首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Foliage composition, photosynthetic area index (PAI) and radiation interception were measured for crop canopies of leafless (var. Filby), semi-leafless (var. BS3) and leafed (var. Birte) peas (Pisum sativum). Tendrils and petioles contributed more than 60% of total leaf area for leafless peas but less than 30% for semileafless and leafed pea canopies. PAI was related to radiation interception by calculating attenuation coefficients which indicated that leafless peas intercepted more radiation per unit PAI than either semi-leafless or leafed peas. Data interpretation, however, was complicated because of difficulties in estimating the tendril and petiole surface area contribution to PAI. Radiation interception was related to dry matter accumulation by calculating photosynthetic efficiencies. Leafless and semi-leafless peas converted intercepted radiation into dry matter as efficiently as leafed peas. Under conditions of moisture stress, leafed and leafless peas both intercepted radiation more effectively but converted it into dry matter with reduced photosynthetic efficiency.  相似文献   

2.
Okra-leaf cotton (Gossypium hirsutum L.) types have been reputed to produce equal or higher amounts of lint yield than normal-leaf types, while intercepting less or similar amounts of radiation. In this field study, okra- and normal-leaf cotton isolines were compared for their efficiency to produce dry matter utilizing intercepted radiation. At three weeks after first flower, the two leaf-shape isolines produced similar amounts of dry matter, with the okra-leaf type partitioning a larger fraction to fruiting organs. However, at the end of the season no differences in lint yield, yield components and fiber-quality properties were recorded between the two isolines. Fractional light interception throughout the period of the study was greater for the normal-leaf type compared to the okra-leaf type. The okra-leaf isoline utilized intercepted radiation more efficiently to produce dry matter. Values of radiation use efficiency were estimated at 1.897 and 2.636 g MJ−1 of intercepted photosynthetically active radiation for the normal- and okra-leaf types, respectively. Growth chamber studies revealed similar single leaf carbon exchange rates, therefore radiation use efficiency differences between the leaf shape isolines could be attributed to light interception characteristics.  相似文献   

3.
Faba beans were grown under various shading treatments at densities of 20 and 60 plants m-2. The amount of PAR absorbed by each treatment was estimated from measured leaf area index. The conversion factor (E, g MJ-1) relating dry matter production to absorbed PAR increased as shading increased. Application or removal of shade changed E rapidly, though there was some evidence for an increased value of ? persisting after removal of shade. Differences in dry matter production between the two years were due to as much to differences in ? as to changes in the amount of light absorbed. Increased plant density increased PAR absorbed but hardly affected e.  相似文献   

4.
Solanum sisymbriifolium is an interesting trap crop to control potato cyst nematodes. A series of field experiments was carried out in the Netherlands between 2001 and 2003 to test its performance under field conditions. Experimental factors included sowing time, sowing density and site. Rate of germination, plant establishment and change over time in light interception were monitored. Growth analysis was performed at 7 and 14 weeks after emergence, and dry weight of component plant parts was determined. Time to 50% emergence was 36–38 days for planting at early April and declined to minimum values of ca 8–11 days when planting took place in June, July or the first week of August. When planted later, time to 50% germination increased again. Time to 50% light interception showed a similar trend with sowing time; minimum time was 35–40 days for planting between June and half of July. Planting before May did not advance crop growth. Crop performance was very variable across years and sites when planted later than the end of July to beginning of August. Dry matter accumulation up to 400 g m?2 was found at 7 weeks after emergence and up to 1040 g m?2 after 14 weeks. At 7 weeks after emergence, dry matter production increased with planting density (range 50–400 m?2), but no statistically significant differences were found after 14 weeks. A seed rate of 100 m?2 seems generally sufficient. Radiation use efficiency was 1.69 g MJ?1 PAR (SE = 0.0208). Dry matter accumulation (2002–2003) was somewhat higher in Wageningen (51°58’N) on light sandy soil than in Flevoland (52°31′N) on clay soil and in Drenthe (52°51′N) on reclaimed peat soil. It is concluded that above‐ground growth of S. sisymbriifolium in the Netherlands is adequate if planted between early May and the end of July.  相似文献   

