首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One prerequisite that radiotherapy (RT) and chemotherapy (CT) result in anti-tumor immune responses is triggering of immunogenic cell death forms such as necroptosis. The latter is inducible by inhibition of apoptosis with the pan-caspase inhibitor zVAD-fmk. The design of multimodal therapies that overcome melanoma''s resistance to apoptosis is a big challenge of oncoimmunology. As hints exist that immune stimulation by hyperthermia (HT) augments the efficacy of melanoma therapies and that tumors can be sensitized for RT with zVAD-fmk, we asked whether combinations of RT with dacarbazine (DTIC) and/or HT induce immunogenic melanoma cell death and how this is especially influenced by zVAD-fmk. Necroptosis was inducible in poorly immunogenic B16-F10 melanoma cells and zVAD-fmk generally increased melanoma cell necrosis concomitantly with the release of HMGB1. Supernatants (SNs) of melanoma cells whose cell death was modulated with zVAD-fmk induced an upregulation of the activation markers CD86 and MHCII on macrophages. The same was seen on dendritic cells (DCs), but only when zVAD-fmk was added to multimodal tumor treatments including DTIC. DCs of MyD88 KO mice and DCs incubated with SNs containing apyrase did not increase the expression of these activation markers on their surface. The in vivo experiments revealed that zVAD-fmk decreases the tumor growth significantly and results in a significantly reduced tumor infiltration of Tregs when added to multimodal treatment of the tumor with RT, DTIC and HT. Further, a significantly increased DC and CD8+ T-cell infiltration into the tumor and in the draining lymph nodes was induced, as well as an increased expression of IFNγ by CD8+ T cells. However, zVAD-fmk did not further reduce tumor growth in MyD88 KO mice, mice treated with apyrase or RAG KO mice. We conclude that HMGB1, nucleotides and CD8+ T cells mediate zVAD-fmk induced anti-melanoma immune reactions in multimodal therapy settings.The cancer immune editing concept raised by Schreiber and colleagues1 and the findings that distinct chemotherapeutic agents induce immunogenic cancer cell death forms2 opened our minds that standard tumor therapies alone and especially in combination with further immune therapies are capable of inducing anti-tumor immune responses.3 The phenotype of the tumor cells and the tumor microenvironment are altered during therapy and, thereby, the tumor might become visible for the immune system.4 A main prerequisite for induction of anti-tumor immunity is triggering of immunogenic tumor cell death forms.5Apoptosis is non- or even anti-inflammatory.6 In contrast, necrotic cells bear per se a high inflammatory and immunogenic potential. Damage-associated molecular patterns (DAMPs) are released because the plasma membrane of necrotic cells is disturbed.7, 8 Danger signals as the high mobility group protein B1 (HMGB1) and the nucleotide adenosine triphosphate (ATP) activate DCs, foster cross-presentation of antigens and consecutively the activation of T cells.9 DAMPs therefore link radio- and/or chemotherapy-induced local alterations of the tumor cells and subsequent systemic anti-tumor immune reactions.10, 11 HMGB1 is mostly passively released by therapy-induced necrotic tumor cells.12 The activation of DCs by HMGB1 is induced by its binding to TLR2 or TLR4.13, 14 HMGB1 is further required for the migration of maturing DCs.15 The nucleotide ATP is often actively emitted and acts on purinergic receptors, especially on P2RX7.16, 17Activation of DCs is crucial for the success of multimodal tumor treatments.18 Several preclinical and clinical studies have demonstrated that tumor cell death induced by radiochemotherapy in combination with intratumoral DC injection induces strong anti-tumor immune responses in several tumor entities.19, 20, 21 These responses can be enhanced by hyperthermia (HT). Mild HT is an additive therapy to radiotherapy (RT) and/or chemotherapy (CT) in which tumor tissue is locally heated to temperatures of 40–44 °C for a time period of 1 h. HT fosters protein aggregation and aggravates radiation- and chemotherapy-induced repair of DNA damage.22 In addition, locally applied HT is capable of inducing systemic anti-tumor responses.23Melanoma is the most dangerous form of skin cancer and its response to CT and RT is poor.24 To overcome melanoma''s resistance to apoptosis, the search for multimodal treatments that aim of inducing immunogenic cell death forms is a big challenge of innovative oncoimmunology,25 as much as to understand the mechanisms of therapy-induced immunogenic melanoma cell death. Nowadays, evidence has come up that necrosis as immunogenic cell death form can also occur in a programmed manner.26, 27 Necroptosis is independent of caspases and mainly occurs when caspases are not activated or inhibited.28 The pan-caspase inhibitor zVAD-fmk has been shown to inhibit apoptosis and concomitantly foster necroptosis.29 Further, encouraging preclinical studies have been performed using caspase inhibitors to reduce apoptosis in neurological diseases30 and to reduce angiogenesis in solid tumors.31 First hints exist that immune stimulation by HT is capable of augmenting the efficacy of CT and RT treatments in melanoma32 and that solid tumors can be rendered more sensitive to radiation by treatment with the pan-caspase inhibitor zVAD-fmk.31 Meaningful data regarding potential clinical efficacy of caspase inhibitors such as zVAD-fmk will only be yielded if the cell death pathways stimulated in model systems reflect that triggered in patients.33 Therefore, we examined here for the first time whether combinations of the clinically relevant single dose of RT of 2 Gy with the only for metastatic melanoma FDA-approved CT agent dacarbazine (DTIC) or combinations with HT (41.5 °C for 1 h) induce immunogenic melanoma cell death and how zVAD-fmk is capable of improving the melanoma''s immunogenicity by modulating the therapy-induced melanoma cell death.  相似文献   

