首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Basal and calcium ionophore (CaI)-influenced production of prostaglandins (PGs) by corpora lutea (CL) destined to be normal or short-lived were compared. Ovulation was induced in 24 lactating beef cows with human chorionic gonadotropin (hCG, 1000 IU) administered between 35 and 40 days postpartum. Ten cows received norgestomet implants for 9 days prior to induced ovulation (Normal CL) and 14 served as untreated controls (Subnormal CL). Five cows in each treatment were unilaterally ovariectomized on Day 6 (Day 0 = day of hCG administration) and CL were collected. Blood samples were collected daily through-out the experimental period from cows not ovariectomized. Plasma progesterone (P4) in ovary-intact animals indicated that short-lived CL were induced in 8/8 cows not pretreated with norgestomet, and normal luteal lifespan was observed in 4/5 implanted cows. Dispersed luteal cells were incubated for 8 h with 0, 0.05, 0.5, or 5 microM CaI (A23187). Incubation media were analyzed for P4, PGF2 alpha, 6-keto-PGF1 alpha (PGI), and PGE2. The weight, cell number, and basal or CaI-influenced production of P4 did not differ between Normal CL and Subnormal CL. Basal production of PGF2 alpha, PGI, and PGE2 was higher in Subnormal CL than in Normal CL (p less than 0.05). In response to 0.05 microM CaI, PGF2 alpha was stimulated in Subnormal CL (p less than 0.01), while PGI (p less than 0.05) and PGE2 (p less than 0.1) were increased in Normal CL. Production of PGs was reduced by 5 microM CaI in Subnormal CL (p less than 0.01), but not in Normal CL.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Prostaglandins (PGs) are produced by the corpus luteum (CL) of many domestic and laboratory species and may play a role in CL regulation. The production of PGs by luteal tissue of the rhesus monkey has yet to be clearly elucidated. The production of PGE2, PGF2 alpha, and 6-keto-PGF1 alpha by CL from rhesus monkeys and the incubation conditions (time and cell number) that permit assessment of their synthesis were examined. CL (n = 3 per characterization) were surgically removed from nonpregnant monkeys during the mid-luteal phase of the menstrual cycle (approximately 8-10 days after ovulation). Luteal tissue was dissociated and the cells were incubated at varying concentrations for increasing periods of time at 37 degrees C. Subsequent to defining incubation conditions, various exogenous factors were examined for their potential to modify PG production. Indomethacin, calcium ionophore, human chorionic gonadotropin (hCG), estradiol-17 beta (E2), progesterone (P), testosterone (T), dihydrotestosterone (DHT), and 1-4-6 androstatriene-3, 17-dione (ATD) were incubated with luteal cells in increasing doses. PG and P concentrations in the medium were determined by radioimmunoassay. PGs in the medium after 6 h incubation were detectable at all cell concentrations tested (50,000, 100,000, 200,000 cells/tube). Concentrations of PGs and P increased with cell number (p less than 0.05). Luteal cells (50,000 cells/tube) were incubated for times of 0-24 h. Concentrations of P, PGE2, and PGF2 alpha in the medium were relatively low prior to incubation (0 h), increased (p less than 0.05) linearly within the first 6-12 h, and plateaued through the remaining 24 h.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
A luteotropic role for prostaglandins (PGs) during the luteal phase of the menstrual cycle of rhesus monkeys was suggested by the observation that intraluteal infusion of a PG synthesis inhibitor caused premature luteolysis. This study was designed to identify PGs that promote luteal function in primates. First, the effects of various PGs on progesterone (P) production by macaque luteal cells were examined in vitro. Collagenase-dispersed luteal cells from midluteal phase of the menstrual cycle (Day 6-7 after the estimated surge of LH, n = 3) were incubated with 0-5,000 ng/ml PGE2, PGD, 6 beta PGI1 (a stable analogue of PGI2), PGA2, or PGF2 alpha alone or with hCG (100 ng/ml). PGE2, PGD2, and 6 beta PGI1 alone stimulated (p less than 0.05) P production to a similar extent (2- to 3-fold over basal) as hCG alone, whereas PGA2 and PGF2 alpha alone had no effect on P