首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An ultrastructural study was made of the spore envelope during development in the microsporidan, Thelohania bracteata. The frozen-etched outer (convex) face of the relatively thin spore coat in the earliest immature stage of development has a granular structure in regular array. The inner (concave) face bears particles as well as depressions arranged in a net-like pattern. The mature spore coat has a substructure of numerous microfibers, ~8 nm in diameter, arranged in a matrix and forming thin layers which run parallel to the spore surface. The mature spore coat possesses both outer and inner limiting layers. The outer (convex) face of the outer limiting layer is granular. The convex face of inner limiting layer bears many particles as well as many long, narrow depressions. The concave face of the inner limiting layer carries many stud-like projections, ~40 nm long and 30 nm high, which are complementary to the depressions observed on the convex face. In addition, the concave face has subunits ~15 nm in diameter, apparently arranged in a hexagonal pattern with a center to center distance of ~18 nm. The change in size of these projections, depressions, and subunits presumably is related to spore maturation.  相似文献   

2.
SYNOPSIS. In the microsporidian, Thelohania bracteata, the polar filament, as it starts to develop in the sporoblast, apparently receives material synthesized by the granular endoplasmic reticulum and Golgi vesicles. In immature spores many dilated sacs are observed in areas where there is less endoplasmic reticulum. These sacs, that persist into the almost mature spore, are probably Golgi-type vesicles and may be related to the formation of the spore coat. The polar filament of the mature spore possesses 8 coils and in cross section or cross-fractured face the electron-dense central portion of the polar filament contains a tubular structure, ringed by 12–14 cylindrical structures. In thin sections, an electron-lucid zone is observed between the core and membrane of the polar filament. The polar filament runs through the highly laminated polaroplast which occupies the anterior portion of the spore. In cross-fractured face the lamellae of the polaroplast are arranged like the petals of a flower. The basal portion of the polar filament is enlarged, appearing arrow-shaped in thin sections and pear-shaped in frozen-etched preparations. Frozen-etched membranes differ in the size and distribution of the surface particles.  相似文献   

3.
SYNOPSIS. The ultrastructure of a microsporidan pansporoblast was observed with freeze-etching electron microscopy. The cross-fractured face of ovoid mature spores, with the upper part of the spore coat fractured off, revealed the spore membrane; the convex face had many small depressions and the concave face bore fine particles. In cross-section the spore-coat was highly laminated and about 0.5 μ in diameter.
In the cytoplasm of the pansporoblast, fluid-filled and finger-print-life profiles of vesicles were observed. The vesicles were approximately 180 nm in diameter and laminated, each lamella being about 15–18 nm thick. In addition to these vesicles, a population of elevations, each with an average diameter of 40 nm, was evenly distributed in the pansporoblast among the spores. No other cytoplasmic organelles were observed within the pansporoblast. The pansporoblast wall was about 15–19 nm thick with particles 15–18 nm in diameter on its outer surface.  相似文献   

4.
FORMATION AND STRUCTURE OF THE SPORE OF BACILLUS COAGULANS   总被引:19,自引:2,他引:17       下载免费PDF全文
Spore formation in Bacillus coagulans has been studied by electron microscopy using an epoxy resin (Araldite) embedding technique. The developmental stages from the origin of the initial spore septum to the mature spore were investigated. The two forespore membranes developed from the double layer of cytoplasmic membrane. The cortex was progressively deposited between these two membranes. The inner membrane finally became the spore protoplasmic membrane, and the outer membrane part of the inner spore coat or the outer spore coat itself. In the mature spore the completed integuments around the spore protoplasm consisted of the cortex, a laminated inner coat, and a dense outer coat. No exosporium was observed. The method of formation of the cortex and the spore coats is discussed.  相似文献   