2.
Purpose: Radiotherapy (RT) alone or in combination with chemotherapy (CT) leads nearly always to increase of DNA damage in cancer patients. The purpose of this study was to determine the variability rate and individual sensitivity of breast cancer (BC) patients to the applied RT and RT in combination with CT. Methods: The analysed sample included 30 women with histologically confirmed BC. The frequency of micronuclei (MN) was estimated in peripheral blood lymphocytes (PBL) by using the cytokinesis-block micronucleus (CBMN) assay before the administered therapy and one month later. Results: The mean therapy-induced MN value was significantly higher (p < 0.001) compared with mean baseline MN. Both therapies (RT and combined RT+CT) significantly increased the MN frequency in patients' lymphocytes (p<0.001), but without significant differences in the therapy-induced MN frequency between these two groups (p > 0.05). The administered therapy induced significant difference in cell kinetics (p < 0.05). The results showed a wide range of inter-individual variability in both baseline and the therapy-induced MN frequency. Conclusion: The applied therapies increased the MN frequency in PBL in BC patients, and the presented data indicate absence of synergistic effect of these two therapies. None of the variation factors (age, smoking and therapy type) had influence on the noticed variability.  相似文献   

3.
Modern cancer therapies often involve the combination of tumor-directed cytotoxic strategies and generation of a host antitumor immune response. The latter is unleashed by immunotherapies that activate the immune system generating a more immunostimulatory tumor microenvironment and a stronger tumor antigen-specific immune response. Studying the interaction between antitumor cytotoxic therapies, dying cancer cells, and the innate and adaptive immune system requires appropriate experimental tumor models in mice. In this review, we discuss the immunostimulatory and immunosuppressive properties of cancer cell lines commonly used in immunogenic cell death (ICD) studies being apoptosis or necroptosis. We will especially focus on the antigenic component of immunogenicity. While in several cancer cell lines the epitopes of endogenously expressed tumor antigens are known, these intrinsic epitopes are rarely determined in experimental apoptotic or necroptotic ICD settings. Instead by far the most ICD research studies investigate the antigenic response against exogenously expressed model antigens such as ovalbumin or retroviral epitopes (e.g., AH1). In this review, we will argue that the immune response against endogenous tumor antigens and the immunopeptidome profile of cancer cell lines affect the eventual biological readouts in the typical prophylactic tumor vaccination type of experiments used in ICD research, and we will propose additional methods involving immunopeptidome profiling, major histocompatibility complex molecule expression, and identification of tumor-infiltrating immune cells to document intrinsic immunogenicity following different cell death modalities.Subject terms: Cancer models, Antigen-presenting cells, Immune cell death  相似文献   