production. Stimulation (p less than 0.05) of P synthesis by PGE2, PGD2, and 6 beta PGI1 in combination with hCG was similar to that of hCG alone. Whereas PGA2 inhibited gonadotropin-induced P production (p less than 0.05), that in the presence of PGF2 alpha plus hCG tended (p = 0.05) to remain elevated. Second, the effects of various PGs on P production during chronic infusion into the CL were studied in vivo. Saline with or without 0.1% BSA (n = 12), PGE2 (300 ng/h; n = 4), PGD2 (300 ng/h; n = 4), 6 beta PGI1 (500 ng/h; n = 3), PGA2 (300 ng/h; n = 4), or PGF2 alpha (10 ng/h; n = 8) was infused via osmotic minipump beginning at midluteal phase (Days 5-8 after the estimated LH surge) until menses. In addition, the same dose of PGE, PGD, PGI, or PGA was infused in combination with PGF2 alpha (n = 3-4/group) for 7 days. P levels over 5 days preceding treatment were not different among groups. In 5 of 8 monkeys receiving PGF2 alpha alone, P declined to less than 0.5 ng/ml within 72 h after initiation of infusion and was lower (p less than 0.05) than controls. The length of the luteal phase in PGF2 alpha-infused monkeys was shortened (12.3 +/- 0.9 days; mean +/- SEM, n = 8; p less than 0.05) compared to controls (15.8 +/- 0.5). Intraluteal infusion of PGE, PGD, PGI, or PGA alone did not affect patterns of circulating P or luteal phase length.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Stimulation of the primate corpus luteum (CL) by endogenous chorionic gonadotropin (CG) in early pregnancy, or by exogenous human (h)CG in simulated early pregnancy, results in a transient elevation of serum progesterone (P) and a persistent elevation of serum 17 beta-estradiol (E). Luteal prostaglandins (PG) may play a role in these responses. The objective of the current study was to correlate luteal PG production and steroidogenic response of CL in vitro with patterns of serum steroids during simulated early pregnancy. CL were removed from rhesus monkeys (n = 26) at 0 h, 9 h, 3 days, 6 days, and 10 days, during prolonged CG exposure of simulated early pregnancy. Dispersed cells were incubated in vitro at 37 degrees C for 8 h. Changes in basal production of P were not significantly correlated with patterns of serum steroids. Maximal stimulation of P production by hCG in vitro (stimulated minus basal) continuously declined (p less than 0.01) from 0 h (means +/- SE, 59.6 +/- 17.9 ng/ml) to 10 days (4.7 +/- 1.8 ng/ml) of simulated early pregnancy. In contrast to patterns of response to hCG, the level of enhancement in P production in response to a maximally stimulatory dose of dibutyryl (db) cyclic adenosine 3',5'-monophosphate (cAMP) declined (p less than 0.05) from 0 h (52.4 +/- 17.6 ng/ml) to 3 days (20.3 +/- 8.4 ng/ml), but was maintained through 10 days (23.7 +/- 11.6 ng/ml) of simulated early pregnancy. As such, desensitization to gonadotropin, which occurred in terms of P production, appears to involve an event subsequent to stimulation of adenylate cyclase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Small (less than or equal to 15 microns diameter) and large (greater than 20 microns diam.) luteal cells of the rhesus monkey have been separated by flow cytometry based on light scatter properties. To determine whether the steroidogenic ability and agonist responsiveness of luteal cell subpopulations vary during the life span of the corpus luteum, small and large cells were obtained at early (Days 3-5), mid (Days 7-8), mid-late (Days 11-12), and late (Days 14-15) luteal phase of the cycle. Cells (n = 4 exp./group) were incubated in Ham's F-10 medium + 0.1% BSA for 3 h at 37 degrees C with or without hCG (100 ng/ml), prostaglandin E2 (PGE2; 14 microM), dibutyryl-cAMP (db-cAMP; 5 mM), or pregnenolone (1 microM). Basal progesterone (P) production by large cells was up to 30-fold that by small cells depending on the stage of the cycle. HCG stimulated (p less than 0.05) P secretion by both small (1.8 +/- 0.2-fold) and large (3.7 +/- 0.7-fold) cells in the early luteal phase. HCG responsiveness declined during the luteal lifespan; P production by small cells was not significantly enhanced by hCG by mid luteal phase, whereas that by large cells was stimulated 1.7 +/- 0.2-fold (p less than 0.05) even at late luteal phase. Cell responses to db-cAMP were similar to those for hCG.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
