首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper describes the cloning and functional analysis of chicory (Cichorium intybus L.) fructan 1-exohydrolase I cDNA (1-FEH I). To our knowledge it is the first plant FEH cloned. Full-length cDNA was obtained by a combination of RT-PCR, 5' and 3' RACE using primers based on N-terminal and conserved amino acid sequences. Electrophoretically purified 1-FEH I enzyme was further analyzed by in-gel trypsin digestion followed by matrix-assisted laser desorption ionization and electrospray time-of-flight tandem mass spectrometry. Functionality of the cDNA was demonstrated by heterologous expression in potato tubers. 1-FEH I takes a new, distinct position in the phylogenetic tree of plant glycosyl hydrolases being more homologous to cell-wall invertases (44-53%) than to vacuolar invertases (38-41%) and fructosyl transferases (33-38%). The 1-FEH I enzyme could not be purified from the apoplastic fluid at significantly higher levels than can be explained by cellular leakage. These and other data suggest a vacuolar localization for 1-FEH I. Also, the pI of the enzyme (6.5) is lower than expected from a typical cell-wall invertase. Unlike plant fructosyl transferases that are believed to have evolved from a vacuolar invertase, 1-FEH I might have evolved from a cell-wall invertase-like ancestor gene that later obtained a vacuolar targeting signal. 1-FEH I mRNA quantities increase in the roots throughout autumn, and especially when roots are stored at low temperature.  相似文献   

2.
Fructans are fructose polymers that are synthesized from sucrose by fructosyltransferases. Fructosyltransferases are present in unrelated plant families suggesting a polyphyletic origin for their transglycosylation activity. Based on sequence comparisons and enzymatic properties, fructosyltransferases are proposed to have evolved from vacuolar invertases. Between 1% and 5% of the total activity of vacuolar invertase is transglycosylating activity. We investigated the nature of the changes that can convert a hydrolysing invertase into a transglycosylating enzyme. Remarkably, replacing 33 amino acids (amino acids 143-175) corresponding to the N-terminus of the mature onion vacuolar invertase with the corresponding region of onion fructan:fructan 6G-fructosyltransferase (6G-FFT) led to a shift in activity from hydrolysis of sucrose towards transglycosylation between two sucrose molecules. The substituted N-terminal region contains the sucrose-binding box that harbours the nucleophile involved in sucrose hydrolysis (Asp164). Subsequent research into the individual amino acids responsible for the enhanced transglycosylation activity revealed that mutations in amino acids Trp161 and Asn166, can give rise to a shift towards polymerase activity. Changing the amino acid at either of these positions in the sucrose-binding box increases the transglycosylation capacity of invertases two- to threefold compared to wild type. Combining the two mutations had an additive effect on transglycosylation ability, resulting in an approximately fourfold enhancement. The mutations generated correspond with natural variation present in the sucrose-binding boxes of vacuolar invertases and fructosyltransferases. These relatively small changes that increase the transglycosylation capacity of invertases might explain the polyphyletic origin of the fructan accumulation trait.  相似文献   

3.
Inulin metabolism in dicots: chicory as a model system   总被引:13,自引:1,他引:12  
  相似文献   

4.
The hydrolytic plant enzymes of family 32 of glycoside hydrolases (GH32), including acid cell wall type invertases (EC 3.2.1.26), fructan 1-exohydrolases (1-FEH; EC 3.2.1.153) and fructan 6-exohydrolases (6-FEH; EC 3.2.1.154), are very similar at the molecular and structural levels, but are clearly functionally different. The work presented here aims at understanding the evolution of enzyme specificity and functional diversity in this family by means of site-directed mutagenesis. It is demonstrated for the first time that invertase activity can be introduced in an S101L mutant of chicory (Cichorium intybus) 1-FEH IIa by influencing the orientation of Trp 82. At high sucrose and enzyme concentrations, a shift is proposed from a stable inhibitor configuration to an unstable substrate configuration. In the same way, invertase activity was introduced in Beta vulgaris 6-FEH by introducing an acidic amino acid in the vicinity of the acid-base catalyst (F233D mutant), creating a beta-fructofuranosidase type of enzyme with dual activity against sucrose and levan. As single amino acid substitutions can influence the donor substrate specificity of FEHs, it is predicted that plant invertases and FEHs may have diversified by introduction of a very limited number of mutations in the common ancestor.  相似文献   

