首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tail-anchored proteins are distinct from other membrane proteins as they are thought to insert into the endoplasmic reticulum (ER) membrane independently of Sec61p translocation pores. These pores not only mediate import but are also assumed to catalyze export of proteins in a process called ER-associated protein degradation (ERAD). In order to examine the Sec61p dependence of the export of tail-anchored proteins, we analyzed the degradation pathway of a tail-anchored ER membrane protein, the ubiquitin-conjugating enzyme 6 (Ubc6p). In contrast to other ubiquitin conjugating enzymes (Ubcs), Ubc6p is naturally short-lived. Its proteolysis is mediated specifically by the unique Ubc6p tail region. Degradation further requires the activity of Cue1p-assembled Ubc7p, and its own catalytic site cysteine. However, it occurs independently of the other ERAD components Ubc1p, Hrd1p/Der3p, Hrd3p and Der1p. In contrast to other natural ERAD substrates, proteasomal mutants accumulate a membrane-bound degradation intermediate of Ubc6p. Most interestingly, mutations in SEC61 do not reduce the turnover of full-length Ubc6p nor cause a detectable accumulation of degradation intermediates. These data are in accordance with a model in which tail-anchored proteins can be extracted from membranes independently of Sec61p.  相似文献   

2.
Zhou M  Schekman R 《Molecular cell》1999,4(6):925-934
Sec61p comprises the endoplasmic reticulum (ER) channel through which nascent polypeptides are imported and from which malfolded proteins have been suggested to be exported, or dislocated, back to the cytoplasm. We have devised a genetic screen for dislocation-specific mutant alleles of SEC61 from S. cerevisiae by employing the unfolded protein response to report on the accumulation of misfolded proteins in the ER. Three of the isolated sec61 alleles are fully proficient in protein translocation into the ER, but defective in the elimination of a misfolded ER luminal substrate and a short-lived ER membrane-spanning model protein, which are otherwise rapidly degraded by cytoplasmic proteolysis in wild-type cells. Our results point to the fourth luminal loop and third transmembrane domain of Sec61p that markedly influence dislocation. We suggest that distinct features of the Sec61-translocon direct the two-way translocation processes.  相似文献   

3.
T Biederer  C Volkwein    T Sommer 《The EMBO journal》1996,15(9):2069-2076
We have investigated the degradation of subunits of the trimeric Sec61p complex, a key component of the protein translocation apparatus of the ER membrane. A mutant form of Sec6lp and one of the two associated proteins (Sss1p) are selectively degraded, while the third constituent of the complex (Sbh1p) is stable. Our results demonstrate that the proteolysis of the multispanning membrane protein Sec61p is mediated by the ubiquitin-proteasome pathway, since it requires polyubiquitination, the presence of a membrane-bound (Ubc6) and a soluble (Ubc7) ubiquitin-conjugating enzyme and a functional proteasome. The process is proposed to be specific for unassembled Sec61p and Sss1p. Thus, our results suggest that one pathway of ER degradation of abnormal or unassembled membrane proteins is initiated at the cytoplasmic side of the ER.  相似文献   

4.
Sec61p and BiP directly facilitate polypeptide translocation into the ER.   总被引:78,自引:0,他引:78  
Secretory proteins are segregated from cytosolic proteins by their translocation into the endoplasmic reticulum (ER). A modified secretory protein trapped during translocation across the ER membrane can be crosslinked to two previously identified proteins, Sec61p and BiP (Kar2p). The dependence of this cross-linking upon proteins and small molecules was examined. Mutations in SEC62 and SEC63 decrease the ability of Sec61p to be cross-linked to the secretory polypeptide trapped in translocation. ATP is also required for interaction of Sec61p with the secretory protein. Three kar2 alleles display defective translocation in vitro. Two of these alleles also decrease the ability of Sec61p to be cross-linked to the secretory protein. The third allele, while exhibiting a severe translocation defect, does not affect the interaction of Sec61p with the secretory protein. These results suggest that Sec61p is directly involved in translocation and that BiP acts at two stages of the translocation cycle.  相似文献   

