and herbivorous fishes. More broadly, the maintenance of nutrient subsidies, via strategies including eradication of invasive predators, may be important in shaping the response of ecological communities to global climate change.  相似文献   

15.
The evolution of ecological processes on coral reefs was examined based on Eocene fossil fishes from Monte Bolca, Italy and extant species from the Great Barrier Reef, Australia. Using ecologically relevant morphological metrics, we investigated the evolution of herbivory in surgeonfishes (Acanthuridae) and rabbitfishes (Siganidae). Eocene and Recent surgeonfishes showed remarkable similarities, with grazers, browsers and even specialized, long-snouted forms having Eocene analogues. These long-snouted Eocene species were probably pair-forming, crevice-feeding forms like their Recent counterparts. Although Eocene surgeonfishes likely played a critical role as herbivores during the origins of modern coral reefs, they lacked the novel morphologies seen in modern Acanthurus and Siganus (including eyes positioned high above their low-set mouths). Today, these forms dominate coral reefs in both abundance and species richness and are associated with feeding on shallow, exposed algal turfs. The radiation of these new forms, and their expansion into new habitats in the Oligocene–Miocene, reflects the second phase in the development of fish herbivory on coral reefs that is closely associated with the exploitation of highly productive short algal turfs.  相似文献   

16.
The spatial structure and seasonal changes of estuarine fish assemblages in the Ciénaga Grande de Santa Marta (CGSM) were analysed based on four seasonal comprehensive surveys conducted in 1993-1994 and 1997. Geostatistical and multivariate techniques were used to: (a) determine seasonal changes in spatial distribution of the species richness, and (b) identify assemblages of estuarine fish and their relation to abiotic factors. Potential biotic interactions affecting the assemblage structure were also explored. A total of 11075 individuals representing 39 species were collected, with Eugerres plumieri, Diapterus rhombeus, Micropogonias furnieri, Mugil incilis, Cathorops spixii, Elops saurus and Anchovia clupeoides as dominant species between seasons. Spatial distribution of fish richness differed between rainy and dry seasons in each year, whereas species mapping showed spatial patchiness in 1993-1994 and gradients during 1997. Strong evidence of species saturation was found in all seasons, suggesting biotic interactions limiting species richness at a threshold density of ca. 50 ind./5000 m2. Marine, marine-estuarine and freshwater species were classified in each season according to their capability to cope with salinity fluctuations. Associations defined by functional feeding guilds were also identified. Empirical and statistic evidence showed that fish assemblages differed between seasons within each year, and each assemblage was always dominated by a small number of species, notably E. plumieri in both years 1993-1994 and 1997. Between-season differences in fish assemblage structure in the CGSM seem to be driven by abiotic factors; however, evidence of species saturation could suggest the existence of density-dependent factors operating together.  相似文献   

17.
P. S. Levin 《Oecologia》1994,97(1):124-133
In order to understand variability in recruitment to populations of benthic and demersal marine species, it is critical to distinguish between the contributions due to variations in larval settlement versus those caused by post-settlement mortality. In this study, fine-scale (1–2 days) temporal changes in recruit abundance were followed through an entire settlement season in a temperate demersal fish in order to determine 1) how dynamic the process of recruitment is on a daily scale, 2) whether settlement and post-settlement mortality are influenced by habitat structure and conspecific density, and 3) how the relationship between settlement and recruitment changes over time. Settlement is considered to be the arrival of new individuals from the pelagic habitat, and recruitment is defined as the number of individuals surviving arbitrary periods of time after settlement. Replicate standardized habitat units were placed in 2 spatial configurations (clumped and randomly dispersed) and monitored visually for cunner (Tautogolabrus adspersus) settlement and recruitment every 1–2 days throughout the settlement season. The process of recruitment in T. adspersus was highly variable at a fine temporal scale. Changes in the numbers of recruits present on habitat units were due to both settlement of new individuals and mortality of animals previously recruited. The relative importance of these two processes appeared to change from day to day. The magnitude of the change in recruit number did not differ between the clumped and random habitats. However, post-settlement loss was significantly greater on randomly dispersed than clumped habitats. During several sampling dates, the extent of the change in recruit abundance was correlated with the density of resident conspecifics; however, on other dates no such relationship appeared to exist. Despite the presence of significant relationships between the change in recruit number and density, there was no evidence of either density-dependent mortality or settlement. Initially, there was a strong relationship between settlement and recruitment; however, this relationship weakened over time. Within 2 months after the cessation of settlement, post-settlement loss was greater than 99%, and no correlation remained between recruitment and the initial pattern of settlement. The results of this study demonstrate that the spatial arrangement of the habitat affects the rate and intensity of post-settlement loss. Counter to much current thinking, this study suggests that in order to understand the population ecology of reef fishes, knowledge of what habitats new recruits use and how mortality varies with structural aspects of the habitats is essential.  相似文献   

