首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two tryptophan pyrolysis products, Trp-P-1 and Trp-P-2 were assayed in the SOS-chromotest using PQ 37 (uvr A) and PQ 35 (uvr+) E. coli K12 strains, in the presence of S9 fraction from Aroclor-induced rats. Both compounds were able to induce the expression of SOS functions in uvr A bacteria, in the following order: Trp-P-1 less than Trp-P-2 less than aflatoxin B1, at low concentrations (less than 125 ng/assay). In this range, the induction of SOS functions was significantly decreased in the uvr+ strain. This implies that the uvr gene product plays an important role in the repair of genotoxic damage induced by Trp-P-1 and Trp-P-2. At higher concentrations (125-500 ng/assay), Trp-P-1 became more efficient in inducing SOS functions than Trp-P-2 and excision repair was less efficient than at low concentration.  相似文献   

2.
The genotoxic potential of benzophenone and its metabolically related compounds, benzhydrol and p-benzoylphenol, was investigated using human cytochrome P450 (P450) enzymes. Benzophenone and its two metabolites (0.1-1mM) showed a suppression of bacterial growth without any P450 system, but no induction of umu gene expression was observed in Salmonella typhimurium TA1535/pSK1002. Human liver microsomes induced the bacterial cytotoxicity of these compounds without any umu gene expression. On the other hand, with the addition of Escherichia coli membranes expressing recombinant human P450 2A6 and NADPH-cytochrome P450 reductase (NPR), benzophenone showed umu gene expression (64 umu units/min/nmol) P450 2A6). Moderate activation of benzophenone by P450 1A1/NPR membranes, 1A2/NPR membranes, or 1B1/NPR membranes was also observed. Activation of benzhydrol and p-benzoylphenol by the P450/NPR system was similar to that of benzophenone. These results suggest that benzophenone and its metabolically related benzhydrol and p-benzoylphenol can be bioactivated by P450 2A6 and P450 family 1 enzymes. Until now, benzophenone has been investigated mainly in terms of estrogenic activity and cytotoxicity, however, the genotoxic activation of benzophenone by human cytochrome P450s should be examined in terms of the risks to humans.  相似文献   

3.
Oda Y 《Mutation research》2004,554(1-2):399-406
Human acetyltransferase genes NAT1 or NAT2 were expressed in a Salmonella typhimurium strain used to detect the genotoxicity of bladder carcinogens. To clarify whether the human and rodent bladder carcinogenic arylamines are activated via either NAT1 or NAT2 to cause genotoxicity, a SOS/umu genotoxicity assay was used, with the strains S. typhimurium NM6001 (NAT1-overexpressing strain), S. typhimurium NM6002 (NAT2-overexpressing strain), and S. typhimurium NM6000 (O-AT-deficient parent strain). Genotoxicity was measured by induction of SOS/umuC gene expression in the system, which contained both an umuC"lacZ fusion gene and NAT1 or NAT2 plasmids. 4-Aminobiphenyl, 2-acetylaminofluorene, beta-naphthylamine, o-tolidine, o-anisidine, and benzidine exhibited dose-dependent induction of the umuC gene in strain NM6001. Although the induction of umuC by these chemicals was observed in the NM6002 strain, the induction was considerably lower than in the NM6001 strain. In the parent strain, NM6000, none of these compounds induced umuC gene expression. We also determined activation of these chemicals by recombinant human cytochrome P450 (P450 or CYP) 1A2 enzyme in three S. typhimurium tester strains. The activation of the chemicals was stronger in the NM6001 strain than that in NM6002. The specific NAT1 inhibitor 5-iodosalicylic acid inhibited umuC gene expression induced by aromatic amines used. These results could provide evidence that the bladder carcinogenic aromatic amines are mainly activated by the NAT1 enzyme to produce DNA damage rather than NAT2. The NAT1-overexpressing strain can be used to determine the genotoxic activation of bladder carcinogenic arylamines in the umu test and could provide a tool for predicting the carcinogenic potential of arylamines.  相似文献   