5.
Heinrich SU  Mothes W  Brunner J  Rapoport TA 《Cell》2000,102(2):233-244
We have investigated how the transmembrane (TM) domain of a membrane protein is cotranslationally integrated into the endoplasmic reticulum. We demonstrate that the Sec61p channel allows the TM domain to bypass the barrier posed by the polar head groups of the lipid bilayer and come into contact with the hydrophobic interior of the membrane. Together with the TRAM protein, Sec61p provides a site in the membrane, at the interface of channel and lipid, through which a TM domain can dynamically equilibrate between the lipid and aqueous phases, depending on the hydrophobicity of the TM domain and the length of the polypeptide segment tethering it to the ribosome. Our results suggest a unifying, lipid-partitioning model which can explain the general behavior of hydrophobic topogenic sequences.  相似文献   

6.
The orientation of most single-spanning membrane proteins obeys the "positive-inside rule", i.e. the flanking region of the transmembrane segment that is more positively charged remains in the cytosol. These membrane proteins are integrated by the Sec61/SecY translocon, but how their orientation is achieved is unknown. We have screened for mutations in yeast Sec61p that alter the orientation of single-spanning membrane proteins. We identified a class of mutants that are less efficient in retaining the positively charged flanking region in the cytosol. Surprisingly, these mutations are located at many different sites in the Sec61/SecY molecule, and they do not only involve charged amino acid residues. All these mutants have a prl phenotype that so far have only been seen in bacteria; they allow proteins with defective signal sequences to be translocated, likely because the Sec61p channel opens more easily. A similar correlation between topology defects and prl phenotype was also seen with previously identified yeast Sec61 mutants. Our results suggest a model in which the regulated opening of the translocon is required for the faithful orientation of membrane proteins.  相似文献   

7.
Sec12p is an integral membrane protein required in vivo and in vitro for the formation of transport vesicles generated from the ER. Vesicle budding and protein transport from ER membranes containing normal levels of Sec12p is inhibited in vitro by addition of microsomes isolated from a Sec12p-overproducing strain. Inhibition is attributable to titration of a limiting cytosolic protein. This limitation is overcome by addition of a highly enriched fraction of soluble Sar1p, a small GTP-binding protein, shown previously to be essential for protein transport from the ER and whose gene has been shown to interact genetically with sec12. Furthermore, Sar1p binding to isolated membranes is enhanced at elevated levels of Sec12p. Sar1p-Sec12p interaction may regulate the initiation of vesicle budding from the ER.  相似文献   

8.
Near-neighbor interactions between translocating nascent chains and Sec61p were investigated by chemical cross-linking. At stages of translocation before signal sequence cleavage, nascent chains could be cross-linked to Sec61p at high (60-80%) efficiencies. Cross-linking occurred through the signal sequence and the mature portion of wild- type and signal cleavage mutant nascent chains. At later stages of translocation, as represented through truncated translocation intermediates, cross-linking to Sec61p was markedly reduced. Dissociation of the ribosome into its large and small subunits after assembly of the precursor into the translocon, but before cross- linking, resulted in a dramatic reduction in subsequent cross-linking yield, indicating that at early stages of translocation, nascent chain- Sec61p interactions are in part mediated through interactions of the ribosome with components of the ER membrane, such as Sec61p. Dissociation of the ribosome was, however, without effect on subsequent translocation. These results are discussed with respect to a model in which Sec61p performs a function essential for the initiation of protein translocation.  相似文献   

9.
Previous electrophysiological experiments characterized the Sec61 complex, which provides the aqueous path for entry of newly-synthesized polypeptides into the mammalian endoplasmic reticulum, as a highly dynamic channel that, once activated by precursor proteins, fluctuates between main open states with mean conductances of 220 and 550 pS. Millimolar concentrations of lanthanum ions simultaneously restricted the dynamics of the Sec61 channel and inhibited translocation of polypeptides. Molecular modeling indicates that lanthanum binding sites cluster at the putative lateral gate of the Sec61 complex and suggests that structural flexibility of the lateral gate is essential for channel and protein transport activities of the Sec61 complex.  相似文献   

10.
The exocyst is a conserved protein complex proposed to mediate vesicle tethering at the plasma membrane. Previously, we identified SEB1/SBH1, encoding the beta subunit of the Sec61p ER translocation complex, as a multicopy suppressor of the sec15-1 mutant, defective for one subunit of the exocyst complex. Here we show the functional and physical interaction between components of endoplasmic reticulum translocon and the exocytosis machinery. We show that overexpression of SEB1 suppresses the growth defect in all exocyst sec mutants. In addition, overexpression of SEC61 or SSS1 encoding the other two components of the Sec61p complex suppressed the growth defects of several exocyst mutants. Seb1p was coimmunoprecipitated from yeast cell lysates with Sec15p and Sec8p, components of the exocyst complex, and with Sec4p, a secretory vesicle associated Rab GTPase that binds to Sec15p and is essential for exocytosis. The interaction between Seb1p and Sec15p was abolished in sec15-1 mutant and was restored upon SEB1 overexpression. Furthermore, in wild type cells overexpression of SEB1 as well as SEC4 resulted in increased production of secreted proteins. These findings propose a novel functional and physical link between the endoplasmic reticulum translocation complex and the exocyst.  相似文献   

11.
Although the transport of model proteins across the mammalian ER can be reconstituted with purified Sec61p complex, TRAM, and signal recognition particle receptor, some substrates, such as the prion protein (PrP), are inefficiently or improperly translocated using only these components. Here, we purify a factor needed for proper translocation of PrP and identify it as the translocon-associated protein (TRAP) complex. Surprisingly, TRAP also stimulates vectorial transport of many, but not all, other substrates in a manner influenced by their signal sequences. Comparative analyses of several natural signal sequences suggest that a dependence on TRAP for translocation is not due to any single physical parameter, such as hydrophobicity of the signal sequence. Instead, a functional property of the signal, efficiency of its post-targeting role in initiating substrate translocation, correlates inversely with TRAP dependence. Thus, maximal translocation independent of TRAP can only be achieved with a signal sequence, such as the one from prolactin, whose strong interaction with the translocon mediates translocon gating shortly after targeting. These results identify the TRAP complex as a functional component of the translocon and demonstrate that it acts in a substrate-specific manner to facilitate the initiation of protein translocation.  相似文献   

12.
The Sec61p complex forms the core element of the protein translocation complex (translocon) in the rough endoplasmic reticulum (rough ER) membrane. Translating or nontranslating ribosomes bind with high affinity to ER membranes that have been stripped of ribosomes or to liposomes containing purified Sec61p. Here we present evidence that the beta subunit of the complex (Sec61beta) makes contact with nontranslating ribosomes. A fusion protein containing the Sec61beta cytoplasmic domain (Sec61beta(c)) prevents the binding of ribosomes to stripped ER-derived membranes and also binds to ribosomes directly with an affinity close to the affinity of ribosomes for stripped ER-derived membranes. The ribosome binding activity of Sec61beta(c), like that of native ER membranes, is sensitive to high salt concentrations and is not based on an unspecific charge-dependent interaction of the relatively basic Sec61beta(c) domain with ribosomal RNA. Like stripped ER membranes, the Sec61beta(c) sequence binds to large ribosomal subunits in preference over small subunits. Previous studies have shown that Sec61beta is inessential for ribosome binding and protein translocation, but translocation is impaired by the absence of Sec61beta, and it has been proposed that Sec61beta assists in the insertion of nascent proteins into the translocation pore. Our results suggest a physical interaction of the ribosome itself with Sec61beta; this may normally occur alongside interactions between the ribosome and other elements of Sec61p, or it may represent one stage in a temporal sequence of binding.  相似文献   

13.
Prinz A  Hartmann E  Kalies KU 《Biological chemistry》2000,381(9-10):1025-1029
A characteristic feature of the co-translational protein translocation into the endoplasmic reticulum (ER) is the tight association of the translating ribosomes with the translocation sites in the membrane. Biochemical analyses identified the Sec61 complex as the main ribosome receptor in the ER of mammalian cells. Similar experiments using purified homologues from the yeast Saccharomyces cerevisiae, the Sec61p complex and the Ssh1p complex, respectively, demonstrated that they bind ribosomes with an affinity similar to that of the mammalian Sec61 complex. However, these studies did not exclude the presence of other proteins that may form abundant ribosome binding sites in the yeast ER. We now show here that similar to the situation found in mammals in the yeast Saccharomyces cerevisiae the two Sec61-homologues Sec61p and Ssh1p are essential for the formation of high-affinity ribosome binding sites in the ER membrane. The number of binding sites formed by Ssh1p under standard growth conditions is at least 4 times less than those formed by Sec61p.  相似文献   

