首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The structures of B-form and A-form DNA are studied in 0–70 and 70–80% ethanol solutions, respectively, in an electric field, using linear dichroism. The limiting reduced linear dichroism data of B-form DNA are chain length dependent in 0% ethanol solution. However, there is no such chain length dependence of the limiting reduced linear dichroism of the A-form. Our reslts also suggest that (1) the transition moments at 260 nm lie within the plaxe of the DNA bases, (2) the two allomorphs (A and B forms) of the long chain DNA in solution in the electric field are like the respective classica forms.  相似文献   

2.
The flexibility of A-form DNA.   总被引:1,自引:0,他引:1  
We have determined the rise per base pair and persistence length of A-form DNA in trifluoroethanol solutions for fragments 350-900 base pairs in length that best describe rotational diffusion coefficients determined by transient electric birefringence. The 2.6 A spacing between base pairs found in crystal and fiber A-form structures is preserved in solution. The persistence length is about 1500 A, or about three times longer than for B-form DNA. There is no apparent electrostatic contribution to the persistence length in the salt concentration range 0.2-2.0 mM Na cacodylate. This suggests an even closer association between DNA and its neutralizing counterions than predicted by condensation theory, perhaps due to a sheath of trifluoroethanol excluded water surrounding the A-form helix.  相似文献   

3.
4.
The van-der-Waals interaction of DNA molecules in the B-form has been studied by the method of atom-atom potentials. This study was carried out to clarify to what degree does this interaction determinate packing of DNA molecules in a crystal lattice. Interaction energy of two parallel molecules has been calculated as a function of 4 parameters (interaxial distance, axial shift, screw rotation of molecules). Energy as a function of these parameters is shown to have two minima, one of them exactly corresponding to mutual arrangement of DNA molecules in the lattice determined from X-ray data.  相似文献   

5.
An idea of short contacts of thymine methyl group in A-form DNA is proposed to understand the structural changes of double helical DNA. To confirm the assumption that the unstable A-conformation needs lateral interactions, X-ray experiments on the complex of E. coli DNA with synthetic thermospermine in fiber were carried out. This complex showed the ordinary transition, except that it yielded a semicrystalline B-form at 66% r.h., suggesting good lateral interactions of the material by some number of cross-bridges of tetramine. This unstable factor is potentially of considerable biological interest.  相似文献   

6.
Abstract

The deoxyoligonucleotide, d(GGTATACC), forms a duplex structure that crystallizes in the DNA A form. This has been shown by both X-ray diffraction studies and Raman spectroscopy (1,2). The presence of the DNA B form has been reported using diffuse X-ray scattering from a crystal of the closely related sequence d(GGBrUABrUACC)(3). In this paper the infrared spectrum of the d(GGTATACC) crystal is presented and curve resolution of both the Raman and IR spectra have been carried out. The percentage of A and B forms have been estimated. The %B form in the crystal has been estimated from the IR spectra to be about 15% and from Raman to be about 20%. Moreover the IR spectrum of the A conformation in the crystal is slightly different from the IR spectrum of the A conformation in polynucleotide fibers in particular in the region of the phosphate stretching vibrations and of the in-plane double bond vibrations of the bases. We show that it is feasible to obtain IR as well as Raman spectra of small crystals of oligonucleotides and that this is a good method of identifying all of the different conformations that may be in the crystal.  相似文献   

7.
The deoxyoligonucleotide, d(GGTATACC), forms a duplex structure that crystallizes in the DNA A form. This has been shown by both X-ray diffraction studies and Raman spectroscopy (1,2). The presence of the DNA B form has been reported using diffuse X-ray scattering from a crystal of the closely related sequence d(GGBrUABrUACC)(3). In this paper the infrared spectrum of the d(GGTATACC) crystal is presented and curve resolution of both the Raman and IR spectra have been carried out. The percentage of A and B forms have been estimated. The %B form in the crystal has been estimated from the IR spectra to be about 15% and from Raman to be about 20%. Moreover the IR spectrum of the A conformation in the crystal is slightly different from the IR spectrum of the A conformation in polynucleotide fibers in particular in the region of the phosphate stretching vibrations and of the in-plane double bond vibrations of the bases. We show that it is feasible to obtain IR as well as Raman spectra of small crystals of oligonucleotides and that this is a good method of identifying all of the different conformations that may be in the crystal.  相似文献   

8.
Intra-dinucleoside dimer conformational energy calculations were performed on a series of conformations corresponding to the unwinding of a dinucleoside dimer from the B-form type structure. Conformational states were characterized in terms of the distance, d, between parallel bases. All 16 possible sequences for (G) and (C) and/or (A) and (T) bases were considered. Both free space, and free space plus aqueous solvation energies were computed. It was found that the B-form like conformer is the most stable structures in free space and in an aqueous medium. However, the energy as function of d is base pair sequence dependent. This sequence dependence suggests a possible inherent specificity for intercalation of the dinucleoside dimer with a drug molecule.  相似文献   