4.
Antimutagenic activity of flavonoids from Chrysanthemum morifolium   总被引:5,自引:0,他引:5  
A methanol extract from the flower heads of Chrysanthemum morifolium showed a suppressive effect on umu gene expression of the SOS response in Salmonella typhimurium TA1535/pSK1002 against the mutagen 2-(2-furyl)-3-(5-nitro-2-furyl)acrylamide (furylfuramide). The methanol extract was re-extracted with hexane, chloroform, ethyl acetate, butanol, and water. The ethyl acetate fraction showed a suppressive effect. Suppressive compounds in the ethyl acetate fraction were isolated by silica gel column chromatography and identified as the flavonoids acacetin (1), apigenin (2), luteolin (3), and quercetin (4) by EI-MS, IR, and (1)H and 13C NMR spectroscopy. Compounds 1-4 suppressed the furylfuramide-induced SOS response in the umu test. Compounds 1-4 suppressed 60.2, 75.7, 90.0, and 66.6% of the SOS-inducing activity at a concentration of 0.70 micromol/ml. The ID50 (50% inhibitory dose) values of 1-4 were 0.62, 0.55, 0.44, and 0.59 micromol/ml. These compounds had the suppressive effects on umu gene expression of the SOS response against other mutagens, 4-nitroquinolin 1-oxide (4NQO) and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), which do not require liver-metabolizing enzymes. These compounds also showed the suppression of SOS-inducing activity against the other mutagens aflatoxin B1 (AfB1) and 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1), which require liver-metabolizing enzymes, and UV irradiation. In addition to the antimutagenic activities of these compounds against furylfuramide, Trp-P-1 and activated Trp-P-1 were also assayed by the Ames test using S. typhimurium TA100.  相似文献   

5.
Studies on the genotoxicity of endosulfan in bacterial systems   总被引:15,自引:0,他引:15  
Endosulfan, an organochlorine pesticide, was subjected to the differential sensitivity assay in repair-deficient and repair-proficient strains of Escherichia coli K12, prophage lambda induction assay in WP2s (lambda) and mutation induction in E. coli K12. The induction of umu gene expression with endosulfan was studied also in Salmonella typhimurium TA1535/pSK1002 cells. The differential sensitivity assay revealed that the recA 13 strain was the most sensitive. Endosulfan induced prophage lambda in E. coli and umu gene expression in S. typhimurium cells; however, the extent of the effects were low. Endosulfan also induced a dose-dependent increase in forward mutations in E. coli K12 cells from ampicillin sensitivity to ampicillin resistance. Our studies indicate the genotoxic potential of endosulfan and the role of the recA gene in the repair of endosulfan-induced DNA damage.  相似文献   

6.
Mycobacterium sp. strain Pyr-1 cells, which were grown to the stationary phase in media with and without pyrene, were centrifuged and resuspended in a medium containing 1-nitropyrene. Cells that had been grown with pyrene oxidized up to 20% of the added 1-nitropyrene to 1-nitropyrene-cis-9,10- and 4,5-dihydrodiols. However, cells that had been grown without pyrene reduced up to 70% of the 1-nitropyrene to 1-aminopyrene but did not produce dihydrodiols. The nitroreductase activity was oxygen insensitive, intracellular, and inducible by nitro compounds. Nitroreductase activity was inhibited by p-chlorobenzoic acid, o-iodosobenzoic acid, menadione, dicumarol, and antimycin A. Extracts from cells that had been grown without pyrene activated 1-nitropyrene, 1-amino-7-nitrofluorene, 2,7-dinitro-9-fluorenone, 1,3-dinitropyrene, 1,6-dinitropyrene, and 6-nitrochrysene to DNA-damaging products, as shown in Salmonella typhimurium tester strains by the reversion assay and by induction of the umuC gene. Activation of nitro compounds, as shown by the umu test, was enhanced by NADPH. This study shows that Mycobacterium sp. strain Pyr-1 metabolizes nitroaromatic compounds by both oxidative and reductive pathways. During reduction, it generates products that are mutagenic.  相似文献   