5.
Abstract Young willow plants (Salix‘aquatica gigantea’) were grown in hydroponic culture media, and 14C–labelled sodium bicarbonate was fed to the roots. Uptake of 14C-label in the leaves and shoots was assayed after two different feeding periods (6 h, 48 h). Even during the shortest feeding period, 14C-label had been transferred to the leaves and shoots. Compared with the longer feeding period, after the 6 h feeding period more label was in the form of acid-labile products, whereas after the 48 h feeding period most of the label was in acid-stable products. A second experiment was designed to test whether carbon uptake by roots affects the growth of young willow plants. Uniform rooted cuttings were grown in hydroponic cultures at five different levels of bicarbonate: 0, 0.015, 0.147 0.737, and 1.473 mol m?3 NaHCO3. After a 4-week growing period we determined the biomass of leaves, shoots, roots and cuttings. Production of total dry matter (shoots, leaves and roots) increased with increasing bicarbonate concentration. Saturation of dry matter production was reached at 0.737 mol m?3 NaHCO3, but a higher concentration of NaHCO3 (1.470 mol m?3) caused a slight decrease in the dry matter production. At 0.737 mol m?3 NaHCO3 the total dry weight increased by 31.1%, which suggests that uptake of dissolved carbon dioxide through the roots might affect carbon budgeting in young willow plants.  相似文献   

6.
Radiation interception, dry matter accumulation, flower and pod production and yield were measured for a semi-leafless pea (Pisum sativum) breeding selection (BS3) on three contrasting sites. Differences in soil moisture availability were largely responsible for a three-fold difference in yield between sites. Radiation interception was related to dry matter production by calculating photosynthetic efficiencies. In the absence of lodging, crop canopies converted intercepted radiation into dry matter with constant efficiency (?) throughout the season; under conditions of moisture stress ? was reduced. Serious lodging during the post-flowering period on one site resulted in a mean seasonal photosynthetic efficiency (?) 17% lower than ?. The ability of the pea crop canopy to intercept radiation was related also to yield components.  相似文献   

7.
Crop growth largely depends on radiation. Radiation is the main impetus for photosynthesis and movement of photosynthates from source to sink. Therefore, identification of the optimum sowing windows and suitable cultivars for efficient utilization of radiation is of prime importance. A field study was conducted in red clay soil during 2014 and 2015 Kharif season and the treatments consisted of three genotypes and three sowing windows by using randomized complete block design with three replications. The effect of genotypes and sowing windows was found significant with respect to number of trifoliate leaves, leaf area ratio, dry matter production, grain numbers, pod length, test weight, grain yield, and stover yield of guar during 2014 as compared to 2015 sown crop. Statistically significant plant height, number of trifoliate leaves, number of branches, leaf area ratio, absolute growth rate, leaf area index, dry matter, grain number, pod length, grain yield, stover yield and a higher cumulative radiation interception were recorded with 15th August sown crop as compared to other sowing windows. The plant height, number of trifoliate leaves, number of branches, leaf area ratio, absolute growth rate, leaf area index, dry matter, grain number, pod length, grain yield, stover yield and maximum cumulative interception of radiation were significant with RGC-1003 as compared to RGC-936 and HG-365. It is observed that the incident PAR to dry matter accumulation conversion efficiency was varied with cultivars and different sowing windows which ranges from 0.74 g MJ−1 to 0.79 g MJ−1.  相似文献   