9.
We describe and discuss the stability conditions of a naked double stranded DNA molecule starting from the evaluation of condensation or compactness fluctuation of this molecule embedded in pure water.  相似文献   

10.
High resolution 2H nuclear magnetic resonance (NMR) was used to investigate the interaction of D2O with solid samples of uniaxially oriented Li-DNA (B-form DNA) and Na-DNA (A- and B-form DNA). At low levels of hydration, 0 approximately 4 D2O/nucleotide, the 2H spectra shows a very weak (due to short T2) broad single resonance, suggestive of unrestricted rotational diffusion of the water. At approximately 5 or more D2O/nucleotide, the Li-DNA (B-form) spectra suddenly exhibit a large doublet splitting, characteristic of partially ordered water. With increasing hydration, the general trend is a decrease of this splitting. From our analysis we show that the DNA water structure reorganizes as the DNA is progressively hydrated. The D2O interaction with Na-DNA is rather different than with Li-DNA. Below 10 D2O/nucleotide Na-DNA is normally expected to be in the A-form, and a small, or negligible splitting is observed. In the range 9-19 D2O/nucleotide, the splitting increases with increasing hydration. Above approximately 20 D2O/nucleotide Na-DNA converts entirely to the B-form and the D2O splittings are then similar to those found in Li-DNA. We show that the complex Na-DNA results obtained in the range 0-20 D2O/nucleotide are caused by a mixture of A- and B-DNA in those samples.  相似文献   

11.
12.
A conformational transition of a single deoxyribose was analyzed in B-form trimers dA3:dT3 and dG3:dC3, both in the purine and pyrimidine chains. The main results were obtained for the duplexes with frozen ends, which could be extended by regular double helixes. The geometry of the central sugar ring in the duplexes may strongly deviate from the regular conformation. When deoxyribose changed its conformation in the central pyrimidine, the energy increase was proved to be less significant in comparison with that for purine. In the case of Thy, a decrease in pseudorotation angle P from 140 to 80 degrees causes the energy increase of 0.5 kcal/mol only, the barrier being 1.2 kcal/mol. The energy profile for Cyt has several local minima. The results of calculations were compared with numerous experimental data, they help to explain some NMR data. A perturbation of the duplex AAA:TTT structure caused by the thymine sugar ring transition, produces 5 degrees bend of the DNA axis directed toward adenines. We also investigated the influence of such conformational disturbance on the neighbouring base pairs, in particular the transition in the trimers with unfrozen ends.  相似文献   

13.
Molecules of rabbit skeletal myosin have been examined in the electron microscope after drying at low temperature from solutions containing ethylene glycol or glycerol and rotary-shadowing with platinum. Analysis of the structure has been assisted by stereo-photography. While the general appearance, two heads attached to a long tail, is similar to that described by Slayter & Lowey (1967), more detail about the shape and size of the heads can be discerned and new information has been obtained about the flexibility of the tail and the head-tail junction.The heads are 190 Å long and wider at their ends than near the junction with the tail; the shape resembles that of a pear. The length is appreciably greater than the generally accepted value for subfragment 1, the proteolytic fragment of myosin. The heads are flexibly attached to the tail and can assume a wide range of tilt angles.Because the point where the two heads join the tail can be identified, the length of the tail, 1560 (±50) Å, can be measured more accurately than formerly. While all parts of the tail are somewhat flexible, sharp bends often occur at a well-defined site 430 Å from the head-tail junction. The demonstration of hinges at the head-tail junction and in the tail provides strong support for H. E. Huxley's (1969) hypothesis for the mechanism of muscle contraction.  相似文献   

14.
Abstract

The ways in which amino acid side chains could make a pair of hydrogen bonds within the major groove of B DNA are systematically analyzed. Hydrogen bond donors within the major groove are characterized by determining the idealized position of the hydrogen bond acceptors that they might bond with. It appears that an amino acid side chain could, at most, contact a pair of base pairs. The ten possible pairs of base pairs are analyzed to determine how they could be recognized by the amino acid side chains.  相似文献   

15.
Due to the lack of direct X-ray evidence for base pairing being the only mechanism for the formation of double helix in a DNA crystal, an alternative explanation is suggested so that the observed DNA loop becomes essential. This work was sponsored at Brown University under a grant from Speidel Corporation.  相似文献   

16.
Anisotropic flexibility of DNA and the nucleosomal structure.   总被引:11,自引:9,他引:2       下载免费PDF全文
Potential energy calculations of the DNA duplex dimeric subunit show that the double helix may be bent in the direction of minor and major grooves much more easily than in other directions. It is found that the total winding angle of DNA decreases upon such bending. A new model for DNA folding in the nucleosome is proposed on the basis of these findings according to which the DNA molecule is kinked each fifth base pair to the side of the minor and major grooves alternatively. The model explains the known contradiction between a C-like circular dichroism for the nucleosomal DNA and the nuclease digestion data, which testify to the B-form of DNA.  相似文献   