4.
Cancer, the most devastating chronic disease affecting humankind, is treated primarily by surgery, chemotherapy, and radiation therapy. Surgery and radiotherapy are mainly used for debulking the primary tumor, while chemotherapy is the most efficient anti-metastatic treatment. To control better metastatic cancer, the host immune system should be stimulated. Yet, successful specific stimulation of the immune system against tumors was seldom achieved even in antigenic tumors. Our working hypothesis is that aggressive in situ tumor ablation can release tumor antigens and danger signals, which will enhance anti-tumor T cell responses resulting in the destruction of residual malignant cells in primary tumors and distant metastases. We developed two efficient in situ ablation treatments for solid cancer, which can be used to destroy the primary tumors and stimulate anti-tumor immune responses. The first treatment, electrochemical ablation, is applied through intratumoral electrodes, which deliver unipolar-pulsed electric currents. The second treatment, diffusing alpha-emitters radiation therapy (DaRT), is based on intratumoral 224Ra-loaded wire(s) that release by recoil its daughter atoms. These short-lived alpha-emitting atoms spread in the tumor and spray it with lethal alpha particles. It was confirmed that these treatments effectively destroy various malignant animal and human primary solid tumors. As a consequence of such tumor ablation, tumor-derived antigenic material was released and provoked systemic T cell-dependent anti-tumor immunological reactions. These reactions conferred protection against a secondary tumor challenge and destroyed remaining malignant cells in the primary tumor as well as in distant metastases. Such anti-tumor immune responses could be further amplified by the immune adjuvant, CpG. Electrochemical ablation or DaRT together with chemotherapy and immunostimulatory agents can serve as treatment protocols for solid metastatic tumors and can be applied instead of or in combination with surgery.  相似文献   

5.
The GD2 ganglioside expressed on neuroectodermal tumor cells is weakly immunogenic in tumor-bearing patients and induces predominantly IgM antibody responses in the immunized host. Using a syngeneic mouse challenge model with GD2-expressing NXS2 neuroblastoma, we investigated novel strategies for augmenting the effector function of GD2-specific antibody responses induced by a mimotope vaccine. We demonstrated that immunization of A/J mice with DNA vaccine expressing the 47-LDA mimotope of GD2 in combination with IL-15 and IL-21 genes enhanced the induction of GD2 cross-reactive IgG2 antibody responses that exhibited cytolytic activity against NXS2 cells. The combined immunization regimen delivered 1 day after tumor challenge inhibited subcutaneous (s.c.) growth of NXS2 neuroblastoma in A/J mice. The vaccine efficacy was reduced after depletion of NK cells as well as CD4+ and CD8+ T lymphocytes suggesting involvement of innate and adaptive immune responses in mediating the antitumor activity in vivo. CD8+ T cells isolated from the immunized and cured mice were cytotoxic against syngeneic neuroblastoma cells but not against allogeneic EL4 lymphoma, and exhibited antitumor activity after adoptive transfer in NXS2-challenged mice. We also demonstrated that coimmunization of NXS2-challenged mice with the IL-15 and IL-21 gene combination resulted in enhanced CD8+ T cell function that was partially independent of CD4+ T cell help in inhibiting tumor growth. This study is the first demonstration that the mimotope vaccine of a weakly immunogenic carbohydrate antigen in combination with plasmid-derived IL-15 and IL-21 cytokines induces both innate and adaptive arms of the immune system leading to the generation of effective protection against neuroblastoma challenge. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. This work was supported by the Roswell Park Alliance Foundation, funds to commemorate Dr. Goro Chihara’s research activity, and by a research grant R21 AI060375 from the National Institutes of Health.  相似文献   

6.
Overexpression of the proto-oncogene c-Myb occurs in more than 80% of colorectal cancer (CRC) and is associated with aggressive disease and poor prognosis. To test c-Myb as a therapeutic target in CRC we devised a DNA fusion vaccine to generate an anti-CRC immune response. c-Myb, like many tumor antigens, is weakly immunogenic as it is a "self" antigen and subject to tolerance. To break tolerance, a DNA fusion vaccine was generated comprising wild-type c-Myb cDNA flanked by two potent Th epitopes derived from tetanus toxin. Vaccination was performed targeting a highly aggressive, weakly immunogenic, subcutaneous, syngeneic, colon adenocarcinoma cell line MC38 which highly expresses c-Myb. Prophylactic intravenous vaccination significantly suppressed tumor growth, through the induction of anti-tumor immunity for which the tetanus epitopes were essential. Vaccination generated anti-tumor immunity mediated by both CD4(+) and CD8(+) T cells and increased infiltration of immune effector cells at the tumor site. Importantly, no evidence of autoimmune pathology in endogenous c-Myb expressing tissues was detected as a consequence of breaking tolerance. In summary, these results establish c-Myb as a potential antigen for immune targeting in CRC and serve to provide proof of principle for the continuing development of DNA vaccines targeting c-Myb to bring this approach to the clinic.  相似文献   

