首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gastropod shells are vital for the majority of hermit crab species, being essential for their survival, growth, protection, and reproduction. Given their importance, shells are acquired and transferred between crabs through several modalities. We conducted observations and experiments at the Asinara Island (Sardinia, Italy) to investigate the efficacy of the different behavioral tactics adopted by the hermit crab Clibanarius erythropus to acquire shells, such as: (1) locomotion and activity at different tidal phases; (2) attendance at shell-supplying sites (simulated predation sites with five different odors: live and dead gastropods, live and dead crabs, predator); and (3) interactions with conspecifics in aggregations on simulated gastropod predation sites. In each tidal phase, locomotion was slow (0.7 cm min− 1) and, as a consequence, the probability of encountering empty shells and conspecifics was low. Simulated gastropod predation sites quickly attracted a larger number of hermit crabs than the other sites tested. Aggregations seemed to function as shell exchange markets, as previously suggested for other species: the first attendant took the experimental shell and a chain of shell exchanges among conspecifics followed. Our results show that, in C. erythropus, aggregation is the most efficient tactic for the acquisition of new shells, whereas in other species, such as Pagurus longicarpus, it is associated with exploitation ability due to the intense locomotion. The interspecific plasticity in hermit crabs' behavior is confirmed.  相似文献   

2.
A series of experiments at two tropical locations tested the ability of land hermit crabs Coenobita perlatus (H. Milne Edwards) and Coenobita compressas (H. Milne Edwards) to detect and respond to odors of dead conspecifics. An attraction array compared numbers of crabs attending hidden food odors and dead conspecific odors. Pit experiments tested crab shell-acquisition behaviors at different hidden odors. Bucket experiments confined crabs collected from various categories (feeding crabs, wandering crabs and crabs aggregated at dead conspecific odors) and tested behavioral responses to odors and an empty shell. Land hermit crab behavior at both sites was similar. Crabs were attracted to dead conspecific odors up to 10 times more than to food odors. Crabs attracted to dead conspecifics displayed significantly more shell-acquisition behaviors: touching other crab's shells in an exploratory manner and switching shells if an empty shell was available. In buckets, crabs from each category switched into shells. Results are compared to previous reports of similar shell-seeking behaviors by marine hermit crabs in response to dead conspecific odors. It is suggested that responding to dead conspecific odors for shell source location is an evolutionarily conserved behavior developed before hermit crabs became terrestrial.  相似文献   

3.
The epifauna on gastropod shells occupied by the hermit crabs Pagurus pollicaris (Say) and P. longicarpus (Say) was examined, as was the utilization of shells by these two hermit crabs. In the study area in Tampa Bay, Florida, shells were not a limiting factor to the hermit crab population, and there apparently was little competition for shells. Interspecific competition for shells was limited because the two hermit crab species differed in size and hence occupied shells of different sizes. The total number and density of most epifaunal species were higher on shells occupied by hermit crabs than on unoccupied shells, possibly because hermit crabs prevent their shells from being buried and hence lengthen the time the epifaunal community can grow and develop. The hermit crab species also appeared to affect the epifaunal community, for the total number and density of most epifaunal species were larger on shells occupied by P. pollicaris than P. longicarpus. With increasing shell size, the populations of most epifaunal species, also were larger but not their density. Least influential in affecting the epifaunal community was the species of shells.  相似文献   

4.
The influence of some symbionts on the shell-selection by the hermit crabs Pagurus pollicarus and P. longicarpus was examined by placing individual hermit crabs with two similar shells in a choice situation and recording the shell occupied after 12 hr. One shell contained a symbiont species and the other did not. The results indicated that organisms normally found on or in empty shells influence the shell-section by these species of hermit crab. P. pollicarus preferred shells occupied by the sea anemone Calliactis tricolor or by the hydroid Hydractina echinata as opposed to bare shells. P. longicarpus also preferred shells with H. echinata. Both crab species rejected shells with the barnacle Balanus amphitrite. Shells containing the molluscs Crepidula fornicata or C. plana were rejected by the smaller hermit crab P. longicarpus. These molluscs appeared to exert no influence on P. pollicarpus unless they were large or abundant, at which point their weight or occlusion of available space possibly has negative effects on the crab.  相似文献   

