首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
珊瑚礁生态修复研究进展   总被引:2,自引:2,他引:2  
李元超  黄晖  董志军  练健生  周国伟 《生态学报》2008,28(10):5047-5054
珊瑚礁生态系统有着很高的生物多样性和重要的生态功能。20世纪80年代以后全球范围内珊瑚礁的大面积退化引起了人们广泛的关注。简述了世界珊瑚礁资源现状,破坏原因,生态修复方法以及我国的珊瑚礁资源现状和修复策略等。国际上通用的生态修复策略主要是根据珊瑚的两种繁殖方式进行的,此外再配合人为的适度干扰,增加珊瑚的成活率。方法主要有:珊瑚移植、Gardening、人工渔礁、底质稳固、幼体附着等以及对相关利益者的宣传,海岸带的保护等。我国珊瑚礁退化严重,但是由于缺乏相关的科技资料报道和技术支持,缺乏系统的研究,使得珊瑚礁的生态修复成绩甚微,今后应在该领域开展更多的工作。  相似文献   

2.
Active restoration is being practiced to supplement conservation activities for the purpose of reversing the trend of reef degradation. In the last decade, the feasibility of different restoration approaches such as coral transplantation and restocking of other marine biota has been the focus of research and relatively few have examined experimentally its effects on the resultant communities. In this study, coral transplantation and giant clam restocking were applied on 25 degraded patch reefs (~ 25 m2) inside a marine sanctuary in Pangasinan, northwestern Philippines to examine their effects on the community structure of reef fishes. Five interventions or treatments were employed: 1) “coral” consisted of transplantation of a combination of Acropora spp. and Pocillopora spp. on concrete blocks; 2) “clam” consisted of restocking of Tridacna gigas; 3) “clam+coral” consisted of restocking of T. gigas with Acropora spp. transplanted on their shells; 4) “shell” consisted of deployment of T. gigas shells; and 5) “control” consisted of no intervention. Fish communities on the patch reefs were monitored monthly for 3 months before the intervention and were monitored further for 11 months after the intervention, including 1 recruitment season. After the intervention, the coral cover and the “other biota” category increased in the coral and clam+coral treatments, due to the transplanted corals and deployed giant clams. Consequently, the complexity of the substrate was enhanced. A month after the intervention, a rapid increase in the abundance and species richness of reef fishes on the coral, clam+coral and clam treatments was observed compared to the shell and control treatments. A change in species composition of reef fish assemblage was also apparent in the coral and clam+coral treatments relative to the clam, shell and control, especially 4 months after the intervention. The present experiment demonstrates the feasibility of improving the condition of degraded patch reefs, which can subsequently enhance the fish community. Results also show the importance of the underlying substratum and the abundance of live corals and clams to reef fishes.  相似文献   

3.
A 9-year study of the structure of assemblages of fish on 20 coral patch reefs, based on 20 non-manipulative censuses, revealed a total of 141 species from 34 families, although 40 species accounted for over 95% of sightings of fish. The average patch reef was 8.5 m2 in surface area, and supported 125 fish of 20 species at a census. All reefs showed at least a two-fold variation among censuses in total numbers of fish present, and 12 showed ten-fold variations. There was also substantial variation in the composition and relative abundances of species present on each patch reef, such that censuses of a single patch reef were on average about 50% different from each other in percent similarity of species composition (Czekanowski's index). Species differed substantially in the degree to which their numbers varied from census to census, and in the degree to which their dispersion among patch reefs was modified from census to census. We characterize the 40 most common species with respect to these attributes. The variations in assemblage structure cannot be attributed to responses of fish to a changing physical structure of patch reefs, nor to the comings and goings of numerous rare species. Our results support and extend earlier reports on this study, which have stressed the lack of persistant structure for assemblages on these patch reefs. While reef fishes clearly have microhabitat preferences which are expressed at settlement, the variations in microhabitat offered by the patch reefs are insufficient to segregate many species of fish by patch reef. Instead, at the scale of single patch reefs, and, to a degree, at the larger scale of the 20 patch reefs, most of the 141 species of fish are distributed without regard to differences in habitat structure among reefs, and patterns of distribution change over time. Implications for general understanding of assemblage dynamics for fish over more extensive patches of reef habitat are considered.  相似文献   