7.
Radiation therapy (RT) is an integral part of prostate cancer treatment across all stages and risk groups. Immunotherapy using a live, attenuated, Listeria monocytogenes-based vaccines have been shown previously to be highly efficient in stimulating anti-tumor responses to impact on the growth of established tumors in different tumor models. Here, we evaluated the combination of RT and immunotherapy using Listeria monocytogenes-based vaccine (ADXS31-142) in a mouse model of prostate cancer. Mice bearing PSA-expressing TPSA23 tumor were divided to 5 groups receiving no treatment, ADXS31-142, RT (10?Gy), control Listeria vector and combination of ADXS31-142 and RT. Tumor growth curve was generated by measuring the tumor volume biweekly. Tumor tissue, spleen, and sera were harvested from each group for IFN-?? ELISpot, intracellular cytokine assay, tetramer analysis, and immunofluorescence staining. There was a significant tumor growth delay in mice that received combined ADXS31-142 and RT treatment as compared with mice of other cohorts and this combined treatment causes complete regression of their established tumors in 60?% of the mice. ELISpot and immunohistochemistry of CD8+?cytotoxic T Lymphocytes (CTL) showed a significant increase in IFN-?? production in mice with combined treatment. Tetramer analysis showed a fourfold and a greater than 16-fold increase in PSA-specific CTLs in animals receiving ADXS31-142 alone and combination treatment, respectively. A similar increase in infiltration of CTLs was observed in the tumor tissues. Combination therapy with RT and Listeria PSA vaccine causes significant tumor regression by augmenting PSA-specific immune response and it could serve as a potential treatment regimen for prostate cancer.  相似文献   

8.
BACKGROUND: Melanoma is a relatively immunogenic tumor, in which infiltration of melanoma cells by T lymphocytes is associated with a better clinical prognosis. We hypothesized that radiation-induced cell death may provide additional stimulation of an anti-tumor immune response in the setting of anti-CTLA-4 treatment. METHODS: In a pilot melanoma patient, we prospectively tested this hypothesis. We treated the patient with two cycles of ipilimumab, followed by stereotactic ablative radiotherapy to two of seven hepatic metastases, and two additional cycles of ipilimumab. RESULTS: Subsequent positron emission tomography-computed tomography scan indicated that all metastases, including unirradiated liver lesions and an unirradiated axillary lesion, had completely resolved, consistent with a complete response by RECIST. CONCLUSION: The use of radiotherapy in combination with targeted immunotherapy as a noninvasive in vivo tumor vaccine strategy appears to be a promising method of enhancing the induction of systemic immune responses and anti-tumor effect.  相似文献   

9.
Avipoxvirus-based vectors, such as recombinant canarypox virus ALVAC, are studied extensively as delivery vehicles for vaccines against cancer and infectious diseases. Effective use of such vaccines is expected to benefit from proper understanding of the interaction between these viral vectors and the host immune system. We performed preclinical vaccination experiments in a murine tumor model to analyze the immunogenic properties of an ALVAC-based vaccine against carcinoembryonic Ag (ALVAC-CEA), a tumor-associated autoantigen commonly overexpressed in colorectal cancers. The protective CEA-specific immunity induced by this vaccine consisted of CD4(+) T cell responses with a mixed Th1/Th2 cytokine profile that were accompanied by potent humoral responses, but not by CEA-specific CD8(+) CTL immunity. In contrast, protective immunity induced by a CEA-specific DNA vaccine (DNA-CEA) consisted of Th1 and CTL responses. Modification of the ALVAC-CEA vaccine through coinjection of DNA-CEA, admixture with CpG oligodeoxynucleotides, or supplementation with additional transgenes encoding a triad of costimulatory molecules (TRICOM) did not result in induction of CEA-specific CTL responses. Even though these results suggested that ALVAC does not elicit Ag-specific CTLs, immunization with ALVAC vaccines against other Ags efficiently induced CTL responses. Our data show that the capacity of ALVAC vaccines to elicit CTL immunity against transgene-encoded Ags critically depends on the presence of highly immunogenic CTL epitopes in these Ags. This consideration needs to be taken into account with respect to the design and evaluation of vaccination strategies that use ALVAC-based vaccine.  相似文献   