5.
The suspension-feeding slippersnail Crepidula convexa is commonly associated with hermit crabs (Pagurus longicarpus) living in periwinkle shells (Littorina littorea) at our study site in Nahant, MA, USA. In 15 field surveys conducted at Nahant in 2000, 2001 and 2003, we found that (1) more than 61.8% of individuals of C. convexa resided on shells occupied by hermit crabs, as opposed to the shells of live periwinkles, empty periwinkle shells or other solid substrates; (2) an average of 8.3% of hermit crabs carried at least one individual of C. convexa; and (3) 39.1-75.0% of hermit crabs carrying C. convexa were carrying “large” individuals (snails with wet weight >10% of the weight of the periwinkle shells they occupied). However, it is unlikely that individuals of C. convexa seek out shells occupied by hermit crabs to colonize, and they showed no preference for empty periwinkle shells over other solid substrates in the laboratory. Moreover, in the laboratory the hermit crabs preferentially occupied intact shells bearing individuals of C. convexa only when the alternatives were shells that had been drilled by naticid snails. Thus, neither party preferentially associates with the other: rather, extensive predation by naticid snails on periwinkles at Nahant appears to limit the availability of suitable shells for the hermit crabs, forcing them to inhabit shells bearing “large” individuals of C. convexa. Individuals of C. convexa may benefit from this inadvertent association with hermit crabs: by facilitating snail dispersal, transport by hermit crabs should reduce the potential for inbreeding, an important consideration for a species that lacks free-living larvae in its life history.  相似文献   

6.
Studies on the interaction between the hermit crab Pagurus longicarpus and its symbiotic hydroid Hydractinia symbiolongicarpus have focused on positive effects of hydroids on their host hermit crabs (e.g., protection from predators). Yet, these benefits may be balanced with reproductive costs, which are rarely studied. Results from field observations, laboratory trials, and a mesocosm experiment indicate that female hermit crabs in hydroid-colonized shells exhibit depressed ovigery, smaller clutch sizes, and increased clutch failure relative to females in bare shells. Frequent switching between bare and hydroid-colonized shells may alleviate negative effects when the density of hydroids in the environment is low, but at high densities Hydractinia may significantly impact hermit crab reproduction.  相似文献   

7.
The interaction between the hermit crab, Pagurus longicarpus, and the shell epibiont, Hydractinia symbiolongicarpus, varies from mutualism to parasitism based on the environmental context. We tested the hypothesis that this interaction also varies as a function of hermit crab sex. Given that recent work showed a negative effect of Hydractinia on female reproduction, we predicted a greater frequency of males in Hydractinia shells in the field and a stronger preference by males than females for shells with Hydractinia. Field collections documented a significantly greater proportion of males than females occupying shells with Hydractinia, and a significantly greater proportion of ovigerous females than non-ovigerous females in shells with Hydractinia. In laboratory shell-switching experiments, a greater proportion of males than females chose to enter shells with Hydractinia, but there was no difference in the proportions of males and females that vacated shells with Hydractinia.We examined whether the presence of Hydractinia influenced predation rates. Blue crabs fed on more than twice as many hermit crabs in shells with Hydractinia as compared to bare shells, but there was no significant difference for stone crabs. Laboratory experiments showed that the force required to crush shells was significantly greater for shells without Hydractinia. Thus, the lower occupancy and preference exhibited by females than males for shells with Hydractinia appears to result both from the decreased reproduction shown in past studies and an increase in predation risk.  相似文献   

