首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fluorescence and the base pairing properties of 8-aza-7-deaza-2'-deoxyisoinosine (1) are described and compared with those of 2'-deoxyisoinosine (2). The corresponding phosphoramidites (11, 12) are synthesized using the diphenylcarbamoyl (DPC) residue for the 2-oxo group protection. The nucleosides 1 and 2 base pair with 2'-deoxy-5-methylisocytidine in DNA duplexes with antiparallel chain orientation and with 2'-deoxycytidine in a parallel DNA. These base pairs are less stable than the canonical dA-dT pair and that of 2'-deoxyinosine (4) with 2'-deoxycytidine. The fluorescence of the nucleosides 1 and 2 is quenched (approximately 95%) in duplex DNA. The residual fluorescence is used to determine the Tm-values, which are found to be the same as determined UV-spectrophotometrically.  相似文献   

2.
A conformationally locked, 2',4'-C-bridged 2'-deoxyribofuranoside2 was condensed with silylated pyrimidines to give 2',4'-C-bridged bicyclonucleosides, which were converted to the phosphoramidites and incorporated into oligodeoxynucleotides (ODNs). The hybridization data of the modified ODNs to DNA and RNA are presented.  相似文献   

3.
The synthesis of 7-propynyl-, 7-iodo- and 7-cyano-7-deaza-2-amino-2'-deoxyadenosines is described. The nucleosides were synthesized, functionalized into the phosphoramidites and incorporated into oligodeoxynucleotides. Spectroscopic melting experiments against complementary RNA showed increases of 3-4 degreesC per modification for single substitutions and smaller increases per incorporation for multiple substitutions relative to unmodified control sequences. The 7-propyne and 7-iodo nucleosides were incorporated into antisense sequences targeting the 3'-UTR of murine C- raf mRNA. Both nucleosides demonstrated substitution-dependent potency. The sequences with three and four substitutions of the 7-propyne-7-deaza-2-amino-2'-deoxyadenosine exhibited a 2-3-fold increase in potency over unmodifed controls.  相似文献   

4.
The phosphoramidites of 8-aza-7-deaza-2'-deoxyisoguanosine (1a) and its bromo derivative 1b as well as of 6-aza-2'-deoxyisocytidine and its 5-methyl derivative (3a,b) were synthesized. Parallel-stranded duplexes containing the nucleosides 1a,b show a significantly enhanced duplex stability compared to those containing 2'-deoxyisoguanosine.  相似文献   

5.
Oligonucleotides incorporating 5-(octa-1,7-diynyl)-2'-deoxycytidine 1a, 5-(octa-1,7-diynyl)-2'-deoxyuridine 2a and 7-deaza-7-(octa-1,7-diynyl)-2'-deoxyguanosine 3a, 7-deaza-7-(octa-1,7-diynyl)-2'-deoxyadenosine 4a were prepared. For this, the phosphoramidites 7, 10, and 13 were synthesized and employed in solid-phase oligonucleotide synthesis. The octa-1,7-diynyl nucleosides 1a- 4a were obtained from their corresponding iodo derivatives using the palladium-assisted Sonogashira cross-coupling reaction. The Tm values demonstrated that DNA duplexes containing octa-1,7-diynyl nucleosides show a positive influence on the DNA duplex stability when they are introduced at the 5-position of pyrimidines or at the 7-position of 7-deazapurines. The terminal alkyne residue of oligonucleotides were selectively conjugated to the azide residue of the nonfluorescent 3-azido-7-hydroxycoumarin ( 38) using the protocol of copper(I)-catalyzed [3 + 2] Huisgen--Sharpless--Meldal cycloaddition "click chemistry" resulting in the formation of strongly fluorescent 1,2,3-triazole conjugates. The fluorescence properties of oligonucleotides with covalently linked coumarin--nucleobase assemblies were investigated. Among the four modified bases, the 7-deazapurines show stronger fluorescence quenching than that of pyrimidines.  相似文献   

6.
Tert-butyldiphenylsilyl (TBDPS) was testified to be an appropriate orthogonal protecting group for novel 7-hydroxyl-functionalized 8-aza-7-deaza-2'-deoxyadenosine analogues. It was stable in partial and complete hydrogenation reactions used for the different linker preparation. The corresponding phosphoramidites and hydroxyl-functionalized oligodeoxynucleotides were synthesized and identified. The thermal effect of the hydroxyl group with different linkers on DNA duplexes was evaluated. It provided a feasible strategy for the preparation of hydroxyl-functionalized DNAs for the nucleic acid research.  相似文献   