10.
Calreticulin exposure dictates the immunogenicity of cancer cell death   总被引:1,自引:0,他引:1  
Anthracyclin-treated tumor cells are particularly effective in eliciting an anticancer immune response, whereas other DNA-damaging agents such as etoposide and mitomycin C do not induce immunogenic cell death. Here we show that anthracyclins induce the rapid, preapoptotic translocation of calreticulin (CRT) to the cell surface. Blockade or knockdown of CRT suppressed the phagocytosis of anthracyclin-treated tumor cells by dendritic cells and abolished their immunogenicity in mice. The anthracyclin-induced CRT translocation was mimicked by inhibition of the protein phosphatase 1/GADD34 complex. Administration of recombinant CRT or inhibitors of protein phosphatase 1/GADD34 restored the immunogenicity of cell death elicited by etoposide and mitomycin C, and enhanced their antitumor effects in vivo. These data identify CRT as a key feature determining anticancer immune responses and delineate a possible strategy for immunogenic chemotherapy.  相似文献   

11.
细胞焦亡是一种调节性细胞死亡方式。Gasdermine(GSDMs)是一类执行细胞焦亡的胞内蛋白质。虽然GSDMs表达后的完整蛋白质不具有活性,但能被某些蛋白水解酶激活。被激活的GSDMs N端在质膜上穿孔,导致细胞裂解,引起细胞内的促炎分子及损伤相关分子模式(danger-associated molecular patterns,DAMPs)迅速有效地从焦亡细胞中释放,从而引发炎症和免疫反应。焦亡细胞促进抗肿瘤免疫作用可能涉及细胞毒性T淋巴细胞对肿瘤细胞的杀伤。本文介绍GSDMs介导的细胞焦亡及细胞焦亡过程中引发促炎症和免疫反应的关键分子,并且探讨细胞焦亡对肿瘤治疗的有利及不利因素,以期更好地了解细胞焦亡对肿瘤免疫微环境的影响及对肿瘤免疫治疗的作用,有助于促进恶性肿瘤治疗策略的改进。  相似文献   

12.
Despite aggressive surgery, radiation therapy, and chemotherapy, glioblastoma multiforme (GBM) is refractory to therapy, recurs quickly, and results in a median survival time of only 14 months. The modulation of the apoptotic receptor Fas with cytotoxic agents could potentiate the response to therapy. However, Fas ligand (FasL) is not expressed in the brain and therefore this Fas-inducing cell death mechanism cannot be utilized. Vaccination of patients with gliomas has shown promising responses. In animal studies, brain tumors of vaccinated mice were infiltrated with activated T cells. Since activated immune cells express FasL, we hypothesized that combination of immunotherapy with chemotherapy can activate Fas signaling, which could be responsible for a synergistic or additive effect of the combination. When we treated the human glioma cell line U-87 and GBM tumor cells isolated from patients with TPT, Fas was up regulated. Subsequent administration of soluble Fas ligand (sFasL) to treated cells significantly increased their cell death indicating that these Fas receptors were functional. Similar effect was observed when CD3+ T cells were used as a source of the FasL, indicating that the up regulated Fas expression on glioma cells increases their susceptibility to cytotoxic T cell killing. This additive effect was not observed when glioma cells were pre-treated with temozolomide, which was unable to increase Fas expression in tumor. Inhibition of FasL activity with the antagonistic antibody Nok-1 mitigated these effects confirming that these responses were specifically mediated by the Fas-FasL interaction. Furthermore, the CD3+ T cells co-cultured with topotecan treated U-87 and autologous GBM tumor cells showed a significant increase in expression in IFN-γ, a key cytokine produced by activated T cells, and accordingly enhanced tumor cytotoxicity. Based on our data we conclude that drugs, such as topotecan, which cause up regulation of Fas on glioma cells can be potentially exploited with immunotherapy to enhance immune clearance of tumors via Fas signaling. Jun Wei and Guillermo DeAngulo are Co-lead authors.  相似文献   

