首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phospholipid platelet-activating factor (PAF) is a potent cell-derived bioactive molecule thought to be involved in diverse inflammatory processes. It has been shown that PAF can activate different leukocyte types and platelets, particularly in synergy with other agonists. In this study we examined the effect of PAF upon the release of histamine and leukotriene (LT) C4 by basophils when added alone and in combination with different agonists and cytokines. PAF by itself did neither induce histamine release nor the generation of LTC4 by basophils. However, basophils primed by the hematopoietic growth factors (hGF) IL-3, granulocyte-macrophage (GM)-CSF, or IL-5 (10 ng/ml) released preformed and de novo synthesized mediators in response to PAF at 10 to 100 nM concentrations. The extent of mediator release by hGF primed basophils in response to PAF was similar to that induced by an optimal concentration of monoclonal anti-IgE. Thus, similar to NAP-1/IL-8 and C3a, PAF efficiently stimulates mediator release in hGF-primed basophils only. However, PAF was clearly a more potent trigger of LTC4 formation in IL-3-primed cells than NAP-1/IL-8 or C3a. When PAF was used as a second trigger, the priming effect of IL-5 was less than that of IL-3 or GM-CSF, whereas the response for other IgE-independent agonists (i.e., C5a or FMLP) was augmented equally by all three hGF. IL-1 beta-pretreated basophils released minimal amounts of histamine in response to PAF. Neither TNF-alpha nor PAF, nor the combination thereof, was able to induce basophil mediator release. The efficiency of the different cytokines to prime for PAF responsiveness was strikingly similar to their capacity to enhance anti-IgE-induced mediator release. Similar to other IgE-independent agonists, the kinetic of mediator release in response to PAF was very rapid. PAF pretreatment of basophils did not enhance mediator release in response to diverse agonists, such as C5a and FMLP, in contrast to the capacity of PAF to augment the response of other leukocyte types to appropriate stimuli. Thus, depending on the presence of IL-3, GM-CSF, or IL-5, PAF is a potent basophil agonist capable of inducing histamine release as well as de novo synthesis of LTC4.  相似文献   

2.
The high-affinity receptors for human granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin 3 (IL-3) and interleukin 5 (IL-5) are composed of two distinct subunits, alpha and beta c. The alpha subunits are specific for each cytokine, whereas the beta subunit (beta c) is shared by the three receptors and is an essential component of signal transduction. We have made a series of mutant beta c cDNAs that delete various regions of the cytoplasmic domain and examined the function of these mutants by coexpressing them with the alpha subunit of the human GM-CSF receptor (hGMR) in an IL-3-dependent mouse pro-B cell line BaF3. Two domains in the membrane-proximal portion of beta c were found to be important for transducing the hGM-CSF-mediated growth signals: one domain between Arg456 and Phe487 appears to be essential for proliferation, and the second domain between Val518 and Asp544 enhances the response to GM-CSF, but is not absolutely required for proliferation. The region between Val518 and Leu626 was responsible for major tyrosine phosphorylation of 95 and 60 kDa proteins. Thus, beta c-mediated major tyrosine phosphorylation of these proteins was apparently separated from proliferation. However, the beta 517 mutant lacking residues downstream of Val518 transmitted a herbimycin-sensitive proliferation signal, suggesting that beta 517 still activates a tyrosine kinase(s). We also evaluated the role of the cytoplasmic domain of the GMR alpha subunit and the results suggest that it is involved in the hGM-CSF-mediated signal transduction, but is not essential.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The signal transduction induced by thrombin in human platelets   总被引:6,自引:0,他引:6  
E G Lapetina 《FEBS letters》1990,268(2):400-404
The stimulation of human platelets by thrombin leads to the activation of phospholipases C and A2, protein kinases, formation of 3-inositol phospholipids and mobilization of Ca2+. These biochemical reactions closely parallel platelet shape change, granular secretion and aggregation. The membrane-bound transducers for the thrombin receptor seem to be the heterotrimeric G protein Gi2 and the ras-related G protein rap 1-b. Phosphorylation of rap 1-b by the action of the cyclic AMP-dependent protein kinase seems to uncouple the thrombin receptor from phospholipases. This causes inhibition of the formation of second messenger molecules and the onset of physiological responses.  相似文献   