8.
Hermit crabs are critically dependent upon gastropod shells for their survival and reproductive fitness. While anecdotal reports have suggested that hermit crabs may be capable of removing live gastropods from their shells to access the essential shell resource, no systematic experiments have been conducted to investigate this possibility. This paper reports experiments on both marine (Pagurus bernhardus) and terrestrial (Coenobita compressus) hermit crabs in which crabs were paired in the laboratory with the gastropods whose shells they inhabit in the field. Pairings included both shelled and naked crabs and spanned the full range of the gastropod life cycle. Neither marine nor terrestrial hermit crabs were successful at removing live gastropods from their shells. Furthermore, only a small fraction of the crabs (5.7%) were capable of accessing shells in which the gastropod had been killed in advance, with its body left intact inside the shell. Finally, although hermit crabs readily entered empty shells positioned on the surface, few crabs (14.3%) were able to access empty shells that were buried just centimeters beneath them. These results suggest that hermit crabs are constrained consumers, with the shells they seek only being accessible during a narrow time window, which begins following natural gastropod death and bodily decomposition and which typically ends when the gastropod's remnant shell has been buried by tidal forces. Further experiments are needed on more species of hermit crabs as well as fine-grained measurements of (i) the mechanical force required to pull a gastropod body from its shell and (ii) the maximum corresponding force that can be generated by different hermit crab species' chelipeds.  相似文献   

9.
The process of how the hermit crab,Pagurus geminus, acquires a new shell was investigated in the natural habitat at Ezura in Shirahama, Wakayama Prefecture, during the non-breeding season, and the following results were obtained. Hermit crabs acquired new shells most frequently by shell exchange between 2 individuals and occasionally by attacking snails. Acquisition through location of empty shells was not found. At the snail attacking site or the site of shell exchange attempts, sometimes many other individuals appeared and, frequently, confusing or complex shell changes were observed. The importance of introduction of fresh shells to a hermit crab population and the possibility for a certain individual to acquire a shell introduced by others through shell exchange attempts are discussed.  相似文献   

10.
Resource assessment in hermit crabs: the worth of their own shell   总被引:1,自引:0,他引:1  
Animals gather information about the quality of a resource throughits assessment and behave accordingly as a result of adaptivemotivational changes. In the hermit crab Pagurus longicarpus,we investigated whether an individual was affected in its motivationto acquire a new shell by the quality of the domicile shell(own resource value [ORV]), of the offered shell (external resourcevalue [ERV]), or of both and asked whether its motivation wasaltered by the information gathered during shell investigation.We analyzed the behavior of hermit crabs inhabiting shells ofdiffering qualities and compared their willingness to acquirean offered shell—optimal, smaller than optimal, or largerthan optimal—by measuring the latency to approach it,the number of shell investigation, and its total duration. Crabsin smaller shells (SSs) approached more quick and often theoffered shell, whereas crabs in larger shells investigated theoffered shell more thoroughly. The readiness of crabs to approachthe offered shell and the extent of its investigation were independentof the ERV but were exclusively affected by the ORV, whereasthe number and duration of shell investigation did not changewith time as investigation proceeded, except for crabs in SSs.These results suggest that P. longicarpus' motivation to acquirea new shell is exclusively influenced by the value of the shellit inhabits rather than by the quality of the shell it is offeredand that this species does not gather—or does not use—informationabout ERV during investigation.  相似文献   

11.
Gastropod shells: A potentially limiting resource for hermit crabs   总被引:1,自引:0,他引:1  
The availability of gastropod shells to hermit crabs in the Newport River Estuary, Beaufort, N.C. has been assessed by determining the numbers of usuable shells occurring in characteristic subtidal habitats and by measuring shell size adequacy. The proportion of useable shells occupied by hermit crabs ranged from 58–99 % and many of the shells not used by hermit crabs were judged unavailable because they were occupied by sipunculids or only uncovered by the dredge. The shell adequacy index (shell size occupied/shell size preferred) was significantly below 1.0 for the largest species (Pagurus pollicaris Say) in the one location where sufficient numbers were collected and for the next largest species (P. longicarpus Say) in three of the four locations where it was collected. The shell size adequacy index for the smallest species (P. annulipes Stimpson) did not differ significantly from 1.0 in either of the two locations in which it was found. These observations suggest that the availability of gastropod shells plays a significant rôle in limiting the abundance of at least the larger hermit crabs.  相似文献   