13.
Photodynamic therapy (PDT) was discovered more than 100 years ago. Since then, many protocols and agents for PDT have been proposed for the treatment of several types of cancer. Traditionally, cell death induced by PDT was categorized into three types: apoptosis, cell death associated with autophagy, and necrosis. However, with the discovery of several other regulated cell death modalities in recent years, it has become clear that this is a rather simple understanding of the mechanisms of action of PDT. New observations revealed that cancer cells exposed to PDT can pass through various non-conventional cell death pathways, such as paraptosis, parthanatos, mitotic catastrophe, pyroptosis, necroptosis, and ferroptosis. Nowadays, immunogenic cell death (ICD) has become one of the most promising ways to eradicate tumor cells by activation of the T-cell adaptive immune response and induction of long-term immunological memory. ICD can be triggered by many anti-cancer treatment methods, including PDT. In this review, we critically discuss recent findings on the non-conventional cell death mechanisms triggered by PDT. Next, we emphasize the role and contribution of ICD in these PDT-induced non-conventional cell death modalities. Finally, we discuss the obstacles and propose several areas of research that will help to overcome these challenges and lead to the development of highly effective anti-cancer therapy based on PDT.Subject terms: Cancer immunotherapy, Cell death and immune response  相似文献   

14.
Several potential vaccines have been evaluated for the treatment of patients with renal cell carcinoma (RCC). They include dendritic cells pulsed with tumor lysate, a dendritic cell-tumor cell hybrid, irradiated tumor cells admixed with adjuvants, and a heat shock protein-peptide complex. Promising results have been obtained in several early clinical trials, but issues of tumor immunosuppression and lack of identified tumor-associated antigens must be addressed before vaccine therapy can be applied successfully in advanced RCC. In this patient population, vaccine therapy will likely be required in combination with other forms of immunotherapy, such as interleukin-2 and thalidomide. In contrast, vaccine therapy alone may be sufficient for high-risk patients in the adjuvant setting.  相似文献   

15.
Immunogenic cell death is characterized by damage-associated molecular patterns, which can enhance the maturation and antigen uptake of dendritic cells. Shikonin, an anti-inflammatory and antitumor phytochemical, was exploited here as an adjuvant for dendritic cell-based cancer vaccines via induction of immunogenic cell death. Shikonin can effectively activate both receptor- and mitochondria-mediated apoptosis and increase the expression of all five tested damage-associated molecular patterns in the resultant tumor cell lysates. The combination treatment with damage-associated molecular patterns and LPS activates dendritic cells to a high maturation status and enhances the priming of Th1/Th17 effector cells. Shikonin-tumor cell lysate-loaded mature dendritic cells exhibit a high level of CD86 and MHC class II and activate Th1 cells. The shikonin-tumor cell lysate-loaded dendritic cell vaccines result in a strong induction of cytotoxic activity of splenocytes against target tumor cells, a retardation in tumor growth, and an increase in the survival of test mice. The much enhanced immunogenicity and efficacy of the current cancer vaccine formulation, that is, the use of shikonin-treated tumor cells as cell lysates for the pulse of dendritic cells in culture, may suggest a new ex vivo approach for developing individualized, dendritic cells-based anticancer vaccines.  相似文献   

16.
The manner in which cells die is believed to have a major impact on the nature of immune responses to their released Ags. In this study, we present the first direct analysis of tumor-specific immune responses to in vivo occurring tumor cell death through apoptosis or necrosis. Mice bearing thymidine kinase-transfected tumors were treated either with ganciclovir to induce tumor cell apoptosis in vivo or a vascular targeting agent, ZD6126, to induce tumor cell necrosis in vivo. In contrast to tumor apoptosis, induction of necrosis reduced the frequency and impaired the function of tumor-specific CD8(+) T cells. Adoptive transfer of lymphocytes from mice with apoptotic tumors into tumor-challenged mice resulted in a significant tumor protection, which was absent when splenocytes were transferred from mice with necrotic tumors. Anti-CD40 treatment reversed impaired Ag-specific CD8(+) T cell responses in these mice. These observations have not only fundamental importance for the development of immunotherapy protocols but also help to understand the underlying mechanism of in vivo immune responses to tumor cell death.  相似文献   