7.
Tert-butyldiphenylsilyl (TBDPS) was testified to be an appropriate orthogonal protecting group for novel 7-hydroxyl-functionalized 8-aza-7-deaza-2′-deoxyadenosine analogues. It was stable in partial and complete hydrogenation reactions used for the different linker preparation. The corresponding phosphoramidites and hydroxyl-functionalized oligodeoxynucleotides were synthesized and identified. The thermal effect of the hydroxyl group with different linkers on DNA duplexes was evaluated. It provided a feasible strategy for the preparation of hydroxyl-functionalized DNAs for the nucleic acid research.  相似文献   

8.
The base pairing properties of oligonucleotide duplexes containing 8-aza-7-deaza-2′-deoxyisoguanosine, its 7-bromo or its 7-iodo derivative are described. The nucleosides were synthesized on a convergent route, protected and converted into phosphoramidites. Oligonucleotides were prepared on a solid-phase and were hybridized to yield duplexes with parallel (ps) or antiparallel (aps) chain orientation. The 8-aza-7-deaza-2′-deoxyisoguanosine-containing duplexes show almost identical base pairing stability as those containing 2′-deoxyisoguanosine, while the 7-substituted derivatives induce a significant duplex stabilization both in ps and aps DNA. Self-complementary duplexes with parallel chain orientation are exceptionally stable due to the presence of 5′-overhangs. The bulky halogen substituents were found to be well accommodated in the grooves both of aps and ps DNA.  相似文献   

9.
Searls T  Chen DL  Lan T  McLaughlin LW 《Biochemistry》2000,39(15):4375-4382
Bacteriophage T7 primase catalyzes the synthesis of the oligoribonucleotides pppACC(C/A) and pppACAC from the single-stranded DNA template sites 3'-d[CTGG(G/T)]-5' and 3'-(CTGTG)-5', respectively. The 3'-terminal deoxycytidine residue is conserved but noncoding. A series of nucleoside analogues have been prepared and incorporated into the conserved 3'-d(CTG)-5' site, and the effects of these analogue templates on T7 primase activity have been examined. The nucleosides employed include a novel pyrimidine derivative, 2-amino-5-(beta-2-deoxy-D-erythro-pentofuranosyl)pyridine (d2APy), whose synthesis is described. Template sites containing d2APy in place of the cryptic dC support oligoribonucleotide synthesis whereas those containing 3-deaza-2'-deoxycytidine (dc(3)C) and 5-methyl-6-oxo-2'-deoxycytidine (dm(5ox)C) substitutions do not, suggesting that the N3 nitrogen of cytidine is used for a critical interaction by the enzyme. Recognition sites containing 4-amino-1-(beta-2-deoxy-D-erythro-pentofuranosyl)-5-methyl-2,6[1H, 3H]-pyrimidione (dm(3)2P) or 2'-deoxyuridine (dU) substitutions for dT support oligoribonucleotide synthesis whereas those containing 5-methyl-4-pyrimidinone 2'-deoxyriboside (d(2H)T) substitutions do not, suggesting the importance of Watson-Crick interactions at this template residue. Template sites containing 7-deaza-2'-deoxyguanosine (dc(7)G) or 2'-deoxyinosine (dI) in place of dG support oligoribonucleotide synthesis. The reduced extent to which dc(7)G is successful within the template suggests a primase-DNA interaction. Inhibition studies suggest that the primase enzyme binds "null" substrates but cannot initiate RNA synthesis.  相似文献   

10.
He J  Seela F 《Nucleic acids research》2002,30(24):5485-5496
Oligonucleotides incorporating the 7-propynyl derivatives of 8-aza-7-deaza-2′-deoxyguanosine (3b) and 8-aza-7-deaza-2′-deoxyadenosine (4b) were synthesized and their duplex stability was compared with those containing the 5-propynyl derivatives of 2′-deoxycytidine (1) and 2′-deoxyuridine (2). For this purpose phosphoramidites of the 8-aza- 7-deazapurine (pyrazolo[3,4-d]pyrimidine) nucleosides were prepared and employed in solid-phase synthesis. All propynyl nucleosides exert a positive effect on the DNA duplex stability because of the increased polarizability of the nucleobase and the hydrophobic character of the propynyl group. The propynyl residues introduced into the 7-position of the 8-aza-7-deazapurines are generally more stabilizing than those at the 5-position of the pyrimidine bases. The duplex stabilization of the propynyl derivative 4b was higher than for the bromo nucleoside 4c. The extraordinary stability of duplexes containing the 7-propynyl derivative of 8-aza-7- deazapurin-2,6-diamine (5b) is attributed to the formation of a third hydrogen bond, which is apparently not present in the base pair of the purin-2,6-diamine 2′-deoxyribonucleoside with dT.  相似文献   

11.
The phosphoramidites of 8-aza-7-deaza-2′-deoxyisoguanosine (1a) and its bromo derivative 1b as well as of 6-aza-2′-deoxyisocytidine and its 5-methyl derivative (3a,b) were synthesized. Parallel-stranded duplexes containing the nucleosides 1a,b show a significantly enhanced duplex stability compared to those containing 2′-deoxyisoguanosine.  相似文献   

12.
Abstract

The diastereoselective synthesis of several pyrrolo[2,3-d]- and pyrazolo[3,4-d]pyrimidine 2′-deoxy-ribofuranosides employing l-chloro-2-deoxy-3,5-di-0-(p-tolu-oyl)-a-D-erythropentofuranose and the nucleobase anion, generated by liquid-liquid or solid-liquid phase-transfer catalysis, is described. Appropriately protected phosphoramidites of 8-aza-7-deaza-2′-deoxyadenosine and 2′-deoxytubercidin were prepared and employed in solid-phase synthesis of palindromic DNA-fragments. The replacement of dA residues by deoxytubercidin within the Eco RI recognition site d(GAATTC) of the dodecamer d(GTAGAATTCTAC) gave evidence for purine N-7 binding to the endodeoxyribonuclease. The interpretation of similar experiments carried out on d(CGCGAATTCGCG) was obscured because of hairpin formation.  相似文献   

13.
The 7-bromo- (4a) and 7-iodo- (4b) derivatives of 7-deaza-2'-deoxyxanthosine (5) are prepared. Furthermore, the building blocks 6-8 of 7-deaza-2'-deoxyxanthosine (5) are synthesized and tested for their usage in oligonucleotide synthesis.  相似文献   

14.
The 9-deazaguanine N7-2'-deoxyribofuranoside (3) as well as the bromo and iodo derivatives 4a,b were synthesized and incorporated in oligonucleotide duplexes and triplexes. Their base pairing properties were investigated and compared with those of the parent purine N7-2'-deoxyribofuanosides.  相似文献   

15.
The binding of actinomycin D (C1, 1) and its analog actinomin (2) was studied on base-modified oligonucleotide duplexes with parallel chain orientation (ps) and with anti-parallel chains (aps) for comparison. Actinomycin D binds not only to aps duplexes containing guanine-cytosine base pairs but also to those incorporating modified bases such as 7-deazaguanine or its 6-deoxo derivative. For this, novel phosphoramidites were prepared. The new building block of 7-deaza-2'-deoxyguanosine is significantly more stable than the one currently used and allows normal oxidation conditions during solid-phase oligonucleotide synthesis. Actinomycin binds weakly to ps duplexes containing guanine-isocytosine base pairs but not to ps-DNA incorporating pairs of isoguanine-cytosine residues. On the contrary, the actinomycin D analog actinomin, which contains positively charged side chains instead of the chiral peptide rings, is strongly bound to both ps- and aps-DNA. Guanines, isoguanine, as well as other 7-deaza derivatives are accepted as nucleobases. Apparently, the pentapeptide lacton rings of actinomycin do not fit nicely into the groove of ps-DNA thereby reducing the binding strength of the antibiotic while the groove size of ps-DNA does not affect actinomin binding notably.  相似文献   

16.
Octadeoxynucleotides with the sequence d[(p)GG*AATTCC] have been prepared by solid-phase synthesis employing regular and base-modified phosphoramidites. These oligomers which contain an isosterically altered recognition sequence of the endodeoxyribonuclease Eco RI form duplexes under appropriate salt conditions. Since G* can represent 7-deaza-2'-deoxyguanosine the oligomers were used as probes to study their cleavage by the endodeoxyribonuclease Eco RI. The enzymatic hydrolysis of the modified octamer was strongly decreased compared to the regular DNA-fragment. This shows that guanine N-7 located at the cleavage site is important for the recognition process by the enzyme. The residual enzymatic activity is discussed on the basis of reduced specificity towards the recognition fragment. The fact that this cleavage occurs already under regular conditions indicates that the process described here bases on an intrinsic property of the oligomer and is different from the star activity.  相似文献   

17.
Telomerase is a unique ribonucleoprotein that reverse transcribes a defined region of its RNA subunit onto the ends of eukaryotic chromosomes. The product of telomerase, telomeric DNA, is typically a G-rich repeated sequence, (TTTTGGGG)(n) in the ciliate Euplotes aediculatus and (TTAGGG)(n) in humans. Telomerase can extend oligonucleotide primers in vitro in a processive fashion. We used dNTP analogues to study the structure-activity relationship between substrate nucleotides and processivity of telomerase from E. aediculatus. Several analogues, including 2'-deoxyuridine triphosphate (dUTP), 2'-deoxyinosine triphosphate (dITP), and 7-deaza-2'-deoxyguanosine triphosphate (7-deaza-dGTP), were good substrates for telomerase with K(m) and V(max) values near those of the natural substrates, dTTP and dGTP. However, telomerase processivity was affected with these substrates, decreasing in the order dUTP > 7-deaza-dGTP > dITP. Telomerase did not completely reverse transcribe the template when dITP was the substrate, and it efficiently extended a primer by the addition of two repeats when 7-deaza-dGTP and dUTP were utilized. When the same nucleotide analogues were incorporated into the primers, no effects were observed except in the case of a 3'-terminal deoxyinosine. The data support a model that includes the formation of an intramolecular secondary structure within the product DNA to facilitate translocation. The most likely structure is a G-G hairpin.  相似文献   

18.
The synthesis, hybridization properties and antisense activities of oligodeoxynucleotides (ODNs) containing 7-(1-propynyl)-7-deaza-2'-deoxyguanosine (pdG) and 7-(1-propynyl)-7-deaza-2'-deoxyadenosine (pdA) are described. The suitably protected nucleosides were synthesized and incorporated into ODNs. Thermal denaturation (Tm) of these ODNs hybridized to RNA demonstrates an increased stability relative to 7-unsubstituted deazapurine and unmodified ODN controls. Antisense inhibition by these ODNs was determined in a controlled microinjection assay and the results demonstrate that an ODN containing pdG is approximately 6 times more active than the unmodified ODN. 7-Propyne-7-deaza-2'-deoxyguanosine is a promising lead analog for the development of antisense ODNs with increased potency.  相似文献   

19.
Several studies examining DNA deamination have published levels of 2'-deoxyinosine that illustrated a large variation between studies. Most of them are the result of artifactual DNA deamination that occurs during the process of sample preparation, particularly acid hydrolysis. This protocol for measurement of 2'-deoxyinosine describes the use of nuclease P1 and alkaline phosphatase to achieve release of nucleosides from DNA, followed by HPLC prepurification with subsequent gas chromatography-mass spectrometry analysis of the nucleosides. It has been used in the measurement of the levels of 2'-deoxyinosine in DNA of commercial sources and DNA from cells and animal tissues, and gives values ranging from 3 to 7 2'-deoxyinosine per 10(6) 2-deoxyadenosine. This protocol should take approximately 7 days to complete.  相似文献   

20.
Oligonucleotides containing 7-(omega-aminoalkyn-1-yl)-7-deaza-2'-deoxyguanosines (1a-c) were investigated regarding their thermal stability (T(m) values) as well as their phosphodiester hydrolysis catalyzed by exonucleases. Those derivatives are suitable for the labeling of nucleic acid constituents as well as for the postlabeling of DNA. For this, the phosphoramidites 7a,c (obtained from the nucleoside 1a,b), protected by an isobutyryl group at the 2-amino group and a phthaloyl residue at the side-chain amino function, were synthesized. Using compounds 7a,c together with the phosphoramidite of 1c in solid-phase synthesis, a series of self-complementary and non-self-complementary oligonucleotides were prepared and characterized by MALDI-TOF mass spectrometry. A comparison of the T(m) values of the modified oligomers shows that the thermal stability of the duplexes decreases with the length of the nucleobase 7-(omega-aminoalkyn-1-yl) side chain. Exonucleolytic cleavage of oligonucleotide single strands incorporating either the 7-(3-aminopropyn-1-yl)- or the 7-(4-aminobutyn-1-yl)-substituted nucleosides 1a or 1b, respectively, reveals that 3' --> 5' specific snake venom phosphodiesterase liberates 1a 5'-monophosphate but not the methylene-extended 1b 5'-monophosphate. On the contrary, the 5' --> 3' specific bovine spleen exonuclease is able to cleave off single 1a and 1b 3'-monophosphate residues; its action is, however, terminated in the case of oligonucleotides containing two consecutive 1a or 1b nucleotide units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号