7.
Genotoxicity of a variety of nitroarenes and other compounds was examined in DNA-repair tests with rat or mouse hepatocytes. Out of 15 nitroarenes tested, 9 compounds, i.e., 1-nitropyrene, 1,3-dinitropyrene, 1,6-dinitropyrene, 1,8-dinitropyrene, 1-nitro-3-acetoxypyrene, 3-nitrofluoranthene, 2-nitrofluorene, 2,7-di-nitrofluorene and 5-nitroacenaphthene elicited positive response of DNA repair in the tests with rat and mouse hepatocytes. Among the positive chemicals, the DNA-repair level of the 3 dinitropyrene isomers was much higher than other nitroarenes. The results indicate that a number of nitroarenes are metabolically activated in the primary culture of rodent hepatocytes, and suggest potential carcinogenicity of 1-nitropyrene and 1-nitro-3-acetoxypyrene the carcinogenicity of which is either not clear or unknown. Of the other nitro compounds, 2-(2-furyl)-3-(5-nitro-2-furyl)acrylamide as well as 4-nitroquinoline 1-oxide were clearly genotoxic in the assays with hepatocytes of both species. However, 5-nitro-2-furaldehyde semicarbazone was negative in both assays with hepatocytes of 2 species.  相似文献   

8.
As part of a major study to evaluate the mutagenicity of chemicals produced during the cooking of foods, we examined the responses of bacteria and cultured Chinese hamster cells to the compounds Trp-P-2 (3-amino-1-methyl-5H-pyrido[4,3-b]indole) and IQ (2-amino-3-methylimidazo[4,5-f]quinoline), constituents identified in cooked beef and fish. In the Ames/Salmonella tester strain TA1538, both compounds were confirmed to be extremely potent mutagens that were active at levels below 1 ng/plate in the presence of hamster-liver S9 microsomal fraction. 50-fold higher doses of both compounds were required for mutagenicity in the uvr+ tester strain TA1978. Trp-P-2 also behaved as a strong mutagen in CHO cells using the standard exogenous activation with hamster-liver S9 fraction. At concentrations below 1 microgram/ml it produced dose-dependent increases in cell killing, mutations at the hprt and aprt loci, sister-chromatid exchanges, and chromosomal aberrations. An excision-repair-deficient strain was about 2-fold more sensitive than the normal CHO cells with respect to these genotoxic effects of Trp-P-2. IQ had unexpectedly weak activity for all genetic endpoints in the CHO cells, and it produced clear-cut responses only in the repair-deficient cells and only above a concentration of 10 micrograms/ml. The toxicity that was observed with IQ was not affected by the repair capacity of the cells and was not associated with chromosomal aberrations, indicating that damage to cellular structures other than nuclear DNA was likely the predominant pathway for cell killing. Because the culture conditions normally used for CHO cell exposure were shown to be competent in producing bacterial mutagenicity with IQ, it was concluded that the active metabolite of IQ was present in the medium but was somehow ineffective in reaching the DNA of CHO cells and/or reacting with it. These results suggest that the relative mutagenic potency of compounds in Salmonella may bear no direct relationship to relative mutagenicity in CHO cells, emphasizing precaution in attempting to extrapolate microbial data to mammalian somatic cells. This study illustrates the use and merits of a multi-endpoint assay for genetic damage in CHO cells, the utility of using CHO cells that are defective in excision repair of DNA, and the importance of comparative testing between bacterial and mammalian systems.  相似文献   

9.
The umu operon in Escherichia coli is responsible for chemical and radiation mutagenesis, and the expression of the operon itself is inducible by these DNA-damaging agents. The principle of the umu-test is based on the ability of the DNA-damaging agents, most of which are potential carcinogens, to induce the umu operon. A plasmid (pSK1002) carrying a fused gene umuC'-'lacZ was introduced into Salmonella typhimurium TA1535. The strain TA1535/pSK1002 enabled us to monitor the levels of umu operon expression by measuring the beta-galactosidase activity in the cells produced by the fusion gene. Using this strain, a simple, inexpensive, and sensitive system, the umu-test, for the screening of environmental mutagens and carcinogens was developed. 38 chemicals with different structures and modes of action, including 31 known animal carcinogens, were examined by the test to evaluate the system. The threshold sensitivity of the umu-test was approximately equal to that of the Ames test for chemicals genotoxic in both tests. By the umu-test, using the single tester strain, we detect many types of DNA-damaging agents for which the Ames test requires several tester strains. Furthermore, the umu-test provides a potential practical advantage for the screening of various environmental samples containing amino acids and nutrients such as urine, serum and foods.  相似文献   