17.
On the flexibility of myosin in solution.   总被引:1,自引:0,他引:1  
J F Curry  S Krause 《Biopolymers》1991,31(14):1677-1687
Rabbit skeletal muscle myosin from the same rabbit was prepared by two different methods, and then purified by either Sephadex or hydroxylapatite chromatography. The resulting myosin samples were analyzed in 2-10 mM sodium pyrophosphate solutions at pH 9 using transient electric birefringence. The birefringence decay signals were fitted using a Fortran program called DISCRETE and two relaxation times, 49.7 +/- 5.6 and 11.2 +/- 2.5 microseconds, were determined. These relaxation times were independent of the method of myosin preparation, the method of myosin purification, the concentration of sodium pyrophosphate between 2 and 10 mM, the concentration of myosin between 0.08 and 1.59 mg/mL, and the temperature between 4.0 and 20.0 degrees C, after correction to 20.0 degrees C. The longer relaxation time is consistent with a rigid, linear myosin molecule. The shorter relaxation time is consistent with myosin that has a completely flexible hinge region in the myosin tail. Both relaxation times are inconsistent with the previously reported single relaxation time of myosin obtained by fitting the birefringence decay data to only 90% of the decay signal. By forcing some of the birefringence decay data in the presence work to fit 90% of the decay signal with a single relaxation time, approximately the same relaxation time as previously reported was obtained.  相似文献   

18.
B-factor from X-ray crystal structure can well measure protein structural flexibility, which plays an important role in different biological processes, such as catalysis, binding and molecular recognition. Understanding the essence of flexibility can be helpful for the further study of the protein function. In this study, we attempted to correlate the flexibility of a residue to its interactions with other residues by representing the protein structure as a residue contact network. Here, several well established network topological parameters were employed to feature such interactions. A prediction model was constructed for B-factor of a residue by using support vector regression (SVR). Pearson correlation coefficient (CC) was used as the performance measure. CC values were 0.63 and 0.62 for single amino acid and for the whole sequence, respectively. Our results revealed well correlations between B-factors and network topological parameters. This suggests that the protein structural flexibility could be well characterized by the inter-amino acid interactions in a protein.  相似文献   

19.
DNA chain flexibility and the structure of chromatin nu-bodies.   总被引:1,自引:0,他引:1       下载免费PDF全文
The persistence length of high-molecular-weight, monodisperse-bihelical DNA has been evaluated from low-shear flow birefingence and viscosity data at several temperatures in 2.0 M Nacl neutral pH buffer. At these solvent conditions, both the DNA and histone components of chromatin nu-bodies have structural features similar to those in the intact nucleohistone complex at low ionic strength. The theory of Landau and Lifshitz is used to relate the experimental result to the thermodynamic functions for bending 140 nucleotide pairs of DNA into a plausible model structure: per nu-body, delta Gb=43.8 +/- 5.3 kcal/mole, delta Hb= 45.7 +/- 3.7 kcal/mole, and delta Sb = 6.2 +/- 12.4 entropy units. This bending free energy is comparable to or less than that estimated to be required for a kinked DNA configuration and appears to be well within the range of estimated electrostatic free energies available from DNA-histone interactions in a nu-body assembly.  相似文献   

20.
Nucleosome formation and positioning, which play important roles in a number of biological processes, are thought to be related to the distinctive periodic dinucleotide patterns observed in the DNA sequence wrapped around the protein octamer. Previous research shows that flexibility is a key structural property of a nucleosomal DNA sequence. However, the relationship between the flexibility and the periodic dinucleotide patterns has received little attention in research in the past. In this study, we propose the use of three different models to measure the flexibility of yeast DNA sequences. Although the three models involve different parameters, they deliver consistent results showing that yeast nucleosomal DNA sequences are more flexible than non-nucleosomal ones. In contrast to random flexibility values along non-nucleosomal DNA sequences, the flexibility of nucleosomal DNA sequences shows a clear periodicity of 10.14 base pairs, which is consistent with the periodicity of dinucleotide distributions. We also demonstrate that there is a strong relationship between the peak positions of the flexibility and the dinucleotide frequencies. Correlation between the flexibility and the dinucleotide patterns of CA/TG, CG, GC, GG/CC, AG/CT, AC/GT and GA/TC are positive with an average value of 0.5946. The highest correlation is shown by CA/TG with a value of 0.7438 and the lowest correlation is shown by AA/TT with a value of −0.7424. The source codes and data sets are available for downloading on http://www.hy8.com/bioinformatics.htm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号