首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. A procedure is described for the purification of an enzyme from Neurospora crassa that has three catalytic functions. These are 1-N-(5′-phosphoribosyl)-ATP pyrophosphohydrolase, 1-N-(5′-phosphoribosyl)-AMP cyclohydrolase and histidinol dehydrogenase (l-histidinol–NAD oxidoreductase, EC 1.1.1.23), and are responsible for the catalysis of reactions 2, 3 and 10 in the histidine pathway. The ratio of these three catalytic activities remains approximately the same throughout the purification procedure. Evidence is presented that the purified preparations contain a single protein exhibiting association–dissociation equilibria.  相似文献   

2.
The two methylation reactions, i.e. caffeate to ferulate (FA) and 5-hydroxyferulate to sinapate (SA), in the biosynthesis of guaiacyl and syringyl lignins in angiosperms were demonstrated to be catalyzed by the same enzyme in bamboo. This follows from the facts that: the ratio (SA/FA) obtained for O-methyltransferase remains constant during purification of the enzyme; chromatography on DEAE-cellulose, Sephadex G100 and G200, and analyses by polyacrylamide gel electrophoresis and isoelectric focusing in pH gradients showed that the two methylating activities belonged to a single enzyme protein; caffeate and 5-hydroxyferulate compete each other in the formation of the enzyme-substrate complex, the latter substrate showing greater affinity for the enzyme. Thus, feedback control may operate at the methylation step, caffeate to FA, in biosynthesis of angiosperm lignin.  相似文献   

3.
Pyrimidine Salvage Pathways In Toxoplasma Gondii   总被引:1,自引:0,他引:1  
ABSTRACT. Pyrimidine salvage enzyme activities in cell-free extracts of Toxoplasma gondii were assayed in order to determine which of these enzyme activities are present in these parasites. Enzyme activities that were detected included phosphoribosyltransferase activity towards uracil (but not cytosine or thymine), nucleoside phosphorylase activity towards uridine, deoxyuridine and thymidine (but not cytidine or deoxycytidine), deaminase activity towards cytidine and deoxycytidine (but not cytosine, cytidine 5'-monophosphate or deoxycytidine 5'-monophosphate), and nucleoside 5'-monophosphate phosphohydrolase activity towards all nucleotides tested. No nucleoside kinase or phosphotransferase activity was detected, indicating that T. gondii lack the ability to directly phosphorylate nucleosides. Toxoplasma gondii appear to have a single non-specific uridine phosphorylase enzyme which can catalyze the reversible phosphorolysis of uridine, deoxyuridine and thymidine, and a single cytidine deaminase activity which can deaminate both cytidine and deoxycytidine. These results indicate that pyrimidine salvage in T. gondii probably occurs via the following reactions: cytidine and deoxycytidine are deaminated by cytidine deaminase to uridine and deoxyuridine, respectively; uridine and deoxyuridine are cleaved to uracil by uridine phosphorylase; and uracil is metabolized to uridine 5'-monophosphate by uracil phosphoribosyltransferase. Thus, uridine 5'-monophosphate is the end-product of both de novo pyrimidine biosynthesis and pyrimidine salvage in T. gondii.  相似文献   

4.
Alkaline phosphatase prepared from mammalian cell cultures was found to have alkaline inorganic pyrophosphatase activity. Both of these activities appear to be associated with a single protein, as demonstrated by: (1) concomitant purification of alkaline phosphatase and alkaline inorganic pyrophosphatase; (2) proportional precipitation of alkaline phosphatase and inorganic pyrophosphatase activities by titrating constant amounts of an enzyme preparation with increasing concentration of antibody; (3) immune electrophoresis, which showed that precipitin bands that have alkaline phosphatase activity also have pyrophosphatase activity; (4) inhibition of pyrophosphatase activity by cysteine, an inhibitor of alkaline phosphatase activity; (5) similar subcellular localization of the two enzyme activities as demonstrated by histochemical methods; (6) hormonal and substrate induction of alkaline phosphatase activity in mammalian cell cultures, which produced a nearly parallel rise in inorganic pyrophosphatase activity.  相似文献   