8.
Growth and shoot: root ratio of seedlings in relation to nutrient availability   总被引:30,自引:2,他引:28  
Ericsson  Tom 《Plant and Soil》1995,168(1):205-214
The influence of mineral nutrient availability, light intensity and CO2 on growth and shoot:root ratio in young plants is reviewed. Special emphasis in this evaluation is given to data from laboratory experiments with small Betula pendula plants, in which the concept of steady-state nutrition has been applied.Three distinctly different dry matter allocation patterns were observed when growth was limited by the availability of mineral nutrients: 1, Root growth was favoured when N, P or S were the major growth constraints. 2, The opposite pattern obtained when K, Mg and Mn restricted growth. 3, Shortage of Ca, Fe and Zn had almost no effect on the shoot:root ratio. The light regime had no effect on dry matter allocation except at very low photon flux densities (< 6.5 mol m-2 day-1), in which a small decrease in the root fraction was observed. Shortage of CO2, on the other hand, strongly decreased root development, while an increase of the atmospheric CO2 concentration had no influence on dry matter partitioning. An increased allocation of dry matter to below-ground parts was associated with an increased amount of starch in the tissues. Depletion of the carbohydrate stores occurred under all conditions in which root development was inhibited. It is concluded that the internal balance between labile nitrogen and carbon in the root and the shoot system determines how dry matter is being partitioned in the plant. The consistency of this statement with literature data and existing models for shoot:root regulation is examined.  相似文献   

9.
A growth model ofPhragmites australis was verified using two independent sets of published field data. The model simulates the growth pattern of a well-established, monospecific stand ofP. australis in the absence of genetic diversity and environmental stresses of mainly nutrient and water deficiency. The model formulated using first order differential equations was combined with plant phenology and comprises five subroutines in which photosynthetically active radiation, shoot, root, rhizome and new rhizome biomass are calculated. Using the model, experimental results were reproduced within reasonable limits having concordance correlation coefficients of more than 0.75 for 70% of the output parameters, which was the main objective of the study. The modelled efficiencies of PAR were 7.15% and 3.09%, as opposed to 7.7% and 2.53% in experimental estimations, for Loch of Forfar and Loch of Balgavies, respectively. Production and seasonal fluxes of dry matter ofP. australis in Scottish lochs were estimated using the modelled quantities for the 1975 growing season in g m−2. They showed that 31% and 37% of total net photosynthate translocated to rhizomes before shoot senescence began in Loch of Forfar and Loch of Balgavies, respectively. Also in both lochs approximately 45% of total downward translocation came from accumulated shoot dry matter during senescence, while the rest came from photosynthesis before the shoots started to senesce.  相似文献   

10.
The effect of the cassava green mite Mononychellus tanajoa on the growth and yield of cassava Manihot esculenta was studied over a 10-month period in two field trials near Lake Victoria in Kenya. One plot was maintained free of mites by means of acaricide, while the other was artificially infested.The highest population density of M. tanajoa occurred during the dry season. A maximum leaf area index (LAI) of about 2 was reached at the onset of the dry season. The total leaf area of mite infested plants was reduced compared with uninfested plants during the dry spell. During the following rainy season infested plants recovered and attained the same leaf area as uninfested plants. A multiple regression model predicting the leaf area showed that 58% of the seasonal variation could be explained by plant age, soil water, and leaf injury.The net growth rate of infested plants was lower than that of uninfested plants. Maximum values of 21 (infested plants) and 49 (uninfested plants) g m-2 week-1 were attained at the onset of the second rainy season. No difference was found between uninfested and infested plants with respect to net assimilation rates per unit leaf area during the dry season. The net assimilation rates reached a maximum almost at the same time as the growth rates, but the infested plants peaked slightly earlier and at a lower level than the uninfested plants. M. tanajoa did not affect the relative allocation of dry matter into stems and storage roots, but the absolute allocation of dry matter declined with increasing mite injury. Thus, after 10 months the dry matter of infested plants was reduced by 29% and 21% for storage roots and stems, respectively, compared with the uninfested plants.  相似文献   

11.
 Absorption of light and radiation use efficiency (RUE) were measured in a dense stand of the seagrass Amphibolis griffithii in Warnbro Sound, a temperate marine embayment in southern Western Australia. Total light intercepted by the canopy was measured and compared with dry weight leaf production, under both summer and winter conditions. RUE was found to be higher in winter (1.56 g MJ–1) than summer (1.01 g MJ–1). These values are very similar to values measured for annual crop plants and emphasise the value of applying theory developed for terrestrial crop plants to seagrasses. Canopy extinction coefficients were 0.93 m–1 in winter and 0.44 m–1 in summer. There were large differences in hours above saturating irradiance (H sat) between the top (Hsat = 5 h 14 min) and base (18 min) of the canopy in winter. Energy flows in A. griffithii suggest that this species is highly susceptible to short-term perturbations in incident irradience during the winter period as the energy stored within the rhizomes is small relative to daily respiratory demands. Received: 5 October 1995 / Accepted: 14 August 1996  相似文献   

12.
Mohamed, H. A., Clark, J. A. and Ong, C. K. 1988. Genotypicdifferences in the temperature responses of tropical crops.III. Light interception and dry matter production of pearl millet(Pennisetum typhoides S. & H.).—J. exp. Bot. 39: 1137–1143. Leaf area development, light interception and dry matter productionof four contrasting pearl millet cultivars were investigatedat mean air temperatures of 19.5, 21, 26 and 31?C. Growth wasslowest as 19.5?C and fastest at 31?C. The canopies of the cultivarsvaried considerably with regard to their light transmissioncoefficients (K1), from 0.47 for Sanio to 0.23 for Oasis andin their mean efficiency of energy conversion (e), from 1.0to 2.7 g MJ–1. The ranking of the cultivars in these respectsis consistent with those for germination and early establishmentand early establishment reported in the preceding papers. Key words: Light, dry matter production, millet  相似文献   

13.
《Biomass》1990,21(4):273-284
A field experiment was conducted at the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) Center, Patancheru, India to study photosynthetically active radiation (PAR) interception and dry matter production relationships in pearl millet (Pennisetum americanum (L.) Leeke). Two pearl millet genotypes, BJ 104 (G1) and ICH 226 (G2) were sown at three planting geometries obtained by using combinations of row and plant spacings (S1: 37·5 cm × 26·6 cm; S2: 75·0 cm × 13·3 cm; S3: 150·0 cm × 6·6 cm) such that plant population was constant at 100 000 ha−1 in all treatments. Cumulative intercepted PAR was maximum (330 MJ m−2) in G2S2 and minimum (268 MJ m−2) in G1S3. Conversion efficiency values ranged from 1·87 g MJ−1 in G1S2 to 2·32 g MJ−1 in G2S3. Final above-ground dry matter followed the pattern of cumulative intercepted PAR and maximum dry matter (7·22 Mg ha−1) was produced by G2S2 while G1S3 produced minimum dry matter (4·97 Mg ha−1).  相似文献   

14.
Resource partitioning between shoot growth, storage and reproduction is poorly understood in many clonal plant species. This study documents seasonal patterns of growth, 14C-labelled photoassimilate distribution and remobilization in the invasive rhizomatous species Fallopia japonica (Japanese knotweed). Biomass accumulation above- and below-ground in F. japonica was rapid. By September, rhizome biomass had increased 18-fold from the initial harvest in May (representing 48% of total plant biomass) and this was maintained over winter. Patterns of 14C allocation from F. japonica shoots labelled at different times of year show that as the season progressed, the rhizomes became an increasingly important sink for current assimilate (the percentage of 14C recovered from rhizomes was 35% in August and 67% in September) and the corresponding retention of assimilate by established shoots declined. The percentage of 14C exported to roots was greatest in August. Relatively little photoassimilate was exported to other shoots on the plant, or to flowers. Recycling of photoassimilate was fairly tight in this species and 14C fixed by shoots in early May 1999 or September 1999 was remobilized to the rhizome prior to shoot senescence and death. Some of this 14C was then remobilized to new shoots early the following spring. These characteristics may contribute to the success of F. japonica in colonizing a variety of contrasting habitats, often with serious management implications.  相似文献   

15.
Above- and below-ground biomass of the emergent Pontederia cordata and the floating-leaved Potamogeton epihydrus was measured during the growing season in three interconnected rivers in Connecticut, U.S.A. Maximum biomass of Pontederia, averaging 1,212 g m-2 dry weight (524 g m-2 above-ground, 688 g m-2 below-ground), occurred 100–150 days after major spring growth began. Peak biomass of Potamogeton averaged 94 g m-2 (81 g m-2 above-ground, 14 g m-2 below-ground) and was attained in 45–85 days. New growth of Pontederia in spring arose from, and was heavily subsidized by, the large biomass of living overwintered rhizomes and roots, which averaged 497 g m-2 in early June. This new growth appeared to have been produced in only one season, but in reality it contained energy fixed the current season, plus energy carried over from previous years. Net production of Pontederia calculated for only one growing season averaged 1,049 g m-2. Potamogeton also perennated from rhizomes, but the biomass of these organs in spring was low, averaging 11 g m-2 in late May. Biomass of Potamogeton in summer consisted primarily of tissue produced during the current season. Rhizomes and roots comprised a much greater proportion of the plant in Pontederia than in Potamogeton. The ratio of new living below-ground/above-ground biomass of Pontederia rose from zero in spring to an average of 1.71 in autumn. For Potamogeton, the below-ground/above-ground ratio averaged 0.37 in late spring, 0.20 in midsummer, and 0.41 in autumn. The overwintered below-ground biomass of Pontederia alive in spring was 42–79% of the new living below-ground biomass the previous autumn. Net photosynthetic efficiency during the period between initiation of major growth in spring and attainment of peak biomass averaged 1.3% for Pontederia and 0.3% for Potamogeton.  相似文献   

16.
In order to predict the potential impacts of global change, it is important to understand the impact of increasing global atmospheric [CO2] on the growth and yield of crop plants. The objectives of this study were to determine the interaction of N fertilization rates and atmospheric [CO2] on radiation interception and radiation-use efficiency of rice (Oryza sativa L. cv. IR72) grown under tropical field conditions. Rice plants were grown inside open top chambers in a lowland rice field at the International Rice Research Institute in the Philippines at ambient (about 350 μmol mol-1) or elevated (about 600 μmol mol-1 during the 1993 wet season and 700 μmol mol-1 during the 1994 dry season) in combination with three levels of applied N (0, 50 or 100 kg N ha-1 in the wet season; 0, 90 or 200 kg N ha-1 in the dry season). Light interception was not directly affected by [CO2], but elevated [CO2] indirectly increased light interception through increasing total absorbed N. Plant N requirement for radiation interception was similar for rice grown under ambient [CO2] or elevated [CO2] treatments. The conversion efficiency of intercepted radiation to dry matter, radiation-use efficiency (RUE), was about 35% greater at elevated [CO2] than at ambient [CO2]. The relationship between leaf N and RUE was curvilinear. At ambient [CO2], RUE was fairly stable across levels of leaf N, but leaf N less than about 2.5% resulted in lower RUE for plants grown with elevated [CO2] than for plant grown at ambient [CO2]. Decreased leaf N with increased [CO2], therefore decreased RUE of rice plants grown at elevated [CO2]. When predicting responses of rice to elevated [CO2], RUE should be adjusted with a decrease in leaf N. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
Forest structure and biomass were determined in a mangrove stand dominated by Bruguiera gymnorrhiza (L.) Lam. Trees in 5 m2 sample plots were harvested at ground level and then further cut into 1 m strata for separation into living wood, dead wood, leaves, reproductive material and pneumatophores. Mean above-ground living biomass was calculated at 94.49±7.83 t dry matter ha–1, while dead wood contributed a mean mass of 7.63±0.89 t dry matter ha–1. Excavations of roots yielded a below-ground biomass of 9.67 t dry matter ha–1 which represented only 9.8% of the above-ground value. There was a mean density of 4700 living stems ha–1 with plant heights ranging from 0.57 m to 5.80 m. Mean LAI was 4.95±0.80. As a basis for estimating standing biomass, regression lines were fitted to biomass values from individual trees of B. gymnorrhiza and Avicennia marina (Forssk.) Vierh. of various sizes. A comparison of these relationships with methods used by previous workers for estimating biomass suggests that most other methods cannot be applied without modification for local stands of mangroves.  相似文献   