14.
Budding of transport vesicles from the endoplasmic reticulum in yeast requires the formation, at the budding site, of a coat protein complex (COPII) that consists of two heterodimeric subcomplexes (Sec23p/Sec24p and Sec13p/Sec31p) and the Sar1 GTPase. Sec24p is an essential protein and involved in cargo selection. In addition to Sec24p, the yeast Saccharomyces cerevisiae expresses two non-essential Sec24p-related proteins, termed Sfb2p (product of YNL049c) and Sfb3p/Lst1p (product of YHR098c). We here show that Sfb2p and, less efficiently, Sfb3p/Lst1p are able to bind, like Sec24p, the integral membrane cargo protein Sed5p. We also demonstrate that Sfb2p, like Sec24p and Sfb3p/Lst1p, forms a complex with Sec23p in vivo. Whereas the deletion of SFB2 did not affect transport kinetics of various proteins, the maturation of the glycolipid-anchored plasma membrane protein Gas1p was differentially impaired in sfb3 knock-out cells. We generated several conditional-lethal sec24 mutants that, combined with null alleles of SFB2 and SFB3/LST1, led to a complete block of transport between the endoplasmic reticulum and the Golgi (sec24-11/Deltasfb2) or to cell death (sec24-11/Deltasfb3). Of the Sec24p family members, Sfb2p is the least abundant at steady state, but high intracellular concentrations of Sfb2p can rescue sec24 mutants under restrictive conditions. The data presented strongly suggest that the Sec24p-related proteins function as COPII components.  相似文献   

15.
The heterotrimeric Sec61p complex is a key component of the protein translocation apparatus of the endoplasmic reticulum membrane. The complex characterized from yeast includes Sec61p, a 10-transmembrane-domain membrane protein which has a direct interaction with Sss1p, a small C-terminal anchor protein. In order to gain some insight into the architecture of this complex we have functionally expressed Sec61p as complementary N- and C-terminal fragments. Chemical crosslinking of Sss1p to specific Sec61p fragments in these functional combinations and suppression of sec61 mutants by over-expression of Sss1p have led to identification of the region which includes transmembrane domains TM6, TM7 and TM8 (amino acid residues L232-R406) of Sec61p as a major site of interaction with Sss1p.  相似文献   

16.
Ssh1p of Saccharomyces cerevisiae is related in sequence to Sec61p, a general receptor for signal sequences and the major subunit of the channel that guides proteins across the membrane of the endoplasmic reticulum. The split-ubiquitin technique was used to determine whether Ssh1p serves as an additional receptor for signal sequences in vivo. We measured the interactions between the N(ub)-labeled Ssh1p and C(ub)-translocation substrates bearing four different signal sequences. The so-determined interaction profile of Ssh1p was compared with the signal sequence interaction profile of the correspondingly modified N(ub)-Sec61p. The assay reveals interactions of Ssh1p with the signal sequences of Kar2p and invertase, whereas Sec61p additionally interacts with the signal sequences of Mfalpha1 and carboxypeptidase Y. The measured physical proximity between Ssh1p and the beta-subunit of the signal sequence recognition particle receptor confirms our hypothesis that Ssh1p is directly involved in the cotranslational translocation of proteins across the membrane of the endoplasmic reticulum.  相似文献   