12.
The symbiotic associates of hermit crabs (excluding parasites and flora) are reviewed worldwide. The review includes species found on the shells occupied by hermit crabs (epibiotic species), species boring into these shells (endolithic species), species living within the lumen of the shell (either free-living or attached to the shell), species attached to the hermit crabs themselves, and hypersymbionts. In total over 550 invertebrates, from 16 phyla are found associated with over 180 species of hermit crabs. Among these associates, 114 appear to be obligate commensals of hermit crabs, 215 are facultative commensals, and 232 are incidental associates. The taxa exhibiting the highest number of associates are arthropods (126), polychaetes (105), and cnidarians (100). The communities of species associated with Dardanus arrosor, Paguristes eremita, Pagurus bernhardus, Pagurus cuanensis, and Pagurus longicarpus are the best studied and harbor the most diverse assemblages of species. While trends in biodiversity of hermit crab assemblages do not follow predicted patterns (e.g., hermit crabs within the Indo-West Pacific do not harbor more species than those from temperate regions), this is suggested to reflect a lack of sampling rather than a true representation of the number of associates. Hermit crabs date to at least the Cretaceous and provided a niche for a number of groups (e.g., hydractinians, bryozoans, polydorids), which were already associates of living gastropods. Apparently hermit crab shells initially supplied a substrate for settlement and then these symbiotic relationships were reinforced by enhanced feeding of symbionts through the activity of the hosts. Through their use and recycling of gastropods shells, hermit crabs are important allogenic ecosystem engineers in marine habitats from the intertidal to the deep sea. Hermit crabs benefit from some symbionts, particularly cnidarians and bryozoans, through extension of shell apertures (alleviating need to switch into new shells) and by providing protection from predators. However, hermit crabs are also negatively impacted (e.g., decreased reproductive success, increased predation) by some symbionts and a review of egg predators is provided. Thus, the symbiotic relationships between hermit crabs and many associates are difficult to characterize and often exhibit temporal changes depending on environmental and biological factors. Research on the biology of these symbionts and the costs/benefits of their associations with hermit crabs are analyzed. While some associates (e.g., Hydractinia spp.) have been studied in considerable detail, for most associations little is known in terms of the impacts of symbionts on hosts, and future experimental studies on the multitude of relationships are suggested.  相似文献   

13.
Shell rotating behavior of the hermit crabPagurus geminus was investigated. In preliminary observations, hermit crabs motivated to change shells rotated presented shells, filled with sand, in a way that dislodged the inside material. In order to determine if this behavior is stereotyped, or flexible and dependent on shell type, hermit crabs were tested with ordinary dextral shells ofLatirulus nagasakiensis and sinistral shells ofAntiplanes contraria. Sinistral shells are not normally encountered by hermit crabs. Their rotation of the dextral shell to the left was adequate for sand discharge. Sinistral shells were rotated in both directions. Analysis of recorded videotapes showed that variation in rotation direction could be attributed to variation in the position of the crab relative to the shell. When the crab faced the shell aperture from the inner lip, it rotated the sinistral shell to the right, and to opposite direction when it faced from the outer lip side. The crab always pushed the upper side of the horizontally laid shell, regardless of shell type or its own position.  相似文献   