4.
There is a substantial amount of information which has been obtained concerning the effects of growth factors on [Ca2+]i in proliferating cells. A number of different mitogens are known to induce elevations in [Ca2+]i and some characterization of the Ca2+ response to different classes of mitogens has been obtained. In addition, much is known about whether the Ca2+ response to a particular growth factor occurs as the result of an influx of external Ca2+ or a mobilization of internal Ca2+ stores. In addition, a considerable amount of information is available on the mechanism by which the Ins(1,4,5)P3-sensitive internal Ca2+ store takes up and releases Ca2+. However, there is still a large deficiency in our information concerning other Ca2+ stores in proliferating cells as well as in our knowledge of the mechanisms for regulating Ca2+ entry pathways. Much more data addressing these issues exists for other types of agonist-stimulated cells, and we have discussed much of it in this review article. While the wealth of data in nonproliferating cells provides some indications of what mechanisms might be involved in the growth factor-induced changes in [Ca2+]i, it is clear that much work must be done in proliferating cells to fully understand how external factors such as growth factors control [Ca2+]i. In addition, much work remains to be done in identifying the mechanisms for the internal control of [Ca2+]i as cells move through the cell cycle and in identifying the role that these changes in [Ca2+]i may play throughout the cell cycle.  相似文献   

5.
Engagement of cells with the extracellular matrix (ECM) proteins is crucial for various biological processes, including cell adhesion, spreading, proliferation, differentiation, migration, apoptosis, and gene induction, contributing to maintenance of tissue integrity, embryogenesis, wound healing, and the metastasis of tumor cells (Hynes, 2002b; Juliano, 2002). The engagement involves cell adhesion mediated by integrins, a large family of cell adhesion receptors that are transmembrane glycoproteins which bind to ECM or to counter-receptors on neighbor cells. In this review, the molecular basis of signaling mediated by integrins and their collaboration with growth factor receptors will be discussed, based on recent observations. Although other cell adhesion receptors including cadherins, selectins, syndecans, and the immunoglobulin superfamily of cell adhesion molecules (IgCAMs) can play important roles or be involved in these processes, we suggest readers refer to recent outstanding reviews on them (Barclay, 2003; Brummendorf and Lemmon 2001; Panicker et al. 2003).  相似文献   

6.
We have previously purified and partially characterized histamine releasing factors (HRF), which were derived from a mixture of human mononuclear cells and platelets. We now report the effect of IL-8 upon HRF-, connective tissue activating peptide III (CTAP III)-, and IL-3-induced histamine release from human basophils. We determined that IL-8 itself, at concentrations between 10(-7) to 10(-11) M, does not release histamine from basophils, although positive results are observed in two of 26 subjects at 10(-7) M. Unfractionated (crude) HRF released histamine in 25 of 26 donors, in the range of 6.7% to 100% of total basophil histamine stores. When basophils were preincubated with IL-8 (10(-7) to 10(-11) M) for 5 min, followed by a 40-min incubation with HRF, histamine release was significantly inhibited in 20 of 25 donors. Inhibition was observed at as little as 10(-11) M IL-8, with maximal inhibition being attained at 10(-9) M. HRF-containing supernatants contain a mixture of different histamine-releasing moieties. To better define which factor(s) may be inhibited by IL-8, fractionated supernatants, purified CTAP III, and IL-3 were studied. Histamine release produced by two different HRF-containing chromatographic fractions (HRFvoid and HRFpeak 2) and purified CTAP-III (5 micrograms/ml) was inhibited by IL-8 in 10 of 12 donors, three of three donors, and seven of 10 donors, respectively. IL-3 (5000 U/ml)-dependent histamine release was inhibited by IL-8 in all subjects tested. In contrast, histamine release by anti-IgE and FMLP was not affected by IL-8. Thus, IL-8 appears to be an inhibitor of cytokine-like molecules that induce histamine release and may represent the previously described 8-kDa histamine release inhibitory factor present in mononuclear cell supernatants.  相似文献   

7.
To approach the mechanisms whereby IL-2 activates human NK cells, we have compared the effects of IL-4 and of Bt2cAMP on this activation. Both agents block completely the proliferation induced by IL-2 on highly purified CD3-negative human NK cells. We also report that the net LAK response of PBL is inhibited by IL-4 and cAMP. However, kinetics analysis showed that IL-4 appears to inhibit an early stage of IL-2-induced activation of NK cells. IL-4 does not affect the cytotoxicity of freshly isolated NK cells against the K562 target and is ineffective on IL-2-preactivated cells. In contrast, cAMP primarily blocks the lytic effector phase, whether cells have been cultured in IL-2 or not, and its effect appears independent of time of addition. These differences between the activity of IL-4 and cAMP suggested that cAMP was not directly involved in IL-4 signal transduction in human NK cells. Consistent with this interpretation, we did not observe any variation in the level of intracellular cAMP concentrations when NK cells were stimulated with IL-4, or when they are stimulated with IL-2 or IL-2 plus IL-4. In addition, we also demonstrate that NK cell cytotoxic activation induced by IL-2 is still demonstrable in the presence of Bt2cAMP under conditions in which NK cell proliferation is blocked. These results clearly indicate that the differentiative effect of IL-2 on NK cells is independent of cell proliferation. Furthermore, the p70-75 IL-2R-initiated signal transduction pathway that leads to increased cytotoxicity appears not to be susceptible to inhibition by cAMP in human NK cells.  相似文献   

8.
In rodents, fibroblasts (FBs) mediate stem cell factor (SCF)-dependent growth of mast cells (MCs). In humans, SCF is mandatory for MC differentiation and survival. Other factors such as IL-3, IL-4, and nerve growth factor (NGF) act in synergism with SCF, thus enhancing proliferation and/or preventing apoptosis in MCs. In this study, we studied in vitro interactions between human MCs and human FBs, both isolated from the intestine and purified to homogeneity. In coculture with FBs, MCs survived for up to 3 wk, whereas purified MCs cultured alone died within a few days. TNF-alpha and IL-1beta, which both did not affect MC survival directly, enhanced FB-dependent MC growth. We provide evidence that FB-derived MC growth factors are soluble, heat-sensitive molecules which down-regulate MC apoptosis without enhancing MC proliferation. However, only low amounts of SCF were measured in FB-conditioned medium (<0.2 ng/ml). Moreover, blocking of SCF/c-kit interaction by anti-SCF or anti-c-kit Abs and neutralization of IL-3, IL-4, and NGF did not affect MC survival in the coculture system. In conclusion, our data indicate that human FBs promote survival of human MCs by mechanisms independent of SCF, IL-3, IL-4, and NGF. Such interactions between MCs and FBs may explain why MCs accumulate at sites of inflammatory bowel disease and intestinal fibrosis.  相似文献   

9.
Several lines of evidence now exist to suggest an interaction between the platelet-derived growth factor (PDGF) growth-stimulatory signal transduction pathway and the beta interferon (IFN-beta) growth-inhibitory signal transduction pathway. The most direct examples are inhibition of PDGF-mediated gene induction and mitogenesis by IFN-beta and the effects of activators and inhibitors of the IFN-inducible double-stranded RNA-dependent eIF2 kinase on expression of PDGF-inducible genes. To further investigate the nature of this PDGF/IFN-beta interaction, we selected BALB/c-3T3 cells for resistance to growth inhibition by IFN-beta and analyzed the phenotypes of resulting clonal lines (called IRB cells) with respect to PDGF signal transduction. Although selected only for IFN resistance, the IRB cells were found to be defective for induction of growth-related genes c-fos, c-myc and JE in response to PDGF. This block to signal transduction was not due to loss or inactivation of PDGF receptors, as immunoprecipitation of PDGF receptors with antiphosphotyrosine antibodies showed them to be present at equal levels in the BALB/c-3T3 and IRB cells and to be autophosphorylated normally in response to PDGF. Furthermore, treatment with other peptide growth factors (PDGF-AA, fibroblast growth factor, and epidermal growth factor) also failed to induce c-fos, c-myc, or JE expression in IRB cells. All of these growth factors, however, were able to induce another early growth-related gene, Egr-1. The block to signaling was not due to a defect in inositol phosphate metabolism, as PDGF treatment induced normal calcium mobilization and phosphotidylinositol-3-kinase activation in these cells. Activation of protein kinase C by phorbol esters did induce c-fos, c-myc, and JE in IRB cells, indicating that signalling pathways distal to this enzyme remained intact. We have previously shown that IFN-inducible enzyme activities, including double-stranded RNA-dependent eIF2 kinase and 2',5'-oligoadenylate synthetase, are normal in IRB cells. The finding that the induction of multiple growth-related genes by several independent growth factors is inhibited in these IFN-resistant cells suggests that there is a second messenger common to both growth factor and IFN signaling pathways and that this messenger is defective in these cells.  相似文献   

10.
There is a large body of evidence supporting a role for GTP-binding proteins in signal transduction by growth factors. In certain cells, ligands which activate or inhibit the production of cAMP via heterotrimeric G proteins promote replication of the target cell. These mechanisms play an important role in a limited number of tumours. Ligands which activate PI hydrolysis through heterotrimeric G proteins may also promote growth in certain systems, but the precise role for PI hydrolysis remains to be determined. Receptors with intrinsic tyrosine kinases may also interact with the heterotrimeric G proteins, but it is not known if these interactions represent side reactions, or whether they are central in the responses of certain cell types. Lastly, p21ras and other small molecular weight G proteins appear to be profoundly important in growth control. The tyrosine kinase growth factor receptors may interact indirectly with these GTP binding proteins via GAP proteins. The molecular detail of this process is emerging rapidly and is likely to be worked out in the near future.  相似文献   

11.
12.
13.
Cytokines are key to control cellular communication. Interleukin-31 (IL-31) was recently discovered as a new member of the IL-6 family of cytokines. IL-31 signals through a heterodimeric receptor composed of OSMR and IL-31RA, a complex that stimulates the JAK-STAT, the RAS/ERK and the PI3K/AKT signal transduction pathways. The available data suggests that IL-31 is important for both innate and adaptive immunity in tissues that are in close contact with the environment, i.e. the skin, the airways and the lung, and the lining of the intestine. Enhanced expression of IL-31 is associated with a number of diseases, including pruritic diseases such as atopic dermatitis, but also in allergy and inflammatory bowel disease. In these tissues IL-31 coordinates the interaction of different immune cells, including T-cells, mast cells, and eosinophils, with epithelial cells. In this review we have summarized the available data on IL-31 and its receptor, their expression pattern and how they are regulated. We describe the current state of knowledge of the involvement of IL-31 in diseases, both in humans and in mouse models. From these studies it is becoming clear that IL-31 plays an important role in the proper functioning of the skin and of airway and intestinal epithelia. The findings available suggest that IL-31 might be an interesting target for directed drug therapy.  相似文献   

14.
Interleukin-5 (IL-5) regulates the production and function of B cells, eosinophils, and basophils. The IL-5 receptor (IL-5R) consists of two distinct membrane proteins, alpha and beta. The alpha chain (IL-5R alpha) is specific to IL-5. The beta chain is the common beta chain (beta c) of receptors for IL-3 and granulocyte-macrophage colony-stimulating factor (GM-CSF). The cytoplasmic domains of both alpha and beta chains are essential for signal transduction. In this study, we generated cDNAs of IL-5R alpha having various mutations in their cytoplasmic domains and examined the function of these mutants by expressing them in IL-3-dependent FDC-P1 cells. The membrane-proximal proline-rich sequence of the cytoplasmic domain of IL-5R alpha, which is conserved among the alpha chains of IL-5R, IL-3R, and GM-CSF receptor (GM-CSFR), was found to be essential for the IL-5-induced proliferative response, expression of nuclear proto-oncogenes such as c-jun, c-fos, and c-myc, and tyrosine phosphorylation of cellular proteins including JAK2 protein-tyrosine kinase. In addition, analysis using chimeric receptors which consist of the extracellular domain of IL-5R alpha and the cytoplasmic domain of beta c suggested that dimerization of the cytoplasmic domain of beta c may be an important step in activating the IL-5R complex and transducing intracellular growth signals.  相似文献   

15.
The pronounced synovial hyperplasia often found in the joints of patients with rheumatoid arthritis could be explained partially by the action of monocyte-macrophage polypeptides (monokines). This report demonstrates that two cytokines which may be derived from monocyte-macrophage populations, namely platelet-derived growth factor (PDGF) and basic fibroblast growth factor (bFGF), stimulate the DNA synthesis and proliferation of human synovial fibroblast-like cells cultured in low (i.e., 1%) fetal bovine serum. Epidermal growth factor, insulin-like growth factor-I, insulin-like growth factor-II (multiplication stimulating activity) and substance P were inactive. Unlike IL-1, PDGF and FGF do not also stimulate PGE2, plasminogen activator, and hyaluronic acid levels. Thus PDGF and FGF, arising from stimulated monocyte-macrophages, may play a role in the stimulation of mesenchymal cell proliferation that often accompanies chronic inflammatory arthritic disease. The synovial cells respond to a variety of cytokines in different ways suggesting multiple-signaling pathways.  相似文献   

16.
The Eph family tyrosine kinase receptors and their ligands, ephrins, play key roles in a wide variety of physiological and pathological processes including tissue patterning, angiogenesis, bone development, carcinogenesis, axon guidance, and neural plasticity. However, the signaling mechanisms underlying these diverse functions of Eph receptors have not been well understood. In this study, effects of Eph receptor activation on several important signal transduction pathways are examined. In addition, the roles of these pathways in ephrin-A5-induced growth cone collapse were assessed with a combination of biochemical analyses, pharmacological inhibition, and overexpression of dominant-negative and constitutively active mutants. These analyses showed that ephrin-A5 inhibits Erk activity but activates c-Jun N-terminal kinase. However, regulation of these two pathways is not required for ephrin-A5-induced growth cone collapse in hippocampal neurons. Artificial Erk activation by expression of constitutively active Mek1 and B-Raf failed to block ephrin-A5 effects on growth cones, and inhibitors of the Erk pathway also failed to inhibit collapse by ephrin-A5. Inhibition of JNK had no effects on ephrin-A5-induced growth cone collapse either. In addition, inhibitors to PKA and PI3-K showed no effects on ephrin-A5-induced growth cone collapse. However, pharmacological blockade of phosphotyrosine phosphatase activity, the Src family kinases, cGMP-dependent protein kinase, and myosin light chain kinase significantly inhibited ephrin-A5-induced growth cone collapse. These observations indicate that only a subset of signal transduction pathways is required for ephrin-A5-induced growth cone collapse.  相似文献   

17.
Cytokines mediate the transduction of proliferative, differentiation and survival signals in the hematopoietic system. Although the cytokine family is large and diverse, many different cytokines display broadly overlapping functions. This can be explained by the fact that cytokine receptors often share multiple subunits. Specificity in signal transduction can however be achieved through several mechanisms. This review focuses on how signal specificity can be achieved within the IL-3, IL-5 and GM-CSF receptor family. This is discussed in terms of receptor expression, recent advances in our understanding of intracellular signalling components, and analysis of null mutant knock-out mice.  相似文献   

18.
Platelet-activating factor (PAF) is a lipid mediator able to induce a variety of inflammatory processes in human peripheral blood cells. We have investigated the effect of PAF on the release of chemical mediators from human basophils of allergic and normal donors. PAF (10 nM to 1 microM) caused a concentration-dependent, noncytotoxic histamine release (greater than or equal to 10% of total) in 27 of 44 subjects tested (24 atopic and 20 nonatopic donors). The release process was either very rapid (t1/2 approximately equal to 10 s) or quite slow (t 1/2 approximately equal to 10 min), temperature- and Ca2(+)-dependent (optimal at 37 degrees C and 5 mM Ca2+). Coincubation of PAF with cytochalasin B (5 micrograms/ml) enhanced the release of histamine induced by PAF and activated the release process in most donors (42 of 44). Atopics did not release significantly more histamine than normal subjects, and the percentage of PAF responders (greater than or equal to 10% of total) was nearly the same in the two groups. Histamine release was accompanied by the synthesis and release of leukotriene C4, although this lagged 1 to 2 min behind histamine secretion. Lyso-PAF (100 nM to 10 microM), alone or together with cytochalasin B, did not release significant amounts of histamine. The release of histamine activated by PAF was inhibited by the specific PAF receptor antagonist, L-652,731, with an IC50 of 0.4 microM. There was a partial desensitization to PAF when the cells were preincubated with PAF (100 nM to 1 microM) for 2 min in the absence of Ca2+, whereas the cells remained responsive to anti-IgE (0.1 micrograms/ml). If neutrophils were removed from the basophil preparation by a Percoll gradient or a countercurrent elutriation technique, there was a significant decrease in PAF-induced histamine release. PAF (1 microM) was able to induce a very rapid, transient rise (peak less than 10 s) in [Ca2+]i in purified basophils analyzed by digital video microscopy. Finally, among human histamine-containing cells, the basophils are unique in degranulating following a PAF challenge. Mast cells from human lung, skin, or uterus failed to respond to PAF (10 nM to 1 microM) regardless of the presence or absence of cytochalasin B (5 micrograms/ml). Our results demonstrate that PAF is able to induce the release of inflammatory mediators from human basophils, and that neutrophils can influence this response. It is suggested that PAF-induced basophil activation can play a role in the pathogenesis of allergic disorders.  相似文献   

19.
Structure of actin paracrystals induced by nerve growth factor   总被引:2,自引:0,他引:2  
When nerve growth factor is added to F-actin, well-ordered bundles of filaments are formed. These bundles are observed even at low concentrations of NGF21, but when N-bromosuccinimide-treated NGF, a biologically inactive form of the protein is used, a much higher concentration is required to produce aggregation. Moreover, the bundles induced by the modified NGF are not very well ordered and show amorphous aggregates attached at various points.Electron microscopy of paracrystals induced by native NGF shows that, although they resemble pure actin paracrystals induced by Mg2+, the interfilament spacing is larger and bridges connect the filaments. Optical diffraction patterns show, in addition to the off-meridional reflections characteristic of the actin helix, meridional reflections on the first and fourth layer-lines, at axial spacings of 37 and 9 nm. Measurements of the axial positions of the layer-lines show that the actin helical symmetry is not significantly different from that in pure actin paracrystals. The presence of the meridional reflections indicates that groups of two or three bridges with spacing 9 nm or nearly 9 nm are arranged along the bundles at a repeating interval of 37 nm.Actin filament bundles have been observed in several non-muscle cells, and specific actin-binding proteins have been identified as responsible for this aggregation. Our in vitro observations show that the biologically active form of NGF interacts with actin and organizes it into well-ordered paracrystalline arrays. The in vitro formation of NGF-actin complexes may be related to the in vivo mechanism of action of this growth factor.  相似文献   

20.
Ceramide has emerged as a pleiotropic signal mediator of cellular responses including differentiation, proliferation, cell cycle arrest and apoptosis. In the present study we evaluated the effect of cell permeant ceramide analogues on ligand-induced tyrosine phosphorylation of the EGF receptor (EGFR), phospholipase Cy (PLCgamma) activity and cell proliferation. Treatment with N-acetylsphingosine (C2-cer) and N-hexanoylceramide (C6-cer) prevented EGF-induced tyrosine trans-phosphorylation of the receptor in two different cell lines overexpressing the human EGFR (A431 and EGF-T17 cells). In contrast, treatment of A431 and EGFR-T17 cells with C2-cer or C6-cer did not affect the ligand binding capacity of the receptor, an effect that was however observed after TPA-induced activation of PKC. In addition EGF-stimulated PLCgamma activity was transiently decreased in A431 cells treated with C6-cer and only a modest, albeit significant reduction on ligand-induced 3H-InsP3 generation was observed in EGFR-T17 cells pretreated with ceramide. We also examined the effect of C2-cer on serum (A431)- or EGF (EGFR-T 17)-induced cell proliferation. Treatment of EGFR-TI7 cells with C2-cer (0.1-10 microM) did not affect cell viability, but prevented EGF-induced 3H-thymidine incorporation in a dose-dependent manner. In contrast, 3H-thymidine incorporation in serum-stimulated A431 cells decreased only at the higher doses of C2-cer used (1-10 microM), being this effect accompanied by a slight, albeit significant (20-25%), reduction in cell viability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号