5.
Further purification of a human placental 3-methyladenine-DNA glycosylase by phosphocellulose column chromatography yielded a 6000-fold increase in specific activity with greater than 5% recovery. Although 3-methyladenine was the predominant base released from double-stranded methylated DNA by this enzyme, minor releasing activities for 7-methylguanine and 3-methylguanine were also observed. During purification, the three DNA glycosylase activities consistently copurified with constant ratios of specific activity. Moreover, all the activities were heat-inactivated at 50°C at the same rate, required double-stranded methylated DNA as substrate, were inhibited by spermine and spermidine, and were not subject to product inhibition. These data strengthen the likelihood that the three activities are associated with a single DNA glycosylase.  相似文献   

6.
Metabolism of pyrimidine deoxyribonucleosides in Neurospora crassa.   总被引:4,自引:1,他引:3       下载免费PDF全文
The experiments in this report involve the following series of reactions which were previously demonstrated with purified enzyme preparations from Neurospora crassa: thymidine a yields thymine ribonucleoside b yields thymine c yields 5-hydroxymethyluracil d yields 5-formyluracil e yields uracil-5-carboxylic acid f yields uracil. The evidence for some of the reactions occurring in vivo has been incomplete and for others totally lacking. In this paper intact cells of Neurospora are shown to be capable of converting the substrates of each of the reactions to the corresponding products. Studies are described which were carried out in vivo and in vitro with the pyrimidineless strains pyr-4,uc-1,uc-2 and pyr-4,uc-1,uc-3, developed by Williams and Mitchell. The results reported in the present paper indicate that (reaction a) and the uc-3 mutation affects thymine 7-hydroxylase (reactions c,d, and e). Evidence is presented for the 2'-hydroxylase reaction being the major, if not only, way by which Neurospora can initiate the conversion of thymidine to the pyrimidines of nucleic acids and for the 2'-hydroxylation of thymidine and deoxyuridine being catalyzed by the same enzyme. Deoxycytidine was shown not to be hydroxylated in intact cells but instead deaminated to deoxyuridine, which in turn was converted to uridine. Further studies with the uc-3-carrying strain showed that an enzyme other than thymine 7-hydroxylase can also convert 5-formyluracil to uracil-5-carboxylic acid.  相似文献   

7.
Highly purified preparations of thymine 7-hydroxylase from Neurospora crassa catalyzed the decarboxylation of alpha-ketoglutarate but yielded no hydroxylated product when uracil was substituted for thymine in the standard incubation mixture. Although the uracil-dependent decarboxylation was much slower than the coupled reaction, both reactions were similar with respect to the requirement for molecular oxygen, the stoichiometric formation of succinate, and the stimulations effected by Fe2+, ascorbate, and catalase. That the same enzyme catalyzed both reactions was indicated by the parallel loss of the uracil- and thymine-dependent activities upon heat denaturation, their copurification, and the lower level of both activities in a mutant strain deficient in the 7-hydroxylase. These data are consonant with molecular oxygen initially attacking alpha-ketoglutarate in the thymine 7-hydroxylase reaction.  相似文献   