14.
Most hermit crabs depend on empty gastropod shells for shelter; competition for appropriate shells is often severe. This study determined whether shells that have been drilled by naticid gastropods are suitable for occupancy by the hermit crab Pagurus longicarpus. Differences in the characteristics of empty shells and those occupied by hermit crabs were assessed at two adjacent field sites in Nahant, Massachusetts. Drilling damage was far more frequent in empty gastropod shells than in shells occupied by hermit crabs, suggesting that individuals of P. longicarpus avoid drilled shells. They did not appear to avoid shells with other forms of damage. Laboratory experiments confirmed that these hermit crabs preferentially chose intact shells over drilled shells, even when the intact shells offered were most suitable for crabs half the weight of those tested. Final shell choices were generally made within 1 h. The hermit crabs apparently discriminated between intact and drilled shells based on tactile cues, since crabs kept in the dark showed the same preference for intact shells. The hermit crabs strongly avoided, to nearly the same extent, artificially drilled shells, naturally drilled shells, and shells with holes artificially drilled on the opposite side of the shell from where they would normally be located. Possible selective forces causing P. longicarpus to show such strong behavioral avoidance of drilled shells include increased vulnerability of crabs in drilled shells to osmotic stress, predation, and eviction by conspecifics.  相似文献   

15.
The small-scale distribution and resource utilization patterns of hermit crabs living in symbiosis with sea anemones were investigated in the Aegean Sea. Four hermit crab species, occupying shells of nine gastropod species, were found in symbiosis with the sea anemone Calliactis parasitica. Shell resource utilization patterns varied among hermit crabs, with Dardanus species utilizing a wide variety of shells. The size structure of hermit crab populations also affected shell resource utilization, with small-sized individuals inhabiting a larger variety of shells. Sea anemone utilization patterns varied both among hermit crab species and among residence shells, with larger crabs and shells hosting an increased abundance and biomass of C. parasitica. The examined biometric relationships suggested that small-sized crabs carry, proportionally to their weight, heavier shells and increased anemone biomass than larger ones. Exceptions to the above patterns are related either to local resource availability or to other environmental factors.  相似文献   

16.
Frequent shell exchanges among hermit crabs imply the enigmatic circumstance that large crabs frequently obtain large shells from smaller crabs. This seeming anomaly is explored as a key to the shell resource system. It is hypothesized to reflect how, where, and how often shells become available to the crabs. Shells become available infrequently, as snails die, and are available to the crabs for only a brief time before they become inaccessible. The standing crop of empty shells is almost always low and is irrelevant to rates of shell turnover in the crab population. Crabs are most likely to encounter shells of the wrong size, and the chance of encountering a shell of the desired size decreases as a crab grows. Snails and crabs are usually found on different portions of the shore; thus, crabs must make “foraging trips” for shells. Under this regime of shell supply, a crab will get a suitable shell the fastest when it accepts any fresh shell that is larger than its initial shell. It can then trade with other crabs to improve its shell fit. This behavior will make small crabs into a regular source of large shells for large crabs, and a shell exchange ritual will be strongly favored because both participants will benefit. Shells are an unusual resource because they are the object of both competitive and mutualistic interactions. This ambiguous quality is revealed in the intraspecific and interspecific responses of crabs to each other and to shells.  相似文献   

17.
Hermit crabs with poor fitting shells are chemically attracted to dying gastropods and conspecifics where a shell may become available. For land hermit crabs, the shell cue is a volatile compound found in the haemolymph. Based on this knowledge, we tested the hypothesis that shell investigation behavior in aquatic hermit crabs, the ancestral predecessors of terrestrial hermit crabs, is also triggered by volatile cues. Volatile compounds from haemolymph of Clibanarius vittatus and Pagurus pollicaris and brachyuran decapod crustaceans were purged from a water-haemolymph solution, trapped in seawater and tested for induction of shell investigation behavior with juvenile C. vittatus. Only volatiles from C. vittatus haemolymph stimulated shell investigation. Volatile compounds were isolated from haemolymph by headspace solid-phase microextraction (SPME) and analyzed by coupled gas chromatography-mass spectrometry (GC-MS). Two prominent compounds were identified, 3-decanol, which was unique to C. vittatus haemolymph, and 2-ethyl-1-hexanol, which was present in the haemolymph of all 4 crustacean species. In shell investigation bioassays, 3-decanol from C. vittatus haemolymph stimulated shell investigation behavior, while 2-ethyl-1-hexanol did not. In bioassays with synthetic 1-, 2-, 4-, and 5-decanol, shell investigation behavior was evoked by 1-decanol, 5-decanol and 3-undecanol. There was no response to 2- and 4-decanol. The response of C. vittatus to volatile shell cues supports the hypothesis that volatile cue detection evolved prior to the occupation of terrestrial niches by crustaceans.  相似文献   

