首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Muscle samples from 105 marine mammals stranded along the Oregon and Washington coasts (2002–2009) were tested for levels of total mercury (THg) by Cold Vapor Atomic Fluorescence Spectrometry. The THg present is in the form of the highly toxic methylmercury. After normalizing tissue to 75% water weight, Steller sea lions and northern elephant seals exhibited the highest mean concentrations of THg followed by harbor seals, harbor porpoises, and California sea lions, 0.34 ± 0.278, 0.34 ± 0.485, 0.21 ± 0.216, 0.17 ± 0.169, and 0.15 ± 0.126 mg/kg normalized wet weight (ww), respectively. The mean normalized values demonstrate limited muscle methylmercury accumulation in these species in the Pacific Northwest. However, actual ww concentrations in some of the stranded carcasses may pose a risk to scavengers. Normalizing muscle mercury concentrations eliminated the variability from desiccation, and allowed for a clearer indication of the amount of mercury the animal accumulated before stranding.  相似文献   

2.
Springer et al . (2003) contend that sequential declines occurred in North Pacific populations of harbor and fur seals, Steller sea lions, and sea otters. They hypothesize that these were due to increased predation by killer whales, when industrial whaling's removal of large whales as a supposed primary food source precipitated a prey switch. Using a regional approach, we reexamined whale catch data, killer whale predation observations, and the current biomass and trends of potential prey, and found little support for the prey-switching hypothesis. Large whale biomass in the Bering Sea did not decline as much as suggested by Springer et al ., and much of the reduction occurred 50–100 yr ago, well before the declines of pinnipeds and sea otters began; thus, the need to switch prey starting in the 1970s is doubtful. With the sole exception that the sea otter decline followed the decline of pinnipeds, the reported declines were not in fact sequential. Given this, it is unlikely that a sequential megafaunal collapse from whales to sea otters occurred. The spatial and temporal patterns of pinniped and sea otter population trends are more complex than Springer et al . suggest, and are often inconsistent with their hypothesis. Populations remained stable or increased in many areas, despite extensive historical whaling and high killer whale abundance. Furthermore, observed killer whale predation has largely involved pinnipeds and small cetaceans; there is little evidence that large whales were ever a major prey item in high latitudes. Small cetaceans (ignored by Springer et al .) were likely abundant throughout the period. Overall, we suggest that the Springer et al . hypothesis represents a misleading and simplistic view of events and trophic relationships within this complex marine ecosystem.  相似文献   

3.
In this study we directly compared soluble and particulate chromate cytotoxicity and genotoxicity in human (Homo sapiens) and sea lion (Eumetopias jubatus) lung fibroblasts. Our results show that hexavalent chromium induces increased cell death and chromosome damage in both human and sea lion cells with increasing intracellular chromium ion levels. The data further indicate that both sodium chromate and lead chromate are less cytotoxic and genotoxic to sea lion cells than human cells, based on an administered dose. Differences in chromium ion uptake explained some but not all of the reduced amounts of sodium chromate-induced cell death. By contrast, uptake differences could explain the differences in sodium chromate-induced chromosome damage and particulate chromate-induced toxicity. Altogether they indicate that while hexavalent chromium induces similar toxic effects in sea lion and human cells, there are different mechanisms underlying the toxic outcomes.  相似文献   