18.
人工集鱼装置对热带金枪鱼类摄食模式的影响研究进展   总被引:2,自引:0,他引:2  
王少琴  许柳雄  王学昉  朱国平 《生态学报》2014,34(13):3490-3498
热带金枪鱼类具有聚集在漂浮物体周围的行为特性,形成的集群表现稳定,可捕性较高。以此特性,金枪鱼围网渔业研制并投放了大量的人工集鱼装置(Fish Aggregation Device,FAD)用于聚集并捕捞金枪鱼。然而,大规模出现的FAD会使某些海域海面漂浮物的密度迅速增加,从而在一定程度上人为地改变了金枪鱼的表层栖息环境,对金枪鱼种群具有一系列可能的潜在负面影响,摄食模式的改变就是其中之一。归纳并综合了近年来国内外关于FAD对金枪鱼类摄食模式影响的相关研究,从摄食行为、日摄食量、饵料种类与组成以及生态位宽度4个方面对比了随附于FAD的金枪鱼和自由状态下同类的不同,发现大多情况下FAD的存在会使金枪鱼的摄食模式发生一定的改变。最后,归纳了过往实验存在的不足,对今后研究的发展方向进行了展望。  相似文献   

19.
In many reef ecosystems, artificial reefs (AR) have become permanent additions to the area, sustaining well-developed benthic communities. Long-term studies on the development of AR coral communities are scarce, and comparisons with their natural surroundings are limited. The present study describes the stony and soft coral community structure of unplanned vertical AR in Eilat (Red Sea) that have progressed beyond the initial successional phases, and compares these to the adjacent natural reefs (NR). Coral communities were characterized using belt transects, conducted on 34- and 14-year-old unplanned AR, and on two proximate NR. Stony corals were the major component in the NR, while soft corals, mainly Nephtheidae, accounted for up to 90% of the total living coverage in the AR. This was attributed to physical and biological features associated with the ARs vertical orientation, which was absent in the NR, and to the life history traits of these soft corals. Community differences between the two AR were related to structural stability and age. The results suggest that AR may increase local heterogeneity and space availability by adding novel habitats, increasing production and elevating species diversity in the surroundings.Communicated by Biological Editor H.R. Lasker  相似文献   

20.
Ceccarelli DM  Jones GP  McCook LJ 《Oecologia》2005,145(3):445-453
Herbivorous fishes have been attributed a central role in structuring benthic communities on coral reefs. However, the relative importance of different behavioural groups of herbivores may differ and their interactions may be complex. This study focuses on an experiment that discriminates between two groups of herbivorous fish: (1) “Foragers” (relatively mobile, schooling grazers, including parrotfishes and surgeonfishes) and (2) “Farmers” (highly site-attached, territorial species, primarily damselfishes). Preliminary observations at Kimbe Bay (Papua New Guinea) showed that both groups were common, and that farmers defended areas from foragers and maintained algal communities that were distinct from the surrounding undefended substratum. An orthogonal combination of a farmer removal treatment and a forager exclusion treatment was applied to isolate their separate effects on algae and corals, and to determine whether farmer territory composition results from forager exclusion or algal cultivation. The experiment showed that foragers had quantitatively greater and qualitatively different effects on sessile benthic community structure than farmers. Where foragers were excluded, there were substantial increases in the cover and biomass of macro-algae and a decline in some corals, regardless of the presence of farmers. Where farmers were removed there was a moderate decline in the cover of some food algal species, regardless of whether foragers had access. No effect of the exclusion of foragers by farmers could be detected. Our results support prevailing views that foragers have a major impact on coral reefs and farmers cultivate selected algae, but challenge the hypothesis that damselfish influence habitat structure by moderating forager disturbance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号