5.
Fine Structure of Bacillus megaterium during Microcycle Sporogenesis   总被引:10,自引:7,他引:3       下载免费PDF全文
Ultrathin sections were prepared from cultures of Bacillus megaterium QM B1551 undergoing microcycle sporogenesis (initial spore to primary cell to second-stage spore without intervening cell division) on a chemically defined medium. The cytoplasmic core of the dormant spore was surrounded by plasma membrane, cell-wall primordium, cortex, outer cortical layer, and spore coats. Early in the cycle, the coat opened at the germinal groove, the cortex swelled, ribosomes and a chromatinic area associated with large mesosomes (which may later be incorporated into the expanding plasma membrane) appeared in the core, and the cell wall became defined at the site of the cell wall primordium. Poly-β-hydroxybutyrate granules began to appear in the primary cell at about 3 hr. By 7 hr, the forespore of the second-stage spore was delineated by typical double membranes. Between 7 and 12 hr, second-stage cell-wall primordium and cortex developed between the separating forespore membranes. The inner membrane became the plasma membrane of the second-stage spore, and the outer membrane eventually disintegrated within the second-stage spore cortex. A densely staining double layer (spore-coat primordium) developed external to the outer forespore membrane. The inner spore coat and the outer cortical layer of the second-stage spore developed from this primordium. The outer part of the spore coat, probably of sporangial origin, was laid down on the external surface of the inner spore coat. By 12 hr, second-stage spores were almost mature. By 20 hr, the mature endospores, with a thickened outer coat, were often still enclosed by degenerate primary cell wall and by the outer cortical layer and spore coat of the initial spore.  相似文献   

6.
Changes in membrane and macromolecular fluidity which may accompany the differentiation processes of sporulation and germination in Bacillus megaterium K.M. are examined by electron spin and nuclear magnetic resonance spectroscopy. No change in membrane lipid fluidity is observed in isolated forespores up to stage VI. Between stage VI and release of mature spores, the ESR spectrum of doxylstearic acid spin labels becomes polycrystalline. This change in spectral fluidity is completely reversed during germination and is paralleled by the rapid release of Ca2+ from the spore. NMR studies also show that the mature spore has reduced macromolecular mobility and an increased non-exchangeable water pool compared with vegetative cells.  相似文献   

7.
T.P. Liu 《Tissue & cell》1975,7(4):613-618
The outer limiting layer of the spore coat ofNosema apis is relatively smooth. The inner limiting layer shows two fractured faces, the concave face carrying many stud-like projections, 120 nm long and 50 nm high, while the convex face carries numerous depressions which are complementary to the projections. In addition, the convex face bears 7 nm particles. In between the outer and inner limiting layers lies the thick homogeneous portion of spore coat which is comprised of numerous microfibres, each 9 nm in diameter. These microfibres resemble those in the freeze-etched host endocuticle. Next to the inner limiting layer of the spore coat are double spore membranes. The convex faces of these spore membranes have a dense population of particles, each 7 nm in diameter.  相似文献   

8.
The epithelial cells of the midgut of honey bees, Apis mellifera, infected with Nosema apis showed young and mature spores randomly distributed in the cytoplasm. In these cells, only mitochondria and protein granules were observed. After treating infected bees with Fumidil B, an ultrastructural alteration in the spore membrane, especially in the young spore, was observed. At the same time, lipid granules appeared in the cytoplasm, mostly around the spores. The number of protein granules also increased.  相似文献   

9.
R. C. Brown  B. E. Lemmon 《Protoplasma》1981,106(3-4):273-287
Summary Young spores of the mossTrematodon longicollis Mx. are highly polar. Immediately after meiotic cytokinesis an extensive system of microtubules associated with the single plastid develops under the entire distal face. Following exine initiation on the distal surface a microtubule system is elaborated at the site of aperture development on the proximal surface. Both plastid and nucleus move from distal to proximal pole and are attached to microtubules of the proximal system. Microtubules underlie the plasma membrane as it withdraws from the exine in the initiation of both the surrounding annulus and central aperture pore. The central pore enlarges to form a bowl-shaped concavity in which a fibrillar plug develops basipetally. The annulus expands into a fibrillar-filled protrusion surrounding the central pore. The mature aperture consists of a central pore plug covered by a thin roof of exine and separated from the surrounding annulus by exine lamellae. The aperture of the mature spore is obscured by development of the ornate exine and is not a prominent feature of the mature spore surface.  相似文献   