18.
This study aimed at investigating in the hermit crab Pagurus longicarpus whether some morphological traits and their slight variations might determine the winner of a contest in symmetric pairs, i.e. pairs composed of individuals matched by their overall size. In the pre-experimental phase, 400 crabs were individually kept in isolation for a week to eliminate the effects of their previous social experiences and were allowed to enter adequate shells to equalize their motivation to fight. Then, we formed 200 pairs matched for shell and body size and observed their agonistic behaviour for 15 min. Alphas (and betas) were deemed as those individuals that won more than half of the recorded fights. Finally, crabs were sacrificed and sexed, and 6 and 8 measures were taken of their shells and bodies, respectively. Raw data were converted to compositional data and subjected to an isometric log-ratio transformation prior to statistical analysis. Alphas were found to occupy heavier and wider shells than betas, both characteristics that, together with the correlated high level of encrustation, make the apparent dimension of the crab larger and thus favour that individual during agonistic encounters. As expected, hermit crabs were sexually dimorphic in their chelae, but sexes differed also in the length of the dactylus of their third walking leg and in their body weight. Alphas were heavier than betas and had longer propodi and wider dactyli on the third walking legs than betas. The latter character might be advantageous during shell fights when the walking legs of the attacker are used to hold the defender's shell in the spasmodic shaking and their wider dactyli might assure a firmer seizing of it. Indeed, a correct execution of this pattern allows for the eviction of the defender. Our results suggest that more attention towards variations in morphological traits other than body size might improve our understanding of the factors that affect individual Resource Holding Power and fight dynamics.  相似文献   

19.
This study was designed to evaluate the effect of interference and exploitation competition in shell partitioning between two hermit crab species (Pagurus criniticornis and Clibanarius antillensis). Field samples revealed that shells of the gastropod Cerithium atratum were the main resource used by both hermit crab species and that Pagurus used eroded or damaged shells in higher frequency than Clibanarius. The exploitative ability of each species was compared between species in the laboratory using dead gastropod (Cerithium) baits to simulate predation events and signalize newly available shells to hermit crabs. Pagurus reached the baits more rapidly than Clibanarius, but this higher exploitative ability did not explain shell utilization patterns in nature. Another experiment evaluated the dominance hierarchy between these two hermit crab species and revealed that Clibanarius was able to outcompete Pagurus for higher quality shells in agonistic encounters. This higher interference competitive ability of Clibanarius in relation to Pagurus may explain field observations. Nevertheless, Pagurus may be responsible to enhance shell availability to other hermit crab species that have lower ability to find and use newly available shells. Differently, the poorer condition of shells used by Pagurus, the higher ability of this species to attend gastropod predation events and its higher consumption rate by shell-breaking crabs (Menippe nodifrons) may increase its predation risks, thus revealing the disadvantages of such an exploitative competitive strategy for hermit crabs.  相似文献   

20.
Shell utilization patterns of three sympatric hermit crab species from the Bay of Panama are examined. Shell preferences, as shown by laboratory choice experiments and the selective use of empty shells experimentally added to hermit crab populations, are shown to be important determinants of shell utilization under natural conditions.Factors which influence the types and sizes of shells occupied by hermit crabs in separate populations include: (1) the presence and relative abundance of different gastropod species; (2) the specific shell preferences of different hermit crab species; and (3) the presence and relative abundance of sympatric hermit crab competitors for the limited supply of empty shells. Since the size and type of shell occupied by a hermit crab influences its growth rate and reproductive output, these factors appear to have a direct effect on hermit crab fitness and the demographic structure of separate hermit crab populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号