17.
《The Journal of cell biology》1995,131(5):1163-1171
To clarify the roles of Kar2p (BiP) and Sec63p in translocation across the ER membrane in Saccharomyces cerevisiae, we have utilized mutant alleles of the essential genes that encode these proteins: kar2-203 and sec63-1. Sanders et al. (Sanders, S. L., K. M. Whitfield, J. P. Vogel, M. D. Rose, and R. W. Schekman. 1992. Cell. 69:353-365) showed that the translocation defect of the kar2-203 mutant lies in the inability of the precursor protein to complete its transit across the membrane, suggesting that the lumenal hsp70 homologue Kar2p (BiP) binds the transiting polypeptide in order to facilitate its passage through the pore. We now show that mutation of a conserved residue (A181-->T) (Nelson, M. K., T. Kurihara, and P. Silver. 1993. Genetics. 134:159- 173) in the lumenal DnaJ box of Sec63p (sec63-1) results in an in vitro phenotype that mimics the precursor stalling defect of kar2-203. We demonstrate by several criteria that this phenotype results specifically from a defect in the lumenal interaction between Sec63p and BiP: Neither a sec62-1 mutant nor a mutation in the cytosolically exposed domain of Sec63p causes precursor stalling, and interaction of the sec63-1 mutant with the membranebound components of the translocation apparatus is unimpaired. Additionally, dominant KAR2 suppressors of sec63-1 partially relieve the stalling defect. Thus, proper interaction between BiP and Sec63p is necessary to allow the precursor polypeptide to complete its transit across the membrane.  相似文献   

18.
Stockton JD  Merkert MC  Kellaris KV 《Biochemistry》2003,42(44):12821-12834
Secretion of newly synthesized proteins across the mammalian rough endoplasmic reticulum (translocation) is supported by the membrane proteins Sec61p and TRAM, but may also include accessory factors, depending on the particular translocation substrate. Studies designed to investigate the binding of anti-peptide antibodies to the carboxyl terminus of the alpha-subunit of Sec61 (Sec61palpha) lead us to the isolation of a complex of proteins that occlude the cytosolic face of Sec61palpha in microsomes that have been prepared by standard protocols used to study translocation in vitro [Walter, P., and Blobel, G. (1983) Methods Enzymol. 96, 84-93]. This complex was shown by nanospray tandem mass spectrometry to be composed of protein disulfide isomerase (PDI), calcium binding protein 1 (CABP1/P5), 72 kDa endoplasmic reticulum protein (ERp72), and BiP (heat shock protein A5/HSPA5), and has been named TR-PDI for "translocon-resident protein disulfide isomerase complex". This constitutes a novel location for these proteins, which are known to be major constituents of the lumen of the rough endoplasmic reticulum. We have not established the function of TR-PDI at this location, but did observe that the absence of this complex results in a relative loss of correct topology of prion protein insertion across RER membranes, indicating the possibility of a functional role in vivo.  相似文献   

19.
Misfolded proteins in the endoplasmic reticulum (ER) are exported to the cytosol for degradation by the proteasome in a process known as ER-associated degradation (ERAD). CPY* is a well characterized ERAD substrate whose degradation is dependent upon the Hrd1 complex. However, although the functions of some of the components of this complex are known, the nature of the protein dislocation channel remains obscure. Sec61p has been suggested as an obvious candidate because of its role as a protein-conducting channel through which polypeptides are initially translocated into the ER. However, it has not yet been possible to functionally dissect any role for Sec61p in dislocation from its essential function in translocation. By changing the translocation properties of a series of novel ERAD substrates, we are able to separate these two events and find that functional Sec61p is essential for the ERAD-L pathway.  相似文献   

20.
The Sec61 complex performs a dual function in protein translocation across the RER, serving as both the high affinity ribosome receptor and the translocation channel. To define regions of the Sec61 complex that are involved in ribosome binding and translocation promotion, ribosome-stripped microsomes were subjected to limited digestions using proteases with different cleavage specificities. Protein immunoblot analysis using antibodies specific for the NH(2) and COOH terminus of Sec61alpha was used to map the location of proteolysis cleavage sites. We observed a striking correlation between the loss of binding activity for nontranslating ribosomes and the digestion of the COOH- terminal tail or cytoplasmic loop 8 of Sec61alpha. The proteolyzed microsomes were assayed for SRP-independent translocation activity to determine whether high affinity binding of the ribosome to the Sec61 complex is a prerequisite for nascent chain transport. Microsomes that do not bind nontranslating ribosomes at physiological ionic strength remain active in SRP-independent translocation, indicating that the ribosome binding and translocation promotion activities of the Sec61 complex do not strictly correlate. Translocation-promoting activity was most severely inhibited by cleavage of cytosolic loop 6, indicating that this segment is a critical determinant for this function of the Sec61 complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号