8.
A bifunctional enzyme, L-(+)-tartrate dehydrogenase-D-(+)-malate dehydrogenase (decarboxylating) (EC 1.1.1.93 and EC 1.1.1. . . , respectively), was discovered in cells of Rhodopseudomonas sphaeroides Y, which accounts for the ability of this organism to grow on L-(+)-malate. The enzyme was purified 110-fold to homogeneity with a yield of 51%. During the course of purification, including ion-exchange chromatography and preparative gel electrophoresis, both enzyme activities appeared to be in association. The ratio of their activities remained almost constant [1:10, L-(+)-tartrate dehydrogenase/D-(+)-malate dehydrogenase (decarboxylating)] throughout all steps of purification. Analysis by polyacrylamide gel electrophoresis revealed the presence of a single protein band, the position of which was coincident with both L-(+)-tartrate dehydrogenase and D-(+)-malate dehydrogenase (decarboxylating) activities. The apparent molecular weight of the enzyme was determined to be 158,000 by gel filtration and 162,000 by ultracentrifugation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis yielded a single polypeptide chain with an estimated molecular weight of 38,500, indicating that the enzyme consisted of four subunits of identical size. The isoelectric point of the enzyme was between pH 5.0 and 5.2. The enzyme catalyzed the NAD-linked oxidation of L-(+)-tartrate as well as the oxidative decarboxylation of D-(+)-malate. For both reactions, the optimal pH was in a range from 8.4 to 9.0. The activation energy of the reaction (delta Ho) was 71.8 kJ/mol for L-(+)-tartrate and 54.6 kJ/mol for D-(+)-malate. NAD was required as a cosubstrate, and optimal activity depended on the presence of both Mn2+ and NH4+ ions. The reactions followed Michaelis-Menten kinetics, and the apparent Km values of the individual reactants were determined to be: L-(+)-tartrate, 2.3 X 10(-3) M; NAD, 2.8 X 10(-4) M; and Mn2+, 1.6 X 10(-5) M with respect to L-(+)-tartrate; and D-(+)-malate, 1.7 X 10(-4) M; NAD, 1.3 X 10(-4); and Mn2+, 1.6 X 10(-5) M with respect to D-(+)-malate. Of a variety of compounds tested, only meso-tartrate, oxaloacetate, and dihydroxyfumarate were effective inhibitors. meso-Tartrate and oxaloacetate caused competitive inhibition, whereas dihydroxyfumarate caused noncompetitive inhibition. The Ki values determined for the inhibitors were, in the above sequence, 1.0, 0.014, and 0.06 mM with respect to L-(+)-tartrate and 0.28, 0.012, and 0.027 mM with respect to D-(+)-malate.  相似文献   

9.
Further purification of a human placental 3-methyladenine-DNA glycosylase by phosphocellulose column chromatography yielded a 6000-fold increase in specific activity with greater than 5% recovery. Although 3-methyladenine was the predominant base released from double-stranded methylated DNA by this enzyme, minor releasing activities for 7-methylguanine and 3-methylguanine were also observed. During purification, the three DNA glycosylase activities consistently copurified with constant ratios of specific activity. Moreover, all the activities were heat-inactivated at 50 degrees C at the same rate, required double-stranded methylated DNA as substrate, were inhibited by spermine and spermidine, and were not subject to product inhibition. These data strengthen the likelihood that the three activities are associated with a single DNA glycosylase.  相似文献   

10.
β-d-Mannosidase (β-d-mannoside mannohydrolase EC 3.2.1.25) was purified 160-fold from crude gut-solution of Helix pomatia by three chromatographic steps and then gave a single protein band (mol. wt. 94,000) on SDS-gel electrophoresis, and three protein bands (of almost identical isoelectric points) on thin-layer iso-electric focusing. Each of these protein bands had enzyme activity. The specific activity of the purified enzyme on p-nitrophenyl β-d-mannopyranoside was 1694 nkat/mg at 40° and it was devoid of α-d-mannosidase, β-d-galactosidase, 2-acet-amido-2-deoxy-d-glucosidase, (1→4)-β-d-mannanase, and (1→4)-β-d-glucanase activities, almost devoid of α-d-galactosidase activity, and contaminated with <0.02% of β-d-glucosidase activity. The purified enzyme had the same Km for borohydride-reduced β-d-manno-oligosaccharides of d.p. 3–5 (12.5mm). The initial rate of hydrolysis of (1→4)-linked β-d-manno-oligosaccharides of d.p. 2–5 and of reduced β-d-manno-oligosaccharides of d.p. 3–5 was the same, and o-nitrophenyl, methylumbelliferyl, and naphthyl β-d-mannopyranosides were readily hydrolysed. β-d-Mannobiose was hydrolysed at a rate ~25 times that of 61-α-d-galactosyl-β-d-mannobiose and 63-α-d-galactosyl-β-d-mannotetraose, and at ~90 times the rate for β-d-mannobi-itol.  相似文献   

