首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
3.
4.
H(2)O(2) induces a specific protein oxidation in yeast cells, and the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (Tdh) is a major target. Using a 2D-gel system to study protein carbonylation, it is shown in this work that both Tdh2p and Tdh3p isozymes were oxidized during exposure to H(2)O(2). In addition, we identified two other proteins carbonylated and inactivated: Cu,Zn-superoxide dismutase and phosphoglycerate mutase. The oxidative inactivation of Cu,Zn-superoxide dismutase decreases the antioxidant capacity of yeast cells and probably contributes to H(2)O(2)-induced cell death. Cyclophilin 1 was also carbonylated, but CPH1 gene disruption did not affect peroxide stress sensitivity. The correlation between H(2)O(2) sensitivity and the accumulation of oxidized proteins was evaluated by assaying protein carbonyls in mutants deficient in the stress response regulators Yap1p and Skn7p. The results show that the high sensitivity of yap1delta and skn7delta mutants to H(2)O(2) was correlated with an increased induction of protein carbonylation. In wild-type cells, the acquisition of stress resistance by pre-exposure to a sublethal H(2)O(2) stress was associated with a lower accumulation of oxidized proteins. However, pre-exposure of yap1delta and skn7delta cells to 0.4 mM H(2)O(2) decreased protein carbonylation induced by 1.5 mM H(2)O(2), indicating that the adaptive mechanism involved in the protection of proteins from carbonylation is Yap1p- and Skn7p-independent.  相似文献   

5.
Molina L  Kahmann R 《The Plant cell》2007,19(7):2293-2309
The fungus Ustilago maydis is a biotrophic pathogen of maize (Zea mays). In its genome we have identified an ortholog of YAP1 (for Yeast AP-1-like) from Saccharomyces cerevisae that regulates the oxidative stress response in this organism. yap1 mutants of U. maydis displayed higher sensitivity to H(2)O(2) than wild-type cells, and their virulence was significantly reduced. U. maydis yap1 could partially complement the H(2)O(2) sensitivity of a yap1 deletion mutant of S. cerevisiae, and a Yap1-green fluorescent protein fusion protein showed nuclear localization after H(2)O(2) treatment, suggesting that Yap1 in U. maydis functions as a redox sensor. Mutations in two Cys residues prevented accumulation in the nucleus, and the respective mutant strains showed the same virulence phenotype as Deltayap1 mutants. Diamino benzidine staining revealed an accumulation of H(2)O(2) around yap1 mutant hyphae, which was absent in the wild type. Inhibition of the plant NADPH oxidase prevented this accumulation and restored virulence. During the infection, Yap1 showed nuclear localization after penetration up to 2 to 3 d after infection. Through array analysis, a large set of Yap1-regulated genes were identified and these included two peroxidase genes. Deletion mutants of these genes were attenuated in virulence. These results suggest that U. maydis is using its Yap1-controlled H(2)O(2) detoxification system for coping with early plant defense responses.  相似文献   

6.
7.
8.
9.
Genome-wide screening for sensitivity to chronic endoplasmic reticulum (ER) stress induced by dithiothreitol and tunicamycin (TM) identified mutants deleted for Cu, Zn superoxide dismutase (SOD) function (SOD1, CCS1) or affected in NADPH generation via the pentose phosphate pathway (TKL1, RPE1). TM-induced ER stress led to an increase in cellular superoxide accumulation and an increase in SOD1 expression and Sod1p activity. Prior adaptation of the hac1 mutant deficient in the unfolded protein response (UPR) to the superoxide-generating agent paraquat reduced cell death under ER stress. Overexpression of the ER oxidoreductase Ero1p known to generate hydrogen peroxide in vitro, did not lead to increased superoxide levels in cells subjected to ER stress. The mutants lacking SOD1, TKL1, or RPE1 exhibited decreased UPR induction under ER stress. Sensitivity of the sod1 mutant to ER stress and decreased UPR induction was partially rescued by overexpression of TKL1 encoding transketolase. These data indicate an important role for SOD and cellular NADP(H) in cell survival during ER stress, and it is proposed that accumulation of superoxide affects NADP(H) homeostasis, leading to reduced UPR induction during ER stress.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号