10.
Freeze fracturing of Myxosporidian spores reveals the occurrence of a continuous layer of transmembrane particles all over the surface area of the valve cells which form the spore envelope. These particles are densely packed all over the P face membrane. Due to their polygonal outline, their diameter (6-7 nm) and their central core, they resemble the particles forming the connections of gap junctions which metabolically couple the neighboring cells in animal tissues. In the present report, the role of the transmembrane particles is still hypothetical. However, they might represent a membrane structural specialization of the spores which are submitted to osmotic variations of the fluid external medium. Furthermore similar transmembrane particles are observed at the level of the septate junction which seals the valve cells. In this occurrence, they are arranged in a series of 40 double rows parallel to the suture of the spore envelope. These findings support the view that Myxosporidia are Metazoa and raise the problem of their origin.  相似文献   

11.
Freeze fracturing of Myxosporidian spores reveals the occurrence of a continuous layer of transmembrane particles all over the surface area of the valve cells which form the spore envelope. These particles are densely packed all over the P face membrane. Due to their polygonal outline, their diameter (6-7 nm) and their central core, they resemble the particles forming the connections of gap junctions which metabolically couple the neighboring cells in animal tissues. In the present report, the role of the transmembrane particles is still hypothetical. However, they might represent a membrane structural specialization of the spores which are submitted to osmotic variations of the fluid external medium. Furthermore similar transmembrane particles are observed at the level of the septate junction which seals the valve cells. In this occurrence, they are arranged in a series of 40 double rows parallel to the suture of the spore envelope. These findings support the view that Myxosporidia are Metazoa and raise the problem of their origin.  相似文献   

12.
Freeze fracturing electron microscopy of Escherichia coli K12 cells showed that the outer fracture face of the outer membrane is densily occupied with particles. On the inner fracture face of the outer membrane, pits are visible, which are probably complementary to the particles at opposite fracture face. This observation suggests that the particles are micelle-like. In some mutants which lack one or more major outer membrane proteins the density of particles is reduced. The loss of protein d appeared to a prerequisite for this phenomenon. However, mutants which lack all glucose and heptose-bound phosphate in their lipopolysaccharide also have a reduction in particle density whereas, the amount of protein d is normal. Moreover, loss of lipopolysaccharide by EDTA treatment also caused a reduction in the density of particles. From these results it is hypothesized that the particles consist of lipopolysaccharide aggregates stabilized by divalent cations and probably complexed with protein and/or phospholipid.  相似文献   

13.
Summary The mature spore possesses a thick spore coat and a particle-bearing spore membrane. The highly laminated polaroplast membranes are located at the anterior pole of the spore. Close to its base, the polar filament is surrounded by the polaroplast membrane. The polar filament runs spirally towards the posterior pole of the spore. A large portion of the polar filament is arranged in two layers. A similar arrangement was also observed in immature spores and in the sporoblast stage, although it was not so orderly arranged in the latter. The developing polaroplast membrane was observed in the immature spore, but not in the sporoblast. The sporoblast wall is much thinner than the spore coat, but has the same texture. Endoplasmic reticulum is the most prominent cytoplasmic organelle in the developing stages of Nosema apis. Porous nuclear envelopes are also observed in developing stages. The role of the endoplasmic reticulum in the formation of the polar filament, polaroplast and spore coat, and the function of the spore membrane, are discussed.  相似文献   