17.
The ultimate goal of most anti-tumor therapies is to kill tumor cells. While most of the attention in cancer therapy has been towards enhancing the death of tumor cells, the effect of dying tumors on the immune system has been less studied. Recent studies have suggested that cell death induced by different agents may have distinct consequences for the immune system. One of the immunogenic signals may be the expression of heat shock proteins on dying tumor cells under certain settings. For example, bortezomib (a proteasome inhibitor) induces the expression of heat shock protein 90 (hsp90) on the surface of dying human myeloma tumor cells. Recognition of such tumor cells by antigen presenting dendritic cells leads to the generation of anti-tumor T cells. Harnessing the properties of some anti-tumor agents to induce immunogenic death of tumor cells may facilitate the recruitment of adaptive immunity and promote the durability of anti-tumor effects.  相似文献   

18.
Certain short peptides do not occur in humans and are rare or non-existent in the universal proteome. Antigens that contain rare amino acid sequences are in general highly immunogenic and may activate different arms of the immune system. We first generated a list of rare, semi-common, and common 5-mer peptides using bioinformatics tools to analyze the UniProtKB database. Experimental observations indicated that rare and semi-common 5-mers generated stronger cellular responses in comparison with common-occurring sequences. We hypothesized that the biological process responsible for this enhanced immunogenicity could be used to positively modulate immune responses with potential application for vaccine development. Initially, twelve rare 5-mers, 9-mers, and 13-mers were incorporated in frame at the end of an H5N1 hemagglutinin (HA) antigen and expressed from a DNA vaccine. The presence of some 5-mer peptides induced improved immune responses. Adding one 5-mer peptide exogenously also offered improved clinical outcome and/or survival against a lethal H5N1 or H1N1 influenza virus challenge in BALB/c mice and ferrets, respectively. Interestingly, enhanced anti-HBsAg antibody production by up to 25-fold in combination with a commercial Hepatitis B vaccine (Engerix-B, GSK) was also observed in BALB/c mice. Mechanistically, NK cell activation and dependency was observed with enhancing peptides ex vivo and in NK-depleted mice. Overall, the data suggest that rare or non-existent oligopeptides can be developed as immunomodulators and supports the further evaluation of some 5-mer peptides as potential vaccine adjuvants.  相似文献   

19.
Chemoradiotherapy can induce immunogenic cell death, triggering danger signals such as high-mobility group box 1 protein, and resulting in T-cell immunity. This concept can potentially be harnessed for clinical therapy to enhance tumor-specific immunity. There is however limited information to translate this theory directly in a clinical setting. In this review, we will discuss and summarize molecular and cellular mechanisms underlying immunogenic tumor cell death induced by chemoradiotherapy, with emphasis on a clinical translation.  相似文献   

20.
In the last decade, it has become clear that anti-cancer therapy is more successful when it can also induce an immunogenic form of cancer cell death (ICD). ICD is an umbrella term covering several cell death modalities, including apoptosis and necroptosis. In general, ICD is characterized by the emission of damage-associated molecular patterns (DAMPs) and/or cytokines/chemokines, leading to the induction of strong anti-tumor immune responses. In experimental cancer therapy, new observations indicate that the immunogenicity of dying cancer cells can be improved by the use of biomaterials. In this review, after a brief overview of the basic principles of the concept of ICD and discussion of the potential use of DAMPs as biomarkers of therapy efficacy, we discuss an emerging role of nanomaterials as a promising strategy to modulate the immunogenicity of cancer cell death. We address how nanocarriers can be used to increase the immunogenicity of ICD and then turn our attention to their dual action. Nanocarriers can be used to increase the immunogenicity of dying cancer cells and to reduce the side effects of chemotherapy. Future studies will show whether biomaterials are truly an optimal strategy to modulate the immunogenicity of dying cancer cells and will provide the insights needed for the development of novel treatment strategies for cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号