4.
Maintaining insulative fat stores is vital for homeothermic marine mammals foraging in cold polar waters. To accomplish this, animals must balance acquisition and expenditure of energy. If this balance is shifted, body condition can decrease, challenging thermal homeostasis and further affecting energy balance. Prior studies of temperature regulation in sea lions have neither quantified basic all-inclusive heat flux values for animals swimming in cold water, nor determined whether they exhibit consistent spatial patterns of heat flux. Heat flux and skin temperature data were thus collected from four captive Steller sea lions using heat flux sensors (HFSs) with embedded thermistors. Optimal sensor placement was established using infrared thermography to locate the major areas of heat flux along the surface of the animals. Experiments were conducted on swimming animals in a large habitat tank with and without a drag harness, and on stationary animals in a temperature- and current-controlled swim flume. All heat flux measurements were corrected by a previously determined correction factor of 3.42 to account for insulative effects of the HFSs and attachment mechanism. Heat flux from shoulders and hips was consistently greater than from mid-trunk and axillary areas in both swimming and stationary animals, suggesting that certain areas of the body are preferentially used to offload excess heat. Mean heat flux for animals swimming with a drag harness was significantly greater than for unencumbered animals, indicating a likely increase in heat production beyond minimum heat loss. Thus, thermal stress does not appear to constitute significant costs for Steller sea lions swimming under conditions of increased drag at speeds of approximately 1 m/s in water temperatures of approximately 8.0 °C.  相似文献   

5.
In mammals, hematocrit (Hct) is optimized between the divergent requirements of blood flow characteristics and oxygen transport and storage capacity. This trade‐off plays a particularly major role in marine mammals, in which oxygen demand during sustained diving requires high Hct levels. Galápagos sea lions (Zalophus wollebaeki) need a long time after birth to develop from terrestrial life to the state of an independent forager at sea. We here show that pups were born with high Hct of 45%, then reduced Hct during the first 40 d of life to 31% while they remain constantly ashore, and increased Hct again until the adult level (57%) is reached at 1 yr of age when they begin to dive for foraging at sea. A similar, but much more rapidly changing pattern is seen in Weddell seal pups, but not in northern elephant seals, where no reduction in Hct is seen after birth. These and similarly changing patterns in terrestrial mammals likely reflect species specific functional adjustments during development due to a trade‐off between the costs of circulation and the changing need to store and transport oxygen.  相似文献   

6.
Population growth typically involves range expansion and establishment of new breeding sites, while the opposite occurs during declines. Although density dependence is widely invoked in theoretical studies of emigration and colonization in expanding populations, few empirical studies have documented the mechanisms. Still fewer have documented the direction and mechanisms of individual transfer in declining populations. Here, we screen large numbers of pups sampled on their natal rookeries for variation in mtDNA (n = 1106) and 16 microsatellite loci (n = 588) and show that new Steller sea lion breeding sites did not follow the typical paradigm and were instead colonized by sea lions from both a declining (Endangered) population and an increasing population. Dispersing individuals colonized rookeries in the distributional hiatus between two evolutionarily distinct ( = 0.222,  = 0.053, = 2) metapopulations recently described as separate subspecies. Hardy–Weinberg, mixed‐stock and relatedness analysis revealed levels of interbreeding on the new rookeries that exclude (i) assortative mating among eastern and western forms, and (ii) inbreeding avoidance as primary motivations for dispersal. Positive and negative density dependence is implicated in both cases of individual transfer. Migration distance limits, and conspecific attraction and performance likely influenced the sequence of rookery colonizations. This study demonstrates that resource limitation may trigger an exodus of breeding animals from declining populations, with substantial impacts on distribution and patterns of genetic variation. It also revealed that this event is rare because colonists dispersed across an evolutionary boundary, suggesting that the causative factors behind recent declines are unusual or of larger magnitude than normally occur.  相似文献   

7.
Steller sea lions (Eumetopias jubatus) were fed restricted iso-caloric amounts of Pacific herring (Clupea pallasi) or walleye pollock (Theragra chalcogramma) for 8–9 days, four times over the course of a year to investigate effects of season and prey composition on sea lion physiology. At these levels, the sea lions lost body mass at a significantly higher rate during winter (1.6 ± 0.14 kg day−1), and at a lower rate during summer (1.2 ± 0.32 kg day−1). Decreases in body fat mass and standard metabolic rates during the trials were similar throughout the seasons and for both diet types. The majority of the body mass that was lost when eating pollock derived from decreases in lipid mass, while a greater proportion of the mass lost when eating herring derived from decreases in lean tissue, except in the summer when the pattern was reversed. Metabolic depression was not observed during all trials despite the constant loss of body mass. Our study supports the hypothesis that restricted energy intake may be more critical to Steller sea lions in the winter months, and that the type of prey consumed (e.g., herring or pollock) may have seasonally specific effects on body mass and composition.  相似文献   