11.
Excision of thymine dimers from specifically incised ultraviolet irradiated DNA by E. coli DNA polymerase I is stimulated by concurrent DNA synthesis. The 36,000 molecular-weight “small fragment” obtained by limited proteolysis of DNA polymerase I, which retains only the 5′ → 3′ exonuclease activity, also excises thymine dimers, but at one-tenth the rate of the intact enzyme. However, the rate of excision is increased by addition of the “large” 76,000-molecular weight fragment. With the further addition of the 4 deoxynucleoside triphosphates, permitting DNA synthesis to occur, excision approaches rates observed with the intact enzyme. The same result was obtained with a fragment of DNA polymerase I with 5′ → 3′ exonuclease activity that is present uniquely in polymerase I amber mutants.  相似文献   

12.
Endoglucanase III (EGIII) was purified from Ruminococcus albus culture supernatant. An enzyme having a molecular weight of 53,000 was stabilized by mercaptoethanol and inhibited by sulfhydryl group-blocking reagents, and exhibited its highest CMC-degrading activity of pH 5.7 and 55°C. The enzyme hydrolyzed cellobiose (G2) and cellotriose (G3) only negligibly, but significantly hydrolyzed cellotetraose (G4), cellopentaose (G5) and cellohexaose (G6). The major hydrolysis reactions conducted by the enzyme were G4→2G2, G5→G2+G3, G6→G2+G4 and G6→2G3. The Vmax values of these reactions increased remarkably while the Km values decreased significantly with an increase in degree of polymerization of the substrate.  相似文献   

13.
A new type II sequence-specific endonuclease, RsaI, has been identified from Rhodopseudomonas sphaeroides strain 28/5. An RsaI purification scheme that yields enzyme which is free of contaminating exonuclease and phosphatase activities after a single column fractionation has been developed. The enzyme recognized the tetranucleotide sequence 5'-GTAC-3' and cleaved between the T and A, thereby generating flush ends. RsaI should be extremely useful in deoxyribonucleic acid sequencing experiments.  相似文献   

14.
Energy transfer inhibition by HgCl2 has been demonstrated to be selective for certain System I partial reactions. On the basis of different HgCl2 effects on the System I reactions, reduced 2,6-dichlorophenolindophenol → methylviologen, diaminodurene → methylviologen and N-phenazine methosulfate cyclic, two sites of energy conservation associated with System I are proposed. Furthermore, these sites are in parallel with each other, in series with the site closely associated with Photosystem II and are shared between non-cyclic and cyclic electron transport.  相似文献   

15.
The role of NADH-cytochrome b5 reductase and cytochrome b5 as electron carriers in NADH-supported electron transport reactions in rat liver microsomes has been examined by measuring three enzyme activities: NADH-cytochrome P-450 reductase, NADH-peroxidase, and NADH-cytochrome c reductase. The first two reactions are known to involve the participation of an NADH-specific reductase and cytochrome P-450 whereas the third requires the reductase and cytochrome b5. Antibody prepared against NADH-cytochrome b5 reductase markedly inhibited the NADH-peroxidase and NADH-cytochrome c reductase activities suggesting the involvement of this NADH-specific reductase in these reactions. Liver microsomes prepared from phenobarbital-pretreated rats were digested with subtilisin to remove cytochrome b5 and the submicrosomal particles were collected by centrifugation. The specific content of cytochrome b5 in the digested particles was about 5% of that originally present in liver microsomes and all three enzyme activities showed similar decreases whereas NADH-ferricyanide reductase activity (an activity associated with the flavoenzyme NADH-cytochrome b5 reductase) remained virtually unchanged. Binding of an excess of detergent-purified cytochrome b5 to the submicrosomal particles at 37 °C for 20 min followed by centrifugation and enzymic measurements revealed a striking increase in the three enzyme activities. Further evidence for cytochrome b5 involvement in the NADH-peroxidase reaction was the marked inhibition by antibody prepared against the hemoprotein. These results suggest that in microsomal NADH-supported cytochrome P-450-dependent electron transport reactions, cytochrome b5 functions as an intermediate electron carrier between NADH-cytochrome b5 reductase and cytochrome P-450.  相似文献   