14.
Fine Structure of Bacillus subtilis : II. Sporulation Progress   总被引:14,自引:7,他引:7       下载免费PDF全文
The sporulation process in Bacillus subtilis has been studied principally with KMnO4 fixation, but also, for the purpose of comparison, with OsO4 and mixtures of both fixatives. At a very early stage, the pre-spore is seen to consist of what seems to be the nuclear material and granular substance, surrounded by a layer of dense material destined to become the innermost layer of the spore coat. At a subsequent stage, a light interspace is observed that is destined to become the spore cortex. The mature spore shows a very complex structure. The spore coat is composed of three layers, the middle layer of which consisted of 5 to 8 lamellae of thin membranes and interspaces, both about 20 to 25 A thick. Between the inner layer of the spore coat and the spore cortex, a thin membrane with an affinity to the cortex can be observed. The spore coat is enclosed within two envelopes, one loosely surrounding the core, and the other adhering to it. The process of spore maturation has been studied in detail. Certain peculiar cellular structures have been observed that seemed to represent features of abnormal sporulation processes.  相似文献   

15.
A number of features not described previously has been revealed in electron-microscope studies of mature chlamydospores of Fusarium oxysporum. On the maturation of one isolate, many spores formed a thick matrix-like layer containing electron-dense particles on the exterior surface of the spore wall. In thin sections of mature chlamydospores of the same isolate, cisternae of endoplasmic reticulum surrounding, and in close apposition to, the limiting boundary of the lipid bodies were revealed. The germination of chlamydospores was accompanied by (a) the rapid appearance of polysaccharide deposits and changes in the configuration of some subcellular organelles, (b) the formation of a new wall layer between the plasma membrane and the innermost layer of the spore wall, (c) the rupture of the outermost coats of the spore wall, and (d) the emergence of the germ tube as an extension of the new wall layer.  相似文献   

16.
H.J. Harmon  F.L. Crane 《BBA》1976,440(1):45-58
The topography of the inner mitochondrial membrane was investigated using inhibitors of electron transport on preparations of beef heart mitochondria and electron transport particles of opposite orientation. Reductions of juglone, ferricyanide, indophenol, coenzyme Q, duroquinone, and cytochrome c by NADH are inhibited to different extents on both sides of the membrane by the impermeant hydrophilic chelators bathophenanthroline sulfonate and orthophenanthroline. The extent of inhibition for each acceptor increased in the order given. At least two chelator-sensitive sites are present on each membrane face between the flavoprotein and coenzyme Q and a chelator-sensitive site is present on the matrix face between the sites of coenzyme Q and duroquinone interaction. Duroquinol oxidation in mitochondria only is stimulated by bathophenanthroline sulfonate. Juglone reduction is stimulated in electron transport particles (only) by p-hydroxymercuribenzenesulfonate, but after mercurial treatment, juglone reduction in both particles and mitochondria is more sensitive to bathophenanthroline sulfonate.Succinate dehydrogenase components are inhibited by hydrophilic orthophenanthroline or bathophenanthroline sulfonate in mitochondria only. Electron flow between the dehydrogenases of succinate and NADH occurs via a chelator-sensitive site located on the matrix face of the membrane. Inter-complex electron flow is prevented by rotenone or thenoyltrifluoroacetone. The lack of succinate-indophenol reductase inhibition by bathophenanthroline sulfonate in the presence of rotenone or thenoyltrifluoroacetone indicates that the rotenone-sensitive site may be located on the matrix face and demonstrates that electrons flow between the NADH and succinate dehydrogenases via a hydrophilic chelator and rotenone-thenoyltrifluoroacetone-sensitive site on the matrix face of the membrane. Inhibition by hydrophilic chelators only in mitochondria indicates that succinate dehydrogenase as well as NADH dehydrogenase has a transmembranous orientation.  相似文献   

17.
Hyalinocysta expilatoria n. sp. is described from a larva of Odagmia ornata collected in Sweden. Infection was restricted to the adipose tissue which was transformed into a syncytium. The earliest stage observed was diplokaryotic merozoites, which mature directly into diplokaryotic sporonts. Each sporont produces a sporophorous vesicle (pansporoblast), which persists, also enclosing mature spores. Usually nuclear divisions result in a plasmodium with 8 nuclei, which fragments into 8 sporoblasts, each of which develops into a spore without further division. Occasionally an aberrant number of spores (2, 4, 6) is formed. The spores are pyriform with a flattened area at the posterior pole. Spores in sporophorous vesicles with 8 spores are 4.0–6.0 μm long, in vesicles with 4 spores 4.0–5.0 μm, and in vesicles with 2 spores 7.0–8.0 μm. In some vesicles the spores develop asynchronously, and 2, 4, or 6 mature spores are found together with 6, 4, or 2 immature. There was also a small number of vesicles with supernumerary spores, less than 8 normally developed. The 325–350 nm thick spore wall is composed of three layers. The polar filament is anisofilar with 7 coils in a single layer. The anterior 5–6 coils are wide, the posterior 2-1 thin. The angle of tilt of the anterior filament coil is approximately 50°. The spore has a single nucleus. The sporophorous vesicle is delimited by a thin membrane, also visible in haematoxylin stained preparations. Vesicles with mature spores are void of metabolic inclusions.  相似文献   