10.
The ability of 3 plant flavonoids (morin, myricetin and quercetin) and 4 polyphenolic acids (caffeic acid, chlorogenic acid, ellagic acid and ferulic acid) to inhibit the genotoxic effects of a number of cooked-food mutagens (IQ, MeIQ, MeIQx, Trp-P-1 and Trp-P-2), was investigated in a bacterial mutation assay using Salmonella typhimurium TA98 as indicator and hepatic S9 mixes from either SWR mice or Syrian hamster as metabolic activating systems. Although the polyphenolic acids failed to have an effect, the flavonoids generally inhibited IQ, MeIQ, MeIQx and Trp-P-1 induced mutagenesis in a dose-dependent manner, irrespective of the source of S9. This was not the case with Trp-P-2 where the flavonoids were only observed to inhibit when SWR mouse S9 but not Syrian hamster S9 was used. Of the 3 compounds, myricetin and quercetin were superior to morin in their inhibitory capacity.  相似文献   

11.
The mutagenic activation of tryptophan pyrolysis products, Trp-P-1 and Trp-P-2, was studied in a Salmonella TA98/hepatocyte mutagenesis assay. Adult rat hepatocytes in primary culture were either untreated or induced by the addition of Aroclor 1254 (2 micrograms/ml) 18-20 h before the mutagenesis test which was performed at day 1 and at day 2 after the isolation of hepatocytes. The mutagenic activation of Trp-P-1 and Trp-P-2 was studied as a function of the time of incubation and of the concentration of chemical. Trp-P-1 and Trp-P-2 incubated for 20 min in the presence of untreated hepatocytes and bacteria gave rise to a weak number of revertants which doubled the level of spontaneous mutants. Aroclor-induced hepatocytes became highly competent in mutagenic activation of tryptophan pyrolysis products and the induction ratio reached 4.9 and 7.1 for Trp-P-1 and Trp-P-2, respectively, after 60 min of incubation, on day 2 of the experiment. It should be noted that the induction ratio was higher on day 2 than on day 1. When conditions were standardized, i.e. Aroclor-induced hepatocytes on day 2, final concentration of cellular protein about 1 mg/ml, 20 min of incubation, the Salmonella/hepatocyte assay produced a linear concentration-dependent mutagenic response for Trp-P-1 and Trp-P-2. By comparing the results obtained with Aroclor-induced hepatocytes and Aroclor-induced liver S9 fraction in the Salmonella test, it could be estimated that hepatocytes were 3 times less active than the S9 fraction with regard to mutagenic activation of both Trp-P-1 and Trp-P-2.  相似文献   

12.
Several nitrofurans were found to induce umu gene expression in Salmonella typhimurium TA1535/pSK1002 as defined on the basis of at least a 2-fold increase of beta-galactosidase activity over the background level. beta-Galactosidase activity increased with increasing concentrations of the chemical, attained a maximum at a concentration which was different for different nitrofurans used, and then gradually decreased with a further increase of the nitrofuran concentration. The umu gene expression test revealed that the genotoxic activity was highest for furazolidone and lowest for 5-nitro-2-furaldehyde.  相似文献   