16.
17.
Oxidatively damaged thymine, 5-formyluracil (5-fU), was incorporated into a predetermined site of double-stranded shuttle vectors. The nucleotide sequences in which the modified base was incorporated were 5′-CFTAAG-3′ and 5′-CTFAAG-3′ (F represents 5-fU), the recognition site for the restriction enzyme AflII (5′-CTTAAG-3′). The 5-fU was incorporated into a template strand of either the leading or lagging strand of DNA replication. The modified DNAs were transfected into simian COS-7 cells, and the DNAs replicated in the cells were recovered and were analyzed after the second transfection into Escherichia coli. The 5-fU did not block DNA replication in mammalian cells. The 5-fU residues were weakly mutagenic, and their mutation frequencies in double-stranded vectors were 0.01–0.04%. The T → G and T → A transversions were the mutations found most frequently, suggesting the formation of 5-fU·C and 5-fU·T base pairs, respectively. This is the first report that clearly shows the induction of transversion mutations by an oxidized pyrimidine base in DNA in mammalian cells.  相似文献   

18.
A carboxypeptidase A-like enzyme has been purified to apparent homogeneity from commercially available acetone powder from the visceral hump of the limpet, Patella vulgata. A two-step procedure involving affinity chromatography on ?-amino-N-caproyl-d-phenylalanine-Sepharose and gel filtration resulted in a 3000-fold purification with an 80% yield. The enzyme is a single polypeptide chain of Mr = 40,000 and exhibits both peptidase and esterase activities, which are characterized by dramatic excess substrate inhibition. Inhibition studies suggest that a metal ion is required for activity and demonstrate that the affinity label, N-bromoacetyl-N-methyl-l-phenylalanine, and a polypeptide carboxypeptidase inhibitor from potatoes (apparent Ki approx. 2 nm) are effective against the limpet enzyme.  相似文献   

19.
Botha FC  Turpin DH 《Plant physiology》1990,93(4):1460-1465
Two isoforms of fructose 1,6-bisphosphatase are present in the green alga Selenastrum minutum. The isoenzymes can be separated with ionexchange chromatography or acid precipitation. The stability of the two isoenzymes differ largely. The acid insoluble enzyme exhibits properties similar to that of the enzyme from the chloroplasts of higher plants, i.e. an alkaline pH optima in the absence of reductant, a lower affinity for substrate, strong inhibition by phosphate, and a low sensitivity to fructose-2,6-bisphosphate and AMP. The more abundant form of the enzyme exhibits several properties indicative of heterotrophic fructose 1,6 bisphosphatases, i.e. a high affinity for substrate and sensitivity toward fructose-2,6-bisphosphate and AMP. but is absolutely dependent on a reductant for stability and activity. Evidence is provided indicating that previously reported purification protocols cause inactivation of one of the isoenzymes which could lead to the erroneous conclusion that algae have a single fructose 1,6-bisphosphatase isoenzyme.  相似文献   

20.
The alpha-ketoglutarate dioxygenase, thymine 7-hydroxylase (EC 1.14.11.6), has been purified from cultures of Rhodotorula glutinis grown with thymine as a nitrogen source. The purification scheme developed yielded essentially homogeneous preparations of the 7-hydroxylase and also purified another alpha-ketