首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Gene 12 of equine herpesvirus 1 (EHV-1), the homolog of herpes simplex virus (HSV) VP16 (alpha TIF, Vmw65), was cloned into a eukaryotic expression vector by PCR and used in transactivation studies of both the EHV-1 and HSV-1 IE1 promoters. Results demonstrated that the product of gene 12 is a potent transactivator of immediate-early gene expression of both viruses, which requires sequences in the upstream HSV-1 promoter for activity. Mutational analysis of the gene 12 open reading frame indicated that removal of the C-terminal 7 amino acids, which contain a short region of homology with the extreme C terminus of VP16, inactivated the protein. Within this region, only a single methionine residue appeared to be essential for activity, implying that gene 12 may have a modular array of organization similar to that of VP16. However, fusion of the gene 12 C terminus to a truncated form of VP16, which contained the complex formation domain, did not restore activity to the HSV-1 protein. These data demonstrate that the EHV-1 immediate-early transactivator may not be functionally colinear with VP16, with transactivation requiring both the C terminus and another region(s) present within the N-terminal portion.  相似文献   

2.
3.
Herpes simplex virus (HSV) immediate-early (IE) gene expression is initiated via the recruitment of the structural protein VP16 onto specific sites upstream of each IE gene promoter in a multicomponent complex (TRF.C) that also includes the cellular proteins Oct-1 and HCF. In vitro results have shown that HCF binds directly to VP16 and stabilizes TRF.C. Results from transfection assays have also indicated that HCF is involved in the nuclear import of VP16. However, there have been no reports on the role or the fate of HCF during HSV type 1 (HSV-1) infection. Here we show that the intracellular distribution of HCF is dramatically altered during HSV-1 infection and that the protein interacts with and colocalizes with VP16. Moreover, viral protein synthesis and replication were significantly reduced after infection of a BHK-21-derived temperature-sensitive cell line (tsBN67) which contains a mutant HCF unable to associate with VP16 at the nonpermissive temperature. Intracellular distribution of HCF and of newly synthesized VP16 in tsBN67-infected cells was similar to that observed in Vero cells, suggesting that late in infection the trafficking of both proteins was not dependent on their association. We constructed a stable cell line (tsBN67r) in which the temperature-sensitive phenotype was rescued by using an epitope-tagged wild-type HCF. In HSV-1-infected tsBN67r cells at the nonpermissive temperature, direct binding of HCF to VP16 was observed, but virus protein synthesis and replication were not restored to levels observed at the permissive temperature or in wild-type BHK cells. Together these results indicate that the factors involved in compartmentalization of VP16 alter during infection and that late in infection, VP16 and HCF may have additional roles reflected in their colocalization in replication compartments.  相似文献   

4.
5.
6.
HCF-dependent nuclear import of VP16.   总被引:8,自引:1,他引:7       下载免费PDF全文
Transactivation by VP16 requires the formation of a multicomponent complex, the TAATGAAAT recognition factor complex (TRF.C), that contains in addition to VP16, two cellular proteins, Oct-1 and HCF. HCF binds directly to VP16 and this promotes subsequent interaction of the VP16-HCF complex with the POU DNA-binding domain of Oct-1 and selective assembly onto target sites. Here we demonstrate a novel role of HCF in the intracellular compartmentalization of VP16. We show that while VP16 does not contain a consensus nuclear localization signal (NLS) and is largely cytoplasmic, co-expression with HCF resulted in VP16 nuclear accumulation. A candidate NLS within the C-terminus of HCF was identified and insertion of this motif into green fluorescent protein (GFP) promoted nuclear accumulation. Conversely, removal of this signal from HCF (HCFDeltaNLS) resulted in its cytoplasmic accumulation. Co-expression of HCFDeltaNLS with wild-type (wt) VP16, or of wt HCF with VP16 mutants lacking HCF-binding activity failed to promote the nuclear enrichment of VP16. These results indicate that in addition to its role in stabilizing TRF.C, HCF acts as a nuclear import factor for VP16.  相似文献   

7.
We present biochemical analyses of the regions of the host cell factor (HCF) involved in VP16 complex formation and in the association between the N- and C-terminal domains of HCF itself. We show that the kelch repeat region of HCF (residues 1-380) is sufficient for VP16 complex formation, but that residues C-terminal to the repeats (positions 381-450) interfere with this activity. However, these latter residues are required for the interaction between the N- and C-terminal regions of HCF. The extreme C-terminal region of HCF, corresponding to an area of strong conservation with a Caenorhabditis elegans homologue, is sufficient for interaction with the N-terminal region. These results are discussed with respect to possible differences in the roles of HCF in VP16 activity versus its normal cellular function.  相似文献   

8.
9.
10.
The varicella-zoster virus (VZV) open reading frame 10 (ORF10) protein is the homolog of the herpes simplex virus type 1 (HSV-1) protein VP16. These are two virion tegument proteins that have extensive amino acid sequence identity in their amino-terminal and middle domains. ORF10, however, lacks the acidic carboxy terminus which is critical for transactivation by VP16. Earlier studies showed that VZV ORF10 does not form a tertiary complex with the TAATGARAT regulatory element (where R is a purine) with which HSV-1 VP16 interacts, suggesting that ORF10 may not have transactivating ability. Using transient-expression assays, we show that VZV ORF10 is able to transactivate VZV immediate-early (IE) gene (ORF62) and HSV-1 IE gene (ICP4 and ICP0) promoters. Furthermore, cell lines stably expressing ORF10 complement the HSV-1 mutant in1814, which lacks the transactivating function of VP16, and enhance the de novo synthesis of infectious virus following transfection of HSV-1 virion DNA. These results indicate that ORF10, like its HSV-1 homolog VP16, is a transactivating protein despite the absence of sequences similar to the VP16 carboxy-terminal domain. The transactivating function of the VZV ORF10 tegument protein may be critical for efficient initiation of viral infection.  相似文献   

11.
12.
13.
14.
15.
We show that VP16 is phosphorylated by cellular kinases in vivo and in vitro and map the major sites of phosphorylation to be on serines towards the C-terminus, downstream of position 370 in both cases. Deletion of the acidic activation domain had no effect on phosphorylation, refining the sites to between position 370 and 411. Within VP16, the C-terminal boundary for complex formation with Oct-1 and HCF lies at position 388, and between 370 and 388 lies one serine, at position 375. This is a consensus casein kinase II (CKII) site and, using purified wild-type and mutant proteins, we show that it is the main CKII site in the body of the N-terminal complex-forming region. This site is also phosphorylated in nuclear extracts. Although other sites, mainly Ser411, are also phosphorylated by nuclear kinase(s), the single substitution of Ser375 to alanine abolishes CKII phosphorylation in vitro and virtually eliminates complex formation. This serine lies in a surface-exposed region of VP16 and, although complex formation is disrupted, other activities of the mutant are unaffected. Ser375 is also required in vivo where substitution to alanine abolishes transactivation, while replacement with threonine restores normal levels of activity.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号