18.
Maize was grown in two densities, 2–47 or 4–94 plants m-2, and the following treatments imposed: untreated, plants partly defoliated 51 days after sowing, and alternate plants in a row partly defoliated 44 days after sowing. Plants flowered about 82 days after sowing. Leaf area was decreased by 60–64% by defoliation on day 51. Defoliation resulted in decreases in grain yield and grain number of 6–17%, though when alternate plants were defoliated in the higher density there was a substantial decrease in yield and number of grains in defoliated plants, which was largely offset by an increase in adjacent intact plants. When plants were defoliated on day 51 subsequent growth in leaf area was similar to, and that in leaf weight nearly as large as that in untreated plants, while increase in stem weight was substantially less than in untreated plants. By the time of flowering untreated and defoliated plots differed by c. 30% in leaf area. Increments of dry matter after flowering differed by c. 15% between untreated and defoliated plots. The fraction of these increments which entered the grain was c. 90% in both untreated and defoliated plots. When alternate plants in the row were partly defoliated on day 44 their subsequent increase in leaf area was probably 5–16% less than that of the adjacent intact plants. Increments of dry matter after flowering of plots with alternate plants defoliated were 93–95 % of those of untreated plots; leaf efficiency after flowering was slightly greater than in untreated plots. The fraction of the dry matter increment after flowering which entered the grain was c. 88 % in both intact and defoliated plants of the small density, but was 94% in intact plants and 86% in defoliated plants of the large density.  相似文献   

19.
Growth and zinc uptake of the hyperaccumulator species Thlaspi caerulescens J. & C. Presl and the non-hyperaccumulator species Thlaspi ochroleucum Boiss. & Heldr. were compared in solution culture experiments. T. caerulescens was able to tolerate 500 mmol m?3 (32.5 g m?3) Zn in solution without growth reduction, and up to 1000 mmol m?3 (65 g m?3) Zn without showing visible toxic symptoms but with a 25% decrease in dry matter (DM) yield. Up to 28 g kg?1 of Zn in shoot DM was obtained in healthy plants of T. caerulescens. In contrast, T. ochroleucum suffered severe phytotoxicity at 500 mmol m?3 Zn. Marked differences were shown in Zn uptake, distribution and redistribution between the two species. T. caerulescens had much higher concentrations of Zn in the shoots, whereas T. ochroleucum accumulated higher concentrations of Zn in the roots. When an external supply of 500 mmol m?3 Zn was withheld, 89% of the Zn accumulated previously in the roots of T. caerulescens was transported to the shoots over a 33 d period, whereas in T. ochroleucum only 32% was transported. T. caerulescens was shown to have a greater internal requirement for Zn than other plants. Increasing the supply of Zn from 1 to 10 mmol m?3 gave a 19% increase in the total DM of this species. liven the shoots from the 1 mmol m?3 Zn treatment which showed Zn deficiency contained 10 times greater Zn concentrations than the widely reported critical value for Zn deficiency to occur in many other plant species. The results obtained suggest that strongly expressed constitutive sequestration mechanisms exist in the hyperaccumulator T. caerulescens, which detoxify the large amount of Zn present in shoot tissues and decrease its physiological availability in the cytosol. Both T. caerulescens and T. ochroleucum had constitutively high concentrations of malate in shoots, which were little affected by different Zn treatments. Although malate may play a role in Zn chelation because of the high concentrations present, it cannot explain the species specificity of Zn tolerance and hyperaccumulation.  相似文献   

20.
Abstract. The use of root / shoot ratios to describe allocation of dry weight to structures for capturing soil resources and light is limited due to other functions of the root and shoot such as support and storage. The ratio of fine-root length to leaf area (RLA) provides a better expression of the relative sizes of above-and below-ground exchange surfaces. Dry matter partitioning, leaf area and root lengths were determined for five species of chalk grassland perennial (Carex flacca, Cirsium acaule, Festuca ovina, Leontodon hispidus and Scabiosa columbaria) by extraction of soil cores from an intact sward. The forb species had a greater proportion of their dry matter below-ground. Interspecific variation in values of RLA was considerable, mean values ranging from 137 m/m2 in Cirsium acaule to ca. 27 000 m/m2 for Festuca ovina. The implications of this interspecific variation in RLA for the competitive interactions in infertile calcareous grasslands are discussed in relation to phenology and internal nutrient cycling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号