8.
9.
This study investigated patterns of heat loss in bottlenose dolphins (Tursiops truncatus) resident to Sarasota Bay, FL, USA, where water temperatures vary seasonally from 11 to 33°C. Simultaneous measurements of heat flux (HF) and skin surface temperature were collected at the body wall and appendages of dolphins during health-monitoring events in summer (June 2002–2004) and winter (February 2003–2005). Integument thickness was measured and whole body conductance (W/m2 °C) was estimated using HF and colonic temperature measurements. Across seasons, HF values were similar at the appendages, but their distribution differed significantly at the flipper and fluke. In summer, these appendages displayed uniformly high values, while in winter they most frequently displayed very low HF values with a few high HF values. In winter, blubber thickness was significantly greater and estimated conductance significantly lower, than in summer. These results suggest that dolphins attempt to conserve heat in winter. In winter, though, HF values across the body wall were similar to (flank) or greater than (caudal keel) summer values. It is likely that higher winter HF values are due to the steep temperature gradient between the body core and colder winter water, which may limit the dolphin’s ability to decrease heat loss across the body wall.  相似文献   

10.
Marine telemetry expands the knowledge of the biology of marine species at risk: their life cycles, activities, interactions, habitats, and threats. Four seal species in Canada and Australia are faced with distinctive and divergent management problems. This article examines their conservation status, legal protection, and the role that telemetry has played, or could play, in providing previously unavailable information to help meet conservation goals. The value of telemetry data to minimize fisheries mortality of one species has been demonstrated in Australia. Despite there being significant telemetry data for the other species, policy and management have not yet responded.  相似文献   

11.
Organochlorine (OC) pesticides and polychlorinated biphenyls (PCBs) have been detected in a variety of marine mammal species at levels associated with adverse health effects. Little is known about OC levels and impacts on health in pinnipeds with different life histories. We determined the health and levels of 18 OC pesticides and 16 PCB congeners in blubber samples from 20 Steller sea lions and 39 Pacific harbor seals stranded from Oregon and Southern Washington. The most commonly detected OC at the highest concentration was p,p′- dichlorodiphenyldichloroethylene (DDE). PCBs were detected in all samples as well. Hypothesis testing indicated that diseased Steller sea lions (males and females combined) had higher contaminant concentrations than healthy Steller sea lions, and diseased Pacific harbor seals had higher concentrations of total OCs than healthy animals. Differences were also noted between diseased and healthy animals when looking at individual sexes of each species. Diseased Steller sea lions had higher mean contaminant levels than diseased harbor seals and healthy Steller sea lions had higher mean contaminant concentrations than healthy Pacific harbor seals. These results show that species differences exist in both contaminant loads and sensitivity to contaminants, which may be due to differences in life histories and physiology.  相似文献   

12.
A significant component of foraging energetics is the cost of locomotion, which for marine animals, is the cost of swimming. Increases in the cost of swimming may have significant impacts on foraging efficiency. Minimizing the cost of swimming can contribute to the optimization of foraging strategies by reducing the energetic cost of foraging. Results of several field studies suggest that an increase in the cost of locomotion may have comparable effects on foraging behavior and efficiency to a decrease in prey availability. We tested the hypothesis that an increased cost of swimming, brought on by increased hydrodynamic drag, has the same effect on dive behavior and efficiency as reduced prey availability under standard locomotion. Experiments were performed using two adult female Steller sea lions at the Alaska SeaLife Center in Seward, AK, using the same animals and general experimental design previously used to test the effects of reduced prey encounter rate on dive behavior and efficiency. Animals were fitted with a drag-inducing harness for half of the 500 simulated foraging dives in order to increase the cost of swimming. Individual dive duration and foraging time were significantly reduced in all cost-increased dives, comparable to the effects of reduced prey encounter rate. However, on a bout-by-bout basis, dive and foraging efficiency were only slightly reduced, which is likely due to an average 50% reduction in post-dive surface recovery duration during cost-increased dives. Increased heat flux across the body surface measured in a parallel study confirmed a significant increase in work during drag-increased dives. These results suggest that sea lions are able to compensate for changes in the cost of foraging and maintain their foraging efficiency by altering their dive strategy over an entire bout of dives when operating well within their aerobic scope.  相似文献   

13.
Steller sea lions (SSL; Eumetopias jubatus) grow their vibrissae continually, providing a multiyear record suitable for ecological and physiological studies based on stable isotopes. An accurate age‐specific vibrissae growth rate is essential for registering a chronology along the length of the record, and for interpreting the timing of ecologically important events. We utilized four methods to estimate the growth rate of vibrissae in fetal, rookery pup, young‐of‐the‐year (YOY), yearling, subadult, and adult SSL. The majority of vibrissae were collected from SSL live‐captured in Alaska and Russia between 2000 and 2013 (n = 1,115), however, vibrissae were also collected from six adult SSL found dead on haul‐outs and rookeries during field excursions to increase the sample size of this underrepresented age group. Growth rates of vibrissae were generally slower in adult (0.44 ± 0.15 cm/mo) and subadult (0.61 ± 0.10 cm/mo) SSL than in YOY (0.87 ± 0.28 cm/mo) and fetal (0.73 ± 0.05 cm/mo) animals, but there was high individual variability in these growth rates within each age group. Some variability in vibrissae growth rates was attributed to the somatic growth rate of YOY sea lions between capture events (P = 0.014, r2 = 0.206, n = 29).  相似文献   

14.
15.
Habitat complexity plays an important role in determining benthic community structure. A diverse range of methods for its measurement have been adopted but none are convenient for use underwater where access time is at a premium. We describe a novel, calibrated, tool for rapidly measuring scale-dependent habitat complexity developed, primarily, for use underwater. This tool is based on a distance-wheel with interchangeable wheels of different sizes to allow a scale-dependent measure of distance. This technique was calibrated against a profile of known complexity, at relevant scales, and then trialed on the Loch Linnhe Artificial Reef, a replicated artificial substratum offering two different scale-dependent habitat complexities. The distance-wheel was cost-effective, simple to fabricate and enabled the rapid and straightforward measurement of perceived distance over the step-length range of 133-1020 mm.  相似文献   

16.
Synopsis Aerobic heat production and heat loss via the gills are inexorably linked in all water breathing teleosts except tunas. These processes are decoupled in tunas by the presence of vascular counter-current heat exchangers, and sustained (i.e., steady state) muscle temperatures may exceed water temperature by 10° C or more in larger individuals. The presence of vascular counter-current heat exchangers is not clearly advantageous in all situations, however. Mathematical models predict that tunas could overheat during strenuous activity unless the efficacy of vascular heat exchangers can be reduced, and that they may be activity limited in warmer waters. Tunas may likewise be forced out of potentially usable habitats as they grow because they have to occupy cooler waters. Vascular counter-current heat exchangers also slow rates of heating and cooling. A reduced rate of muscle temperature decrease is clearly advantageous when diving into colder water to chase prey or avoid predators. A reduced rate of heat gain from the environment would be disadvantageous, however, when fish return to the warmer surface waters. When subjected to changes in ambient temperature, tunas cannot defend a specific body temperature and do not thermoregulate in the mammalian sense. Yet when appropriately analyzed, data taken under steady state and non-steady state conditions indicate that tunas are not strictly prisoners of their own thermoconserving mechanisms. They apparently can modify overall efficiency of their vascular counter-current heat exchangers and thus avoid overheating during bouts of strenuous activity, retard cooling after diving into colder water, and rapidly warm their muscles after voluntarily entering warmer water. The exact physiological mechanisms employed remain to be elucidated.Paper from the International Union of Biological Societies symposium The biology of tunas and billfishes: an examination of life on the knife edge, organized by Richard W. Brill and Kim N. Holland.  相似文献   