4.
Abstract Biodiversity is frequently associated with functional redundancy. Indo‐Pacific coral reefs incorporate some of the most diverse ecosystems on the globe with over 3000 species of fishes recorded from the region. Despite this diversity, we document changes in ecosystem function on coral reefs at regional biogeographical scales as a result of overfishing of just one species, the giant humphead parrotfish (Bolbometopon muricatum). Each parrotfish ingests over 5 tonnes of structural reef carbonates per year, almost half being living corals. On relatively unexploited oceanic reefs, total ingestion rates per m2 balance estimated rates of reef growth. However, human activity and ecosystem disruption are strongly correlated, regardless of local fish biodiversity. The results emphasize the need to consider the functional role of species when formulating management strategies and the potential weakness of the link between biodiversity and ecosystem resilience.  相似文献   

5.
The effects of size and age on reproductive dynamics of common coral trout Plectropomus leopardus populations were compared between coral reefs open or closed (no‐take marine reserves) to fishing and among four geographic regions of the Great Barrier Reef (GBR), Australia. The specific reproductive metrics investigated were the sex ratio, the proportion of vitellogenic females and the spawning fraction of local populations. Sex ratios became increasingly male biased with length and age, as expected for a protogyne, but were more male biased in southern regions of the GBR (Mackay and Storm Cay) than in northern regions (Lizard Island and Townsville) across all lengths and ages. The proportion of vitellogenic females also increased with length and age. Female P. leopardus were capable of daily spawning during the spawning season, but on average spawned every 4·3 days. Mature females spawned most frequently on Townsville reserve reefs (every 2·3 days) and Lizard Island fished reefs (every 3·2 days). Females on Mackay reefs open to fishing showed no evidence of spawning over 4 years of sampling, while females on reserve reefs spawned only once every 2–3 months. No effect of length on spawning frequency was detected. Spawning frequency increased with age on Lizard Island fished reefs, declined with age on Storm Cay fished reefs, and declined with age on reserve reefs in all regions. It is hypothesized that the variation in P. leopardus sex ratios and spawning frequency among GBR regions is primarily driven by water temperature, while no‐take management zones influence spawning frequency depending on the region in which the reserve is located. Male bias and lack of spawning activity on southern GBR, where densities of adult P. leopardus are highest, suggest that recruits may be supplied from central or northern GBR. Significant regional variation in reproductive traits suggests that a regional approach to management of P. leopardus is appropriate and highlights the need for considering spatial variation in reproduction where reserves are used as fishery or conservation management tools.  相似文献   

6.
Dramatic coral loss has significantly altered many Caribbean reefs, with potentially important consequences for the ecological functions and ecosystem services provided by reef systems. Many studies examine coral loss and its causes—and often presume a universal decline of ecosystem services with coral loss—rather than evaluating the range of possible outcomes for a diversity of ecosystem functions and services at reefs varying in coral cover. We evaluate 10 key ecosystem metrics, relating to a variety of different reef ecosystem functions and services, on 328 Caribbean reefs varying in coral cover. We focus on the range and variability of these metrics rather than on mean responses. In contrast to a prevailing paradigm, we document high variability for a variety of metrics, and for many the range of outcomes is not related to coral cover. We find numerous “bright spots,” where herbivorous fish biomass, density of large fishes, fishery value, and/or fish species richness are high, despite low coral cover. Although it remains critical to protect and restore corals, understanding variability in ecosystem metrics among low‐coral reefs can facilitate the maintenance of reefs with sustained functions and services as we work to restore degraded systems. This framework can be applied to other ecosystems in the Anthropocene to better understand variance in ecosystem service outcomes and identify where and why bright spots exist.  相似文献   

7.
Fish larvae were sampled daily over a period of 14 days using six crest nets spaced at 200 m intervals on a coral reef on the west coast of Moorea Island, French Polynesia, to estimate the extent to which ichthyonekton arriving at one location reflected ichthyonekton arriving at neighbouring areas. Each night, the six crest nets were colonized by larval fishes from the same location.  相似文献   

8.
The severely degraded condition of many coral reefs worldwide calls for active interventions to rehabilitate their physical and biological structure and function, in addition to effective management of fisheries and no‐take reserves. Rehabilitation efforts to stabilize reef substratum sufficiently to support coral growth have been limited in size. We documented a large coral reef rehabilitation in Indonesia aiming to restore ecosystem functions by increasing live coral cover on a reef severely damaged by blast fishing and coral mining. The project deployed small, modular, open structures to stabilize rubble and to support transplanted coral fragments. Between 2013 to 2015, approximately 11,000 structures covering 7,000 m2 were deployed over 2 ha of a reef at a cost of US$174,000. Live coral cover on the structures increased from less than 10% initially to greater than 60% depending on depth, deployment date and location, and disturbances. The mean live coral cover in the rehabilitation area in October 2017 was higher than reported for reefs in many other areas in the Coral Triangle, including marine protected areas, but lower than in the no‐take reference reef. At least 42 coral species were observed growing on the structures. Surprisingly, during the massive coral bleaching in other regions during the 2014–2016 El Niño–Southern Oscillation event, bleaching in the rehabilitation area was less than 5% cover despite warm water (≥30°C). This project demonstrates that coral rehabilitation is achievable over large scales where coral reefs have been severely damaged and are under continuous anthropogenic disturbances in warming waters.  相似文献   

9.
Many diurnal planktivorous fish in coral reefs efficiently consume zooplankton drifting in the overlying water column. Our survey, carried out at two coral reefs in the Red Sea, showed that most of the diurnal planktivorous fish foraged near the bottom, close to the shelters from piscivores. The planktivorous fish were order of magnitude more abundant near (<1.5 m) the bottom than higher in the water column. The predation pressure exerted by these fish was assessed by measuring the consumption of brine shrimps tethered at different heights above the bottom on a vertical line which was pulled over the reef. Below 1.5 m above bottom, the shrimps survival probability sharply decreased toward the bottom. Higher in the water column, survivorship was nearly 100% with little vertical variation. Our results indicate that near-bottom depletion of zooplankton in coral reefs is likely due to intense predation at that boundary layer. Risk of predation by piscivorous fish apparently restricts planktivorous fish to forage near the bottom, with a distribution pattern greatly deviating from ideal-free distribution.  相似文献   

10.
南海主要珊瑚礁水域的鱼类物种多样性研究   总被引:27,自引:0,他引:27  
根据2004年5–7月和2005年3–4月采用深水三重刺网在南海的羚羊礁、华光礁、银砾滩、东岛、滨湄滩、排洪滩、本固暗沙、比微暗沙、武勇暗沙、海鸠暗沙、双子群礁、中业群礁、鲎藤礁、美济礁、仁爱礁、仙宾礁、南方浅滩、棕滩、大渊滩、永署礁、南薰礁、牛轭礁、道明群礁等23座主要珊瑚礁过渡性水域进行的2个航次专业调查资料, 分析了南海主要珊瑚礁水域的鱼类种类组成和群落特征。结果表明, 在珊瑚礁水域软骨鱼类以真鲨目和鲼目的种类数占优势, 硬骨鱼类以鲈形目和鲀形目的种类数占优势。相对重要指数(IRI)大于500的鱼类定为优势种, 西沙群岛有5种, 分别为迈氏条尾魟(Taeniura meyeni)、长吻裸颊鲷(Lethrinus miniatus)、胡椒鲷(Plectorhinchus pictus)、黄斑胡椒鲷(P. flavomaculatus)和灰六鳃鲨(Hexanchus griseus); 中沙群岛有6种, 分别为黄斑胡椒鲷、迈氏条尾魟、圆燕鱼(Platax orbicularis)、密斑刺鲀(Dioson hystrix)、红裸颊鲷(Lethrinus rubrioperculatus)和胡椒鲷; 南沙群岛有3种, 分别为黑梢真鲨(Carcharhinus limbatus)、灰三齿鲨(Triaenodon obesus)和星点鲹(Caranx stellatus)。针对南海珊瑚礁水域鱼类个体大小悬殊的特点, 本文分别以个体数和生物量为基础计算该水域的Margalef丰富度指数、Shannon-Wiener多样性指数、Simpson多样性指数和Pielou均匀度指数。物种组成的区域差异分析结果表明, 各珊瑚礁水域的鱼类物种无论与南海北部陆架海域还是与南沙西南陆架区相比都有明显的差异, 而属于相同生境类型水域的鱼类物种相似性较高。  相似文献   

11.
Coral reef fisheries support the livelihoods of millions of people in tropical countries, despite large‐scale depletion of fish biomass. While human adaptability can help to explain the resistance of fisheries to biomass depletion, compensatory ecological mechanisms may also be involved. If this is the case, high productivity should coexist with low biomass under relatively high exploitation. Here we integrate large spatial scale empirical data analysis and a theory‐driven modelling approach to unveil the effects of human exploitation on reef fish productivity–biomass relationships. We show that differences in how productivity and biomass respond to overexploitation can decouple their relationship. As size‐selective exploitation depletes fish biomass, it triggers increased production per unit biomass, averting immediate productivity collapse in both the modelling and the empirical systems. This ‘buffering productivity’ exposes the danger of assuming resource production–biomass equivalence, but may help to explain why some biomass‐depleted fish assemblages still provide ecosystem goods under continued global fishing exploitation.  相似文献   

12.
Ocean warming under climate change threatens coral reefs directly, through fatal heat stress to corals and indirectly, by boosting the energy of cyclones that cause coral destruction and loss of associated organisms. Although cyclone frequency is unlikely to rise, cyclone intensity is predicted to increase globally, causing more frequent occurrences of the most destructive cyclones with potentially severe consequences for coral reef ecosystems. While increasing heat stress is considered a pervasive risk to coral reefs, quantitative estimates of threats from cyclone intensification are lacking due to limited data on cyclone impacts to inform projections. Here, using extensive data from Australia's Great Barrier Reef (GBR), we show that increases in cyclone intensity predicted for this century are sufficient to greatly accelerate coral reef degradation. Coral losses on the outer GBR were small, localized and offset by gains on undisturbed reefs for more than a decade, despite numerous cyclones and periods of record heat stress, until three unusually intense cyclones over 5 years drove coral cover to record lows over >1500 km. Ecological damage was particularly severe in the central‐southern region where 68% of coral cover was destroyed over >1000 km, forcing record declines in the species richness and abundance of associated fish communities, with many local extirpations. Four years later, recovery of average coral cover was relatively slow and there were further declines in fish species richness and abundance. Slow recovery of community diversity appears likely from such a degraded starting point. Highly unusual characteristics of two of the cyclones, aside from high intensity, inflated the extent of severe ecological damage that would more typically have occurred over 100s of km. Modelling published predictions of future cyclone activity, the likelihood of more intense cyclones within time frames of coral recovery by mid‐century poses a global threat to coral reefs and dependent societies.  相似文献   

13.
Sara E. Cannon  Simon D. Donner  Angela Liu  Pedro C. González Espinosa  Andrew H. Baird  Julia K. Baum  Andrew G. Bauman  Maria Beger  Cassandra E. Benkwitt  Matthew J. Birt  Yannick Chancerelle  Joshua E. Cinner  Nicole L. Crane  Vianney Denis  Martial Depczynski  Nur Fadli  Douglas Fenner  Christopher J. Fulton  Yimnang Golbuu  Nicholas A. J. Graham  James Guest  Hugo B. Harrison  Jean-Paul A. Hobbs  Andrew S. Hoey  Thomas H. Holmes  Peter Houk  Fraser A. Januchowski-Hartley  Jamaluddin Jompa  Chao-Yang Kuo  Gino Valentino Limmon  Yuting V. Lin  Timothy R. McClanahan  Dominic Muenzel  Michelle J. Paddack  Serge Planes  Morgan S. Pratchett  Ben Radford  James Davis Reimer  Zoe T. Richards  Claire L. Ross  John Rulmal Jr.  Brigitte Sommer  Gareth J. Williams  Shaun K. Wilson 《Global Change Biology》2023,29(12):3318-3330
Scientists and managers rely on indicator taxa such as coral and macroalgal cover to evaluate the effects of human disturbance on coral reefs, often assuming a universally positive relationship between local human disturbance and macroalgae. Despite evidence that macroalgae respond to local stressors in diverse ways, there have been few efforts to evaluate relationships between specific macroalgae taxa and local human-driven disturbance. Using genus-level monitoring data from 1205 sites in the Indian and Pacific Oceans, we assess whether macroalgae percent cover correlates with local human disturbance while accounting for factors that could obscure or confound relationships. Assessing macroalgae at genus level revealed that no genera were positively correlated with all human disturbance metrics. Instead, we found relationships between the division or genera of algae and specific human disturbances that were not detectable when pooling taxa into a single functional category, which is common to many analyses. The convention to use percent cover of macroalgae as an indication of local human disturbance therefore likely obscures signatures of local anthropogenic threats to reefs. Our limited understanding of relationships between human disturbance, macroalgae taxa, and their responses to human disturbances impedes the ability to diagnose and respond appropriately to these threats.  相似文献   

14.
Nonreef habitats such as mangroves, seagrass, and macroalgal beds are important for foraging, spawning, and as nursery habitat for some coral reef fishes. The spatial configuration of nonreef habitats adjacent to coral reefs can therefore have a substantial influence on the distribution and composition of reef fish. We investigate how different habitats in a tropical seascape in the Philippines influence the presence, density, and biomass of coral reef fishes to understand the relative importance of different habitats across various spatial scales. A detailed seascape map generated from satellite imagery was combined with field surveys of fish and benthic habitat on coral reefs. We then compared the relative importance of local reef (within coral reef) and adjacent habitat (habitats in the surrounding seascape) variables for coral reef fishes. Overall, adjacent habitat variables were as important as local reef variables in explaining reef fish density and biomass, despite being fewer in number in final models. For adult and juvenile wrasses (Labridae), and juveniles of some parrotfish taxa (Chlorurus), adjacent habitat was more important in explaining fish density and biomass. Notably, wrasses were positively influenced by the amount of sand and macroalgae in the adjacent seascape. Adjacent habitat metrics with the highest relative importance were sand (positive), macroalgae (positive), and mangrove habitats (negative), and fish responses to these metrics were consistent across fish groups evaluated. The 500‐m spatial scale was selected most often in models for seascape variables. Local coral reef variables with the greatest importance were percent cover of live coral (positive), sand (negative), and macroalgae (mixed). Incorporating spatial metrics that describe the surrounding seascape will capture more holistic patterns of fish–habitat relationships on reefs. This is important in regions where protection of reef fish habitat is an integral part of fisheries management but where protection of nonreef habitats is often overlooked.  相似文献   

15.
A rapid increase in sea-level rise is generating vertical accommodation space on modern coral reefs. Yet increases in sea-surface temperatures (SSTs) are reducing the capacity of coral reefs to keep up with sea-level rise. We use ensemble species distribution models of four coral species (Porites rus, Porites lobata, Acropora hyacinthus and Acropora digitifera) to gauge potential geographic differences in gross carbonate production. Net carbonate production was estimated by considering erosional rates of ocean acidification, increasing cyclone intensity, local pollution, fishing pressure and the projected burdens of increases in SSTs (under Representative Concentration Pathways (RCPs) 4.5, 6.0 and 8.5) through to the year 2100. Our models predict that only 4 ± 0.1% (~60 000 km2) of Indo-Pacific coral reefs are projected to keep up with sea-level rise by the year 2100 under RCP 8.5 – most of which will be located near the Equator. However, with drastic reductions in emissions (under RCPs 4.5 and 6.0 Wm−2), we predict that 15 ± 0.3% (~250 000 km2) (under RCP 4.5 Wm−2) and 12 ± 0.7% (~200 000 km2) (under RCP 6.0 Wm−2) of Indo-Pacific coral reefs, have the potential to keep up with sea-level rise by the year 2100. Yet the burdens of fishing pressure and its cascading effects are projected to be responsible for substantial reef erosion, nearly halving the number of reefs able to keep up with sea-level rise. If action is taken immediately and emissions are drastically reduced to RCPs 4.5 or 6.0 Wm−2, and reef management reduces the burdens of local pollution and fishing pressure, then our model predicts that 21–27% (~350 000–470 000 km2) of Indo-Pacific coral reefs – most of which will be located near the Equator – would have the potential to keep up with sea-level rise by the year 2100.  相似文献   

16.
As a result of climate change, sea-water temperatures around the world are expected to increase, potentially causing more frequent and severe episodes of coral bleaching. In this study, the impact of elevated water temperatures at an isolated system of reefs was assessed by quantifying the changes in benthic communities over almost 10 years. Mass-coral bleaching in 1998 dramatically altered the community structure of the reefs, including a >80% relative decrease in the cover of hard and soft corals and a twofold increase in the cover of algae, but which did not include macroalgae. The magnitude of the impact varied among the different sites according to their initial cover and community structure, largely due to the differing susceptibilities of the dominant groups of hard corals. Subsequent increase in the cover of these groups varied according to their life history traits, such as modes of reproduction and rates of growth. Additionally, the increase in cover was strongly correlated with the magnitude of the impact at the different sites, suggesting that recovery was driven by processes acting over local scales. Six years after the bleaching, the hard corals had returned to approximately 40% of their pre-bleaching cover, but there was little change in the cover of soft corals, and the structure of most hard coral communities remained very different to that prior to the bleaching. These data provides insights into the degree to which coral communities are resilient to catastrophic disturbances, when they are isolated from other reef systems but not exposed to some of the chronic stressors affecting many reefs around the world.  相似文献   

17.
A concordance analysis was used to study the simultaneous influence of several environmental data sets on chaetodontid (butterflyfish) distributions. This multivariate and multitable method enabled the correlation of three types of benthic characteristics (mineral substratum, coverage of structural species and large echinoderms) with butterflyfish abundances in two bays of the urban centre of Nouméa (New Caledonia). The first concordance axis was related to a gradient in the coverage of branching corals. This disturbance gradient compared damaged reef areas dominated by long‐spined sea urchins to areas with an extensive coverage of branching corals. The abundance of corallivorous chaetodontids was related to this gradient, supporting the view of corals as a food and shelter source for these fishes. The second concordance axis was interpreted as a gradient of heterogeneity in the coverage of benthic life‐forms. The abundance of omnivorous chaetodontids was related to this gradient. Thus, the concordance axes defined two key components of habitat structure that were related to the entire fish community structure.  相似文献   

18.
廖芝衡  余克服  王英辉 《生态学报》2016,36(21):6687-6695
随着全球范围珊瑚礁的退化,大型海藻在珊瑚礁区的覆盖度呈增多的趋势。大型海藻的大量生长,妨碍了珊瑚的生长、繁殖、恢复等过程。概括起来,大型海藻对珊瑚生长、繁殖及恢复过程所产生的不利影响主要包括:(1)大型海藻通过与珊瑚竞争空间和光照而影响珊瑚生长;(2)大型海藻与珊瑚直接接触时,通过摩擦作用及释放化感物质而影响珊瑚生长;(3)大型海藻的大量生长打破了珊瑚与海藻的竞争平衡,珊瑚为应对大型海藻的入侵而把用于生长和繁殖的能量转移到组织修复与防御上,进而造成珊瑚繁殖能量的减少;(4)大型海藻通过影响珊瑚幼虫的附着及附着后的存活率,而阻碍珊瑚群落的发展;(5)海藻还能通过富集沉积物、释放病原体及扰乱珊瑚共生微生物的生长等而间接影响珊瑚生长。明确的竞争机制有利于研究海藻与珊瑚的相互作用过程。在总结前人对海藻与珊瑚的竞争机制研究的基础上,把两者的竞争机制划分成物理机制、化学机制、微生物机制三大类,物理机制是研究得比较透彻的竞争机制,而化学机制与微生物机制则需要更深入的研究,是当前研究的热点。目前,我国对珊瑚礁中底栖海藻与珊瑚的相互作用研究甚少;鉴于此,对底栖海藻功能群的划分类型以及三大类型底栖海藻对珊瑚的作用特点做了简要介绍,并对珊瑚礁退化的现状和退化珊瑚礁区内海藻的表现做了概述。在此基础上,再综述国外关于大型海藻对珊瑚的影响研究进展,指出我国应该加强对南海珊瑚礁区大型海藻的种类分布及丰富度等的调查,评价大型海藻对南海珊瑚礁的影响现状;并结合生理学、分子生物学技术和生态学研究手段,在细胞与分子水平上探索海藻对珊瑚的影响机制,以期为珊瑚礁生态系统的保护提供参考。  相似文献   

19.
Mutualisms affect the biodiversity, distribution and abundance of biological communities. However, ecological processes that drive mutualism-related shifts in population structure are often unclear and must be examined to elucidate how complex, multi-species mutualistic networks are formed and structured. In this study, we investigated how the presence of key marine mutualistic partners can drive the organisation of local communities on coral reefs. The cleaner wrasse, Labroides dimidiatus, removes ectoparasites and reduces stress hormones for multiple reef fish species, and their presence on coral reefs increases fish abundance and diversity. Such changes in population structure could be driven by increased recruitment of larval fish at settlement, or by post-settlement processes such as modified levels of migration or predation. We conducted a controlled field experiment to examine the effect of cleaners on recruitment processes of a common group of reef fishes, and showed that small patch reefs (61–285 m2) with cleaner wrasse had higher abundances of damselfish recruits than reefs from which cleaner wrasse had been removed over a 12-year period. However, the presence of cleaner wrasse did not affect species diversity of damselfish recruits. Our study provides evidence of the ecological processes that underpin changes in local population structure in the presence of a key mutualistic partner.  相似文献   

20.
三亚珊瑚礁分布海区浮游生物的群落结构   总被引:3,自引:0,他引:3  
为了更好地了解珊瑚礁区生物群落应对环境变化的生态响应机制,以及浮游生物群落结构与珊瑚礁发展发育的关系,我们于2006年10月26日至11月10日对三亚珊瑚礁保护区9个有珊瑚礁分布的站点进行了浮游生物群落结构的调查.共鉴定出浮游植物种类61属130种(包括变种、变型),其中硅藻门48属101种,甲藻门10属25种,蓝藻门2属3种,金藻门1属1种.硅藻门的角毛藻属(Chaetoceros)种类最多,根管藻属(Rhizosolenia)的种类次之.调查海区浮游植物的细胞丰度范围为348-11,320个/L,平均为3,247个/L.在浮游植物群落中硅藻占绝对优势,平均丰度为3,230个/L,占总密度的99.5%.调查海区共鉴定出浮游动物76种,其中桡足类29种,水母类17种,浮游幼虫10种,毛颚类7种,被囊类6种,浮游腹足类4种,十足类、多毛类和介形类各1种.调查海区浮游动物的密度范围为43-190个/m3,平均为114个/m3.优势类群为桡足类、各类幼虫和毛颚类,平均分别占浮游动物总密度的28.5%,27.7%和13.6%.各站位浮游植物的多样性指数和均匀度平均分别为3.98和0.70,浮游动物的多样性指数和均匀度平均分别为4.37和0.87.鹿回头和大东海海域的浮游植物密度大,而生物多样性指数低.活的造礁石珊瑚种数和覆盖率高的站点的浮游生物多样性也较高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号