To determine if catecholamines were present in bovine luteal tissue, corpora lutea (CL) were obtained during the mid-luteal phase (Days 10-12) and the concentration of dopamine (DA) and norepinephrine (NE) was determined by high-performance liquid chromatography. Both DA and NE were detected in luteal tissue at mean concentrations of 41.9 +/- 5.73 and 10.2 +/- 2.51 ng/g for DA and NE, respectively. These concentrations represented a luteal content of 306.6 +/- 66.88 ng/CL for DA and 70.5 +/- 16.88 ng/CL for NE. In vitro, DA at concentrations of 1.0 mM to 0.01 mM stimulated the production of progesterone (P4, p less than 0.05). The response to DA was inhibited by propranolol (a beta-adrenergic receptor antagonist, p less than 0.05) but not by phentolamine, phenoxybenzamine (alpha-adrenergic receptor antagonists), or haloperidol (a DA receptor antagonist, p greater than 0.05). Neither L-tyrosine nor L-dopa altered P4 production (p greater than 0.05). Inhibition of DA beta-hydroxylase, the enzyme that catalyzes the conversion of DA to NE by FLA-63 blocked the DA-induced increases in luteal P4 production (p less than 0.05). These results demonstrate the existence of DA and NE in bovine luteal tissue and indicate that exogenous DA can be converted to NE in luteal tissue. The results support a physiological role for catecholamines in the stimulation of bovine luteal function.  相似文献   

7.
Peripheral concentrations of immunoreactive relaxin are undetectable in primates during the nonfertile menstrual cycle, but become measurable during the interval when chorionic gonadotropin (CG) rises in early pregnancy. The objectives of the current study were to determine if exogenous CG, administered in a dosage regimen which invoked patterns and concentrations resembling those of early pregnancy, would induce relaxin secretion in nonpregnant rhesus monkeys, and whether the induction was dependent on the age of the corpus luteum (CL) at the onset of treatment. Female rhesus monkeys received twice-daily i.m. injections of increasing doses of human CG (hCG) for 10 days beginning in the early (n = 4), mid (n = 6) or late (n = 4) luteal phase of the menstrual cycle [5.3 +/- 0.3, 8.3 +/- 0.5, and 12.0 +/- 0.4 days after the midcycle luteinizing hormone (LH) surge, respectively; means +/- SEM]. Whereas immunoreactive relaxin was nondetectable in the luteal phase of posttreatment cycles, detectable levels of relaxin were observed in 2 of 4, 5 of 6, and 3 of 4 monkeys during hCG treatment in the early, mid and late luteal phase, respectively. Although CG treatment rapidly enhance progesterone levels, the appearance of relaxin was deferred; relaxin was first detectable 9.0 +/- 1.0 and 4.7 +/- 1.9 days after the onset of CG treatment at early and late luteal phases. Patterns of relaxin concentrations differed among groups (P less than 0.05, ANOVA; split plot design) and relaxin levels were lowest (P less than 0.01) in monkeys treated during the early luteal phase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The role of the phosphatidylinositol second messenger system in luteal regulation has not been extensively studied, particularly in the primate. The objectives of this study were (1) to further characterize the response of the primate CL to the calcium ionophore A23187, in terms of intracellular free calcium concentrations ([Ca2+]i) and progesterone (P) production; and (2) to assess the effects of depleting, as well as elevating, available calcium on luteal P and prostaglandin (PG) production. The response to A23187, in terms of [Ca2+]i, was measured by fura-2 fluorescence microscopy of single small and large luteal cells. A23187 significantly increased [Ca2+]i in both cell types (p less than 0.01). P production (basal and hCG-stimulated) by dispersed primate luteal cells incubated for various times (1-8 h) with and without A23187 was measured. Treatment with A23187 rapidly (within 1-2 h) attenuated (p less than 0.05) the time-dependent increase in basal and hCG-stimulated P production. Luteal P and PG production following treatment with the calcium ionophore, ionomycin, alone or in combination with additional CaCl2, was also monitored. Treatment with ionomycin (p less than 0.01) and CaCl2 (p less than 0.01) inhibited luteal P production. In contrast, treatment with ionomycin stimulated (p less than 0.01) luteal PG production. To determine the effects of Ca2+ depletion on luteal function, P and PG production by cells incubated for 2 and 8 h in the absence and presence of the Ca(2+)-chelator EGTA was measured. Luteal production of both P and PG was inhibited by 8-h treatment with EGTA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Prostaglandin F2alpha (PGF2alpha) is a major physiological luteolysin in the cow. However, injection of PGF2alpha before day 5 (day 0 = estrus) of the estrous cycle dose not induce luteolysis. On the other hand, the early corpus luteum (CL) actively produces PGF2alpha. This indicates that luteal PGF2alpha may play a key role in the refractoriness to PGF2alpha injected during the early luteal phase when angiogenesis is active in the CL. Thus, this study aimed to investigate the possible interaction between pituitary hormones and local factors (luteal peptides) on secretion of PGF2alpha and progesterone (P) by the early bovine CL, and to evaluate the effect of growth hormone (GH) as well as its interactions on production of PGF2alpha in the developing CL. A RT-PCR analysis revealed that mRNA for GH receptor in CL was fully expressed from early in the luteal phase throughout the estrous cycle, while luteinizing hormone (LH) receptor mRNA was expressed less by the early and regressing CL than those at mid or late luteal phases (P < 0.05). For the stimulation test, an in vitro microdialysis system (MDS) was used as a model. Each bovine early CL (days 3-4) was implanted with the MDS, and maintained in an organ culture chamber. The infusion of GH, insulin-like growth factor-I (IGF-I) and oxytocin (OT) increased (P < 0.05) PGF2alpha and P release. In contrast, LH had no effect (P > 0.05) on PGF2alpha secretion and little effect on P release. Unexpectedly, there was no distinct interaction between pituitary hormones and luteal peptides on secretion of PGF2alpha and P. These results indicate that GH is a more powerful stimulator of PGF2alpha and P production in the early bovine CL than LH and suggest that GH and luteal peptides, IGF-1 and OT, contribute to maintenance of elevated PGF2alpha production in the developing bovine CL.  相似文献   

10.
Prostaglandin F2alpha (PGF2alpha) is a major physiological luteolysin in the cow. However, injection of PGF2alpha before day 5 (day 0 = estrus) of the estrous cycle dose not induce luteolysis. On the other hand, the early corpus luteum (CL) actively produces PGF2alpha. This indicates that luteal PGF2alpha may play a key role in the refractoriness to PGF2alpha injected during the early luteal phase when angiogenesis is active in the CL. Thus, this study aimed to investigate the possible interaction between pituitary hormones and local factors (luteal peptides) on secretion of PGF2alpha and progesterone (P) by the early bovine CL, and to evaluate the effect of growth hormone (GH) as well as its interactions on production of PGF2alpha in the developing CL. A RT-PCR analysis revealed that mRNA for GH receptor in CL was fully expressed from early in the luteal phase throughout the estrous cycle, while luteinizing hormone (LH) receptor mRNA was expressed less by the early and regressing CL than those at mid or late luteal phases (P < 0.05). For the stimulation test, an in vitro microdialysis system (MDS) was used as a model. Each bovine early CL (days 3-4) was implanted with the MDS, and maintained in an organ culture chamber. The infusion of GH, insulin-like growth factor-1 (IGF-1) and oxytocin (OT) increased (P < 0.05) PGF2alpha and P release. In contrast, LH had no effect (P > 0.05) on PGF2alpha secretion and little effect on P release. Unexpectedly, there was no distinct interaction between pituitary hormones and luteal peptides on secretion of PGF2alpha and P. These results indicate that GH is a more powerful stimulator of PGF2alpha and P production in the early bovine CL than LH and suggest that GH and luteal peptides, IGF-1 and OT, contribute to maintenance of elevated PGF2alpha production in the developing bovine CL.  相似文献   

11.
We have characterized the degree of asymmetry of ovarian steroid secretion in the luteal phase of the menstrual cycle in rhesus and cynomolgus monkeys. Femoral blood levels of FSH, LH, progesterone, estradiol and 17-hydroxyprogesterone were determined. In addition, laparotomies were performed in the early, mid or late luteal phase to facilitate localization of the corpus luteum and collection of ovarian venous blood. We conclude that: 1) the ovary bearing the active corpus luteum contributes virtually all of the progesterone entering peripheral circulation in the luteal phase; 2) the ipsilateral ovary secretes more 17-hydroxyprogesterone than the contralateral one, although both are active in the luteal phase; and 3) the asymmetrical secretion of estradiol was manifest only in the early and mid-luteal phase, with ovarian symmetry being reestablished in the late luteal phase.  相似文献   

12.
13.
Anti-oxidative enzymes play a role in protecting cells from oxidative stress-induced cell death. The present study was conducted to evaluate whether the anti-oxidant and pro-oxidant enzymatic capacities of the sheep corpus luteum (CL) are correlated with steroidogenic and structural status of the gland during the estrous cycle. Steroidogenic activity, apoptosis and superoxide dismutase (SOD1 and SOD2), nitric oxide synthase (NOS), glutathione peroxidase (GPX), glutathione reductase (GSR) and glutathione S-transferase (GST) activities were determined in the CL at specific developmental stages of the luteal phase. The intensity of apoptotic DNA fragmentation, characteristic of physiological cell death, was much greater in CL at late luteal phase than at early and mid-luteal phase, concomitantly with the diminution in the plasma progesterone concentrations from mid-to late luteal phase. SOD1 and GPX activities increased from early to mid-luteal phase, and increased further at late luteal phase. SOD2 and GST activities were not different between early and mid-luteal phase, but increased at late luteal phase. GSR activity was not different between any luteal phase examined. NOS activity decreased from early to mid- and late luteal phase. These results show that the activities of SOD1, SOD2, NOS, GPX, GSR and GST in the sheep CL are subject to major changes during the estrous cycle, and that the anti-oxidant and pro-oxidant enzymatic capacities of luteal cells are not correlated with cell steroidogenic status and integrity during the late luteal phase.  相似文献   

14.
In an attempt to justify use of trypsin to achieve more thorough dispersion of luteal cell clumps in vitro, progesterone (P) production by collagenase dispersed monkey luteal cells from the mid-luteal phase corpus luteum (CL) was examined in vitro either after 10 min, or continuous (3h) exposure to trypsin (TR). In the first experiment, cells were pre-incubated in TR, then incubated at 37 degrees C for 3h with human chorionic gonadotropin (hCG) after the addition of soybean-trypsin inhibitor (STI). Pre-incubation of luteal cells with TR had no effect on the level of P production under basal conditions. Cells that were preincubated with TR responded to hCG stimulation with increased progesterone secretion (P less than 0.01) in a fashion similar to untreated cells. P production in response to hCG was independent of TR concentration over the range of 0.05% to 0.2% during the pre-incubation period. However, continuous exposure (3h) of cells to TR significantly depressed (P less than 0.01) basal P secretion and inhibited the response to hCG. We conclude that TR had no effect on the biopotency of hCG per se, but probably the over-exposure to TR had an adverse effect on the LH/hCG receptors. Addition of STI after a 10 min pre-incubation with TR, prevented these deliterious effects, thereby permitting the use of TR to improve the completeness of luteal cell dissociation.  相似文献   

15.