17.
Infrared thermography (IRT) was assessed as a non-invasive tool to evaluate body condition in juvenile female harbor seals (Phoca vitulina), (n=6) and adult female Steller sea lions (Eumetopias jubatus), (n=2). Surface temperature determined by IRT and blubber depth assessed with portable imaging ultrasound were monitored concurrently at eight body sites over the course of a year in long-term captive individuals under controlled conditions. Site-specific differences in surface temperature were noted between winter and summer in both species. Overall, surface temperature was slightly higher and more variable in harbor seals (9.8±0.6 °C) than Steller sea lions (9.1±0.5 °C). Limited site-specific relationships were found between surface temperature and blubber thickness, however, insulation level alone explained a very small portion of the variance. Therefore, while validated IRT data collection can potentially provide valuable information on the health, condition and metabolic state of an animal, it cannot provide a generalized proxy for blubber depth.  相似文献   

18.
A mouth opening sensor incorporating a magnet and Hall sensor attached to a data logging unit was used to monitor the breathing and foraging behavior of a free-swimming leatherback sea turtle (Dermochelys coriacea). Analysis of these data revealed a rhythmic low amplitude oscillation. Further investigation of the frequency of this signal lead us to believe that the movements (< 0.1 mm) are caused by the movement of blood through the nearby blood vessels. Putative heart rate decreased during dive descent and increased considerably during dive ascent reflecting the bradycardia and anticipatory tachycardia recorded by other means in other air-breathing divers. Oscillation frequencies were also comparable to the heart rate recorded in leatherbacks by means of implanted electrodes. We therefore propose that this device which was already known to reliably record behaviour such as breathing, feeding and buccal oscillations in sea turtles also has potential for recording other signals which cause movement on the external surface of an animal.  相似文献   

19.
20.

Background

This study investigated the effect of hydration differences on body fluid and temperature regulation between tropical and temperate indigenes exercising in the heat.

Methods

Ten Japanese and ten Malaysian males with matched physical characteristics (height, body weight, and peak oxygen consumption) participated in this study. Participants performed exercise for 60 min at 55% peak oxygen uptake followed by a 30-min recovery at 32°C and 70% relative air humidity with hydration (4 times each, 3 mL per kg body weight, 37°C) or without hydration. Rectal temperature, skin temperature, heart rate, skin blood flow, and blood pressure were measured continuously. The percentage of body weight loss and total sweat loss were calculated from body weight measurements. The percentage change in plasma volume was estimated from hemoglobin concentration and hematocrit.

Results

Malaysian participants had a significantly lower rectal temperature, a smaller reduction in plasma volume, and a lower heart rate in the hydrated condition than in the non-hydrated condition at the end of exercise (P <0.05), whereas Japanese participants showed no difference between the two hydration conditions. Hydration induced a greater total sweat loss in both groups (P <0.05), and the percentage of body weight loss in hydrated Malaysians was significantly less than in hydrated Japanese (P <0.05). A significant interaction between groups and hydration conditions was observed for the percentage of mean cutaneous vascular conductance during exercise relative to baseline (P <0.05).

Conclusions

The smaller reduction in plasma volume and percentage body weight loss in hydrated Malaysians indicated an advantage in body fluid regulation. This may enable Malaysians to reserve more blood for circulation and heat dissipation and thereby maintain lower rectal temperatures in a hydrated condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号