18.
Attempts have been made to identify intramembranous particles observed in freeze-fracture electron microscopy as specific functional components of the membrane. The intramembranous particles of the exoplasmic fracture (EF) face of freeze-fractured pea (Pisum sativum) chloroplast lamellae are nonuniformly distributed along the membrane. Approximately 20% of the particles are in unpaired membrane regions whereas 80% are localized in regions of stacked lamellae (grana partitions). The EF particles within the grana regions of the chloroplast membrane are of a larger average size than those in stroma lamellae.  相似文献   

19.
DETECTION OF COMPLEX CARBOHYDRATES IN THE GOLGI APPARATUS OF RAT CELLS   总被引:28,自引:17,他引:11       下载免费PDF全文
Two methods used for the electron microscopic detection of glycoproteins were applied to a variety of cell types in the rat; one involved successive treatment of sections with periodic acid, chromic acid, and silver methenamine; and the other, a brief treatment with a chromic acid-phosphotungstic acid mixture. The results obtained with the two methods were identical and, whenever the comparison was possible, similar to those obtained with the periodic acid-Schiff technique of light microscopy. In secretory as well as in nonsecretory cells, parts of the Golgi apparatus are stained. The last saccule on one side of each Golgi stack is strongly reactive (mature face), and the last saccule on the other side shows little or no reactivity (immature face); a gradient of reactivity occurs in between these saccules. The more likely explanation of the increase in staining intensity is that carbohydrate is synthesized and accumulates in saccules as they migrate toward the mature face. In many secretory cells, the mature face is associated with strongly stained secretory granules. Other structures stained are: (1) small vesicles, dense and multivesicular bodies, at least some of which are presumed to be lysosomal in nature; (2) cell coat; and (3) basement membrane. The evidence suggests that the Golgi saccules provide glycoproteins not only for secretion, but also for the needs of the lysosomal system as well as for incorporation into the cell coat and perhaps basement membrane.  相似文献   

20.
Microsporidia are obligate intracellular parasites related to fungi with resistant spores against various environmental stresses. The rigid spore walls of these organisms are composed of two major layers, which are the exospore and the endospore. Two spore wall proteins (the endosporal protein-SWP30 and the exosporal protein-SWP32) have been previously identified in Nosema bombycis. In this study, using the MALDI-TOF-MS technique, we have characterised a new 25.7-kDa spore wall protein (SWP26) recognised by monoclonal antibody 2G10. SWP26 is predicted to have a signal peptide, four potential N-glycosylation sites, and a C-terminal heparin-binding motif (HBM) which is known to interact with extracellular glycosaminoglycans. By using a host cell binding assay, recombinant SWP26 protein (rSWP26) can inhibit spore adherence by 10%, resulting in decreased host cell infection. In contrast, the mutant rSWP26 (rΔSWP26, without HBM) was not effective in inhibiting spore adherence. Immuno-electron microscopy revealed that this protein was expressed largely in endospore and plasma membrane during endospore development, but sparsely distributed in the exospore of mature spores. The present results suggest that SWP26 is a microsporidia cell wall protein that is involved in endospore formation, host cell adherence and infection in vitro. Moreover, SWP26 could be used as a good prospective target for diagnostic research and drug design in controlling the silkworm, Bombyx mori, pebrine disease in sericulture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号