Prostaglandins (PGs) of luteal origin may have paracrine and/or autocrine actions on the functions of the corpus luteum (CL). Previously, we have shown that enzymes of PG synthesis pathway such as prostaglandin E synthase (mPGES-1), prostaglandin F synthase (PGFS) and prostaglandin 9-ketoreductase (CBR1) are important in regulation of PG production in the conceptuses and endometrium of cyclic and pregnant pigs. Therefore, localization and expression patterns of these enzymes were determinated in porcine CL. The PGFS protein content was lower in metestrus and higher around luteolysis, and then decreased in late regressing CL. PGFS protein levels were lower on days 5-8 of pregnancy and did not differ between days 10 and 25. Elevated expression of mPGES-1 mRNA was found in early luteal phase. The mPGES-1 protein content, similarly to PGFS, was higher during luteolysis. mPGES-1 mRNA and protein levels were constant between days 5 and 25 of pregnancy. PGFS and mPGES-1 expression was down-regulated on days 16-17 of the oestrous cycle when compared to the corresponding days of pregnancy. Enhanced mPGES-1/PGFS ratio occurred during early luteal phase and days 5-8 of pregnancy. Expression of CBR1 mRNA and protein was constant during the cycle and pregnancy. Our studies revealed higher mPGES-1/PGFS ratios in the CL during early luteal phase and corresponding days of pregnancy that could favor PGE(2) synthesis and may be important in the control of luteal development. However, PG synthesis in the endometrium/conceptus rather than in the CL could be involved in luteolysis and maternal recognition of pregnancy in pigs.  相似文献   

16.
This study examined the affinities and concentrations of prostaglandin E (PGE) receptors on porcine luteal cells during the estrous cycle and early pregnancy. Corpora lutea (CL) were obtained from nonpregnant gilts at days 9 (n = 4), 12 (n = 3), and 14 (n = 6); three gilts possessed red, vascular CL and three gilts had white nonvascular CL) of the estrous cycle, and days 9 (n = 4), 12 (n = 3), 14 (n = 5), and 30 (n = 5) of pregnancy. The CL were dissociated enzymatically to disperse single cells and the red blood cells were removed by elutriation. The luteal cells were assayed for specific PGE binding by displacement analysis with use of [3H] PGE2 and varying concentrations of unlabeled PGE2. The specific binding of [3H] PGE2 to luteal cells decreased (p < 0.05) from days 9 to 14 of the estrous cycle, but only decreased (p < 0.05) from days 9 to 12 of pregnancy. Specific binding was higher (p < 0.05) on day 14 of pregnancy than the comparable stage of the estrous cycle. The affinities of PGE receptors decreased (p < 0.05) only on the luteal cells dissociated from red, vascular CL of day 14 nonpregnant gilts compared with those of other days of the estrous cycle and pregnancy. The number of PGE receptors on porcine luteal cells was similar (p > 0.05) in pregnant and nonpregnant gilts, but decreased (p < 0.05) on days 12-14 postestrus. During early pregnancy, it was evident that high affinity PGE receptors are sustained on porcine luteal cells; however, the role of the PGE receptors in maternal recognition of pregnancy remains speculative.  相似文献   

17.
Five normally ovulating women were induced to superovulate with pulsatile 'pure' FSH (28 i.u. every 3 h by a s.c. pump), and another 5 women were given an i.m. injection of 10 mg oestradiol benzoate in the late follicular phase. Serum oestradiol concentrations in the luteal phase were similar in both groups and significantly higher than in corresponding control cycles. The luteal phase was of shorter duration in the FSH (11.2 +/- 0.7 days) than in the control (13.4 +/- 0.2 days) and the oestrogen-treatment cycles (13.4 +/- 0.7 days) (P less than 0.05, mean +/- s.e.m.). FSH cycles had significantly lower early luteal serum LH (Day 1: 5.3 +/- 1.5 mi.u./ml) and mid-luteal serum progesterone values (35.4 +/- 3.5 nmol/l) compared with the control (27.8 +/- 5.8 mi.u./ml and 65.4 +/- 5.7 nmol/l, respectively) and oestrogen treatment cycles (25.3 +/- 8.3 mi.u./ml and 59.1 +/- 8.4 nmol/l, respectively) (P less than 0.05, mean +/- s.e.m.). These results suggest that, in hyperstimulated cycles, the luteal phase can be disrupted even without follicle aspiration, and that suppression of endogenous LH secretion may be responsible.  相似文献   

18.
We determined the serum levels of deoxycorticosterone (DOC) in plasma of six healthy, apparently ovulatory women during the mid-follicular and mid-luteal phases of their ovarian cycles; and we evaluated the effect of dexamethasone (1 mg by mouth) on the concentrations of DOC and cortisol in serum at times when plasma progesterone levels were high or low. The serum levels of DOC, unlike those of cortisol, did not vary significantly in single blood samples obtained in the morning (8-10 a.m.) and afternoon (3-5 p.m.); and serum DOC levels in women were significantly higher (P less than 0.05) during the mid-luteal phase than during the mid-follicular phase of the cycle. There were unmistakable diurnal variations in serum levels of cortisol, and cortisol concentrations were reduced to less than 20% of pretreatment levels after the ingestion of 1 mg dexamethasone during the mid-follicular or mid-luteal phase. The serum concentrations of DOC were reduced only to approx 70% of pretreatment levels after dexamethasone ingestion during the follicular phase. The serum levels of DOC did not decline significantly after administration of dexamethasone during the mid-luteal phase, when progesterone levels in serum are high (14-16 ng/ml). Blood samples also were obtained at hourly intervals during the 24 h before and after dexamethasone administration in one woman during the follicular phase and in another woman the during the early luteal phase (progesterone levels = 1-3 ng/ml) of the ovarian cycle. DOC levels (pre-dexamethasone) fluctuated in synchrony with those of cortisol in the woman studied during the follicular phase but not in the woman studied during the early luteal phase of the cycle. In the post-dexamethasone period, plasma cortisol levels were suppressed for at least 24 h in both women whereas DOC levels were decreased only partially. We conclude that plasma DOC is derived from both adrenal secretion and from extraadrenal 21-hydroxylation of progesterone--the latter source of DOC is not affected by dexamethasone suppression of ACTH secretion.  相似文献   

19.
The present study was undertaken to determine the expression of vascular endothelial growth factor (VEGF) and its receptors, fms-like tyrosine kinase (Flt-1) and fetal liver kinase-1/kinase insert domain-containing receptor (Flk-1/KDR), in the porcine corpus luteum (CL) during the estrous cycle and early pregnancy. Immunohistochemical studies localized proteins of VEGF ligand-receptor system in the cytoplasm of luteal cells and in some blood vessels. Western blot analysis revealed significantly higher levels of VEGF protein during early and mid-luteal phase (vs. late luteal phase; P<0.001 and P<0.01, respectively). Quantification of VEGF mRNA in the CL showed increased mRNA levels during entire luteal phase (vs. Days 16-17; P<0.05). Expression of Flt-1 protein remained high during luteal phase (P<0.001), but the mRNA levels tended to increase from the early to the late luteal phase. Elevated protein expression of Flk-1/KDR was found in the mid-luteal phase (vs. Days 16-17; P<0.05). However, induction of Flk-1/KDR mRNA expression occurred earlier, in early luteal phase. The lowest VEGF, Flt-1 and Flk-1/KDR mRNA and protein levels were observed in regressed CL (P<0.001). During pregnancy, VEGF, Flt-1 and Flk-1/KDR mRNA and protein expression was comparable to the mid-luteal phase. In conclusion, the present study has demonstrated dynamic expression of VEGF and its receptors in the porcine CL during the estrous cycle and early pregnancy. These data suggest that the VEGF ligand-receptor system may play an important role in the development and maintenance of the CL in pigs.  相似文献   

20.
To determine and compare the direct effects of prostaglandin F2a (PGF2a) and human chorionic gonadotropin (hCG) on luteal cell progesterone production in vitro, 9 human corpora lutea obtained at tubal ligation were minced and treated with collagenase to disaggregate luteal cells. Dispersed luteal cells (80% viable) were incubated in air at 37 degrees C in a shaking water bath for 3 h and total progesterone in the media and cells was determined by radioimmunoassay. Optimum progesterone production was obtained using 25,000 or more cells per incubate and an incubation time of 2-4 h. hCG-stimulated progesterone production increased significantly with 0.01 IU to as high as 100 IU. In the early luteal phase (days 1-5 post ovulation or days 15-20 of the luteal phase), PGF2a (10-1000 ng) significantly inhibited progesterone production but significantly stimulated progesterone production in the mid-luteal phase (days 21-25). PGF2a had no effect on luteal cell progesterone production in the late luteal phase (days 26-30). This age-dependent direct effect of PGF2a on human luteal cell progesterone production in vitro indicates a role for PGF2a in the total intragonadal regulation of progesterone output, possibly through a paracrine or autocrine manner directed towards synchronizing luteal progesterone secretion and endometrial preparation for nidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号