13.
The mutagenicity of 10 known genotoxic compounds, of several chemical classes, was measured in Salmonella typhimurium mutagenicity assays comprising isolated human hepatocytes or human liver 9000 X g supernatant (S9) from 4 different individuals, as activating system. The mutagenic activity of several compounds as determined with the Salmonella/hepatocyte suspension assay showed obvious differences when compared with the values obtained in the Salmonella/S9 plate assay. For instance, the mutagenic activity of BZ, DMN and DEN appeared to be much higher in the hepatocyte assay than in the S9 assay. However, 2-AF and 2-AAF were activated more effectively into mutagens in the S9 assay than in the hepatocyte assay. 2-AF was slightly more mutagenic than 2-AAF in the hepatocyte assay, whereas it was far more mutagenic than 2-AAF in the S9 assay. DMN was found more mutagenic than DEN in the hepatocyte assay, whereas in the S9 assay DEN appeared to be slightly more mutagenic. Furthermore, great interindividual differences in the metabolic activation of certain compounds, e.g. BZ and DMN, were observed in the hepatocyte suspension assay, whereas these variations were less evident in the S9 plate assay. Comparison of the mutagenicity data obtained with the human liver preparations, with those obtained with rat liver preparations, showed great interspecies differences in the capacity to activate certain chemicals into mutagens. The use of human liver preparations, in particular isolated human hepatocytes, may be of great value in studies on inter- and intraspecies variations in metabolic activation of genotoxic agents.  相似文献   

14.
46 chemicals of diverse classes and structures, including 30 known animal carcinogens, were evaluated for prophage-inducing ability using the Escherichia coli inductest with lysogenic strain GY5027 envA - uvrB- and indicator strain GY4015 ampR . The inductest detected 9 of 30 known carcinogens as genotoxic agents, including 3 polycyclic hydrocarbons, 2 aflatoxins, and 2 antitumor antimicrobials. Among the 21 carcinogens ineffective as prophage inducers were 3 aromatic amines (other than 2-aminoanthracene), 3 azo-aminoazo compounds, 2 methanesulfonates, and 2 nitro aromatics. In contrast, 18 and 17 of the 30 animal carcinogens were detected as genotoxic agents in the Salmonella/Ames test and E. coli WP2/ WP100 rec assay, respectively. The threshold sensitivity of the inductest was less than that of the Salmonella/Ames test for chemicals genotoxic in both tests. The ineffectiveness of the inductest as a routine test for detecting potential chemical carcinogens may be related to the nature of the DNA damage lesions formed by various genotoxic agents.  相似文献   

15.
1. The possibility of Aroclor 1254 and beta-naphthoflavone treated fish Mugil auratus and fish sampled in low and high polluted areas to convert some premutagens to active intermediers in the SOS umu-test have been investigated. 2. Genotoxicity of Aflatoxin b1 differed markedly upon activation with liver S9 fractions from fish with different pollution histories, with the highest activation potency in fish living near a fish cannery. 3. Inhibition of umu gene expression by 7,8-benzoflavone in vitro clearly demonstrates a cytochrome P-450 mediated activation of aflatoxin b1. 4. 2-Aminoanthracene and 2-aminofluorene were weakly activated to genotoxic products and the induction of umu gene expression could be detected only in the presence of S9 fractions from fish treated with beta-naphthoflavone and Aroclor 1254 in the laboratory. 5. The capability of S9 from fish living near a fish cannery to convert 2-aminoanthracene and 2-aminofluorene was not observed.  相似文献   

16.
The somatic mutation and recombination w/w+ eye assay has been used for genotoxic evaluation of a broad number of chemicals with different action mechanisms yielding high values of sensitivity, specificity and accuracy. The aim of this work was to determine the utility of this assay in the evaluation of reactive oxygen species inducers. For this, we have tested eight compounds: diquat, paraquat, menadione, juglone, plumbagin, streptonigrin, tert-butyl hydroperoxide and 4-nitroquinoline 1-oxide, using the Drosophila Oregon K strain which had previously shown advantageous conditions to test this type of compounds. Diquat was the only chemical for which the results were clearly negative, probably because its high toxicity, whereas indications of a marginal genotoxicity raised for menadione. The remaining compounds were evaluated as positives. The conclusion of these experiments is that the w/w+ assay is capable to detect genotoxic effects induced by compounds that generate reactive oxygen species through different action mechanisms.  相似文献   