5.
Fructan (polyfructosylsucrose) is an important storage carbohydrate in many plant families. fructan:fructan 6G-fructosyltransferase (6G-FFT) is a key enzyme in the formation of the inulin neoseries, a type of fructan accumulated by members of the Liliales. We have cloned the 6G-FFT from onion by screening a cDNA library using barley sucrose:fructan 6-fructosyltransferase (6-SFT) as a probe. The deduced amino acid sequence showed a high homology with plant invertases and 6-SFT. Incubation of protein extracts from transgenic tobacco plants with the trisaccharide 1-kestose and sucrose resulted in the formation of neokestose and fructans of the inulin neoseries with a degree of polymerization up to six. Introduction of the onion 6G-FFT into chicory resulted in the synthesis of fructan of the inulin neoseries, in addition to the synthesis of linear inulin.  相似文献   

6.
7.
8.
9.
To determine the relationship between invertase gene expression and glucose and fructose accumulation in ripening tomato fruit, fruit vacuolar invertase cDNA and genomic clones from the cultivated species, Lycopersicon esculentum cv. UC82B, and a wild species, Lycopersicon pimpinellifolium, were isolated and characterized. The coding sequences of all cDNA clones examined are identical. By comparison to the known amino acid sequence of mature L. esculentum fruit vacuolar invertase, a putative signal sequence and putative amino-terminal and carboxy-terminal propeptides were identified in the derived amino acid sequence. Of the residues 42% are identical with those of carrot cell wall invertase. A putative catalytic site and a five-residue motif found in carrot, yeast, and bacterial invertases are also present in the tomato sequence. Minor differences between the nucleotide sequences of the genomic clones from the two tomato species were found in one intron and in the putative regulatory region. The gene appears to be present in one copy per haploid genome. Northern analysis suggests a different temporal pattern of vacuolar invertase mRNA levels during fruit development in the two species, with the invertase mRNA appearing at an earlier stage of fruit development in the wild species. Nucleotide differences found in the putative regulatory regions may be involved in species differences in temporal regulation of this gene, which in turn may contribute to observed differences in hexose accumulation in ripening fruit.  相似文献   

10.
* Fructan:fructan 6G-fructosyltransferase (6G-FFT) catalyses a transfructosylation from fructooligosaccharides to C6 of the glucose residue of sucrose or fructooligosacchrides. In asparagus (Asparagus officinalis), 6G-FFT is important for the synthesis of inulin neoseries fructan. Here, we report the isolation and functional analysis of the gene encoding asparagus 6G-FFT. * A cDNA clone was isolated from asparagus cDNA library. Recombinant protein was produced by expression system of Pichia pastoris. To measure enzymatic activity, recombinant protein was incubated with sucrose, 1-kestose, 1-kestose and sucrose, or neokestose. The reaction products were detected by high performance anion-exchange chromatography. * The deduced amino acid sequence of isolated cDNA was similar to that of fructosyltransferases and vacuolar type invertases from plants. Recombinant protein mainly produced inulin neoseries fructan, such as 1F, 6G-di-beta-D-fructofuranosylsucrose and neokestose. * Recombinant protein demonstrates 6G-FFT activity, and slight fructan:fructan 1-fructosyltransferase (1-FFT) activity. The ratio of 6G-FFT activity to 1-FFT activity was calculated to be 13. The characteristics of the recombinant protein closely resemble those of the 6G-FFT from asparagus roots, except for a difference in accompanying 1-FFT activity.  相似文献   

11.
Plant cell wall invertases and fructan exohydrolases (FEHs) are very closely related enzymes at the molecular and structural level (family 32 of glycoside hydrolases), but they are functionally different and are believed to fulfill distinct roles in plants. Invertases preferentially hydrolyze the glucose (Glc)-fructose (Fru) linkage in sucrose (Suc), whereas plant FEHs have no invertase activity and only split terminal Fru-Fru linkages in fructans. Recently, the three-dimensional structures of Arabidopsis (Arabidopsis thaliana) cell wall Invertase1 (AtcwINV1) and chicory (Cichorium intybus) 1-FEH IIa were resolved. Until now, it remained unknown which amino acid residues determine whether Suc or fructan is used as a donor substrate in the hydrolysis reaction of the glycosidic bond. In this article, we present site-directed mutagenesis-based data on AtcwINV1 showing that the aspartate (Asp)-239 residue fulfills an important role in both binding and hydrolysis of Suc. Moreover, it was found that the presence of a hydrophobic zone at the rim of the active site is important for optimal and stable binding of Suc. Surprisingly, a D239A mutant acted as a 1-FEH, preferentially degrading 1-kestose, indicating that plant FEHs lacking invertase activity could have evolved from a cell wall invertase-type ancestor by a few mutational changes. In general, family 32 and 68 enzymes containing an Asp-239 functional homolog have Suc as a preferential substrate, whereas enzymes lacking this homolog use fructans as a donor substrate. The presence or absence of such an Asp-239 homolog is proposed as a reliable determinant to discriminate between real invertases and defective invertases/FEHs.  相似文献   

12.
13.
14.
15.
16.
Sucrose (Suc):Suc 1-fructosyltransferase (1-SST) is the key enzyme in plant fructan biosynthesis, since it catalyzes de novo fructan synthesis from Suc. We have cloned 1-SST from onion (Allium cepa) by screening a cDNA library using acid invertase from tulip (Tulipa gesneriana) as a probe. Expression assays in tobacco (Nicotiana plumbaginifolia) protoplasts showed the formation of 1-kestose from Suc. In addition, an onion acid invertase clone was isolated from the same cDNA library. Protein extracts of tobacco protoplasts transformed with this clone showed extensive Suc-hydrolyzing activity. Conditions that induced fructan accumulation in onion leaves also induced 1-SST mRNA accumulation, whereas the acid invertase mRNA level decreased. Structurally different fructan molecules could be produced from Suc by a combined incubation of protein extract of protoplasts transformed with 1-SST and protein extract of protoplasts transformed with either the onion fructan:fructan 6G-fructosyltransferase or the barley Suc:fructan 6-fructosyltransferase.  相似文献   

17.
cDNA cloning and expression of a potato (Solanum tuberosum) invertase   总被引:10,自引:0,他引:10  
A cDNA clone encoding an invertase isoenzyme has been isolated from a potato leaf cDNA library. The deduced amino acid sequence shows significant similarities to previously characterised invertases. The highest degree of overall similarity, including the signal peptide sequence, is to carrot cell wall invertase, suggesting that the potato gene encodes an apoplastic enzyme. Expression of the gene, as determined by RT-PCR, is detected in stem and leaf tissue, and at lower levels in tuber, but is absent from roots.  相似文献   

18.
19.
Inulin-type fructans are the simplest and most studied fructans and have become increasingly popular as prebiotic health-improving compounds. A natural variation in the degree of polymerization (DP) of inulins is observed within the family of the Asteraceae. Globe thistle (Echinops ritro), artichoke (Cynara scolymus), and Viguiera discolor biosynthesize fructans with a considerably higher DP than Cichorium intybus (chicory), Helianthus tuberosus (Jerusalem artichoke), and Dahlia variabilis. The higher DP in some species can be explained by the presence of special fructan:fructan 1-fructosyl transferases (high DP 1-FFTs), different from the classical low DP 1-FFTs. Here, the RT-PCR-based cloning of a high DP 1-FFT cDNA from Echinops ritro is described, starting from peptide sequence information derived from the purified native high DP 1-FFT enzyme. The cDNA was successfully expressed in Pichia pastoris. A comparison is made between the mass fingerprints of the native, heterodimeric enzyme and its recombinant, monomeric counterpart (mass fingerprints and kinetical analysis) showing that they have very similar properties. The recombinant enzyme is a functional 1-FFT lacking invertase and 1-SST activities, but shows a small intrinsic 1-FEH activity. The enzyme is capable of producing a high DP inulin pattern in vitro, similar to the one observed in vivo. Depending on conditions, the enzyme is able to produce fructo-oligosaccharides (FOS) as well. Therefore, the enzyme might be suitable for both FOS and high DP inulin production in bioreactors. Alternatively, introduction of the high DP 1-FFT gene in chicory, a crop widely used for inulin extraction, could lead to an increase in DP which is useful for a number of specific industrial applications. 1-FFT expression analysis correlates well with high DP fructan accumulation in vivo, suggesting that the enzyme is responsible for high DP fructan formation in planta.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号