17.
Mutagenic activation of aflatoxin B1 by P-450 HFLa in human fetal livers   总被引:2,自引:0,他引:2  
The genotoxic and mutagenic activation of promutagens by human fetal livers was measured by the induction of umu gene expression in Salmonella typhimurium TA1535/pSk1002. Liver homogenates of human fetuses were the most active for the mutagenic activation of aflatoxin B1 (AFB1), followed by 2-amino-3-methylimidazo(4,5-f)quinoline (IQ), and to a lesser extent by 2-amino-6-methyldipyrido(1,2-a:3',2'-d)imidazole (Glu-P-1). The amounts of P-450 HFLa immunochemically determined in human fetal livers correlated highly with the induction of umu gene expression by AFB1 (r = 0.98, n = 5). P-450 HFLa catalyzed the mutagenic activation of AFB1 in a reconstituted system: cytochrome b5 markedly stimulated the activation. Anti-P-450 HFLa antibodies inhibited the mutagenic activation of AFB1 in a dose-dependent manner. These results strongly support the idea that P-450 HFLa is responsible for the mutagenic activation of AFB1 in human fetal livers.  相似文献   

18.
The genotoxicity of dimethyl sulfoxide (DMSO) was demonstrated by the umu test using Salmonella typhimurium TA1535/pSK1002 carrying the umuC-lacZ fusion gene. The level of beta-galactosidase activity which shows umu gene expression in the test system was dependent on the concentration of DMSO in the culture medium. The maximum beta-galactosidase activity was approximately 3.5 times as high as the background level with 10% of DMSO in the culture medium. The lowest concentration of DMSO required for a response of over twice the background level was approximately 5%. Four structurally related chemicals (acetone, di-n-butylsulfoxide, dimethylsulfide, methylphenylsulfoxide) did not show umu gene expression at their non-toxic doses.  相似文献   

19.
The induction of umu gene expression by DNA cross-links was investigated in various strains of E. coli with different DNA-repair capacities. Expression was measured by quantifying enzymatic activity of beta-galactosidase produced under regulation of the umu promoter carried on a plasmid carrying the umuC-lacZ gene fusion. The treatment with MMC induced gene expression more efficiently in a wild-type strain when compared with an excision-repair-deficient strain (uvrA). In contrast, PUVA and cis-Pt treatment induced higher levels of the gene expression in the uvrA strain than in the wild-type strain, as did other DNA-damaging agents including 4NQO, MNNG and MMS. None of these chemicals induced umu expression in either lexA and recA strains. The mechanisms of the induction of umu expression by DNA cross-links in relation to DNA damage and repair are discussed.  相似文献   

20.
The umuDC operon of Escherichia coli encodes functions required for mutagenesis induced by radiation and a wide variety of chemicals. The closely related organism Salmonella typhimurium is markedly less mutable than E. coli, but a umu homolog has recently been identified and cloned from the LT2 subline. In this study the nucleotide sequence and structure of the S. typhimurium LT2 umu operon have been determined and its gene products have been identified so that the molecular basis of umu activity might be understood more fully. S. typhimurium LT2 umu consists of a smaller 417-base-pair (bp) umuD gene ending 2 bp upstream of a larger 1,266-bp umuC gene. The only apparent structural difference between the two operons is the lack of gene overlap. An SOS box identical to that found in E. coli is present in the promoter region upstream of umuD. The calculated molecular masses of the umuD and umuC gene products were 15.3 and 47.8 kilodaltons, respectively, which agree with figures determined by transpositional disruption and maxicell analysis. The S. typhimurium and E. coli umuD sequences were 68% homologous and encoded products with 71% amino acid identity; the umuC sequences were 71% homologous and encoded products with 83% amino acid identity. Furthermore, the potential UmuD cleavage site and associated catalytic sites could be identified. Thus the very different mutagenic responses of S. typhimurium LT2 and E. coli cannot be accounted for by gross differences in operon structure or gene products. Rather, the ability of the cloned S. typhimurium umuD gene to give stronger complementation of E. coli umuD77 mutants in the absence of a functional umuC gene suggests that Salmonella UmuC protein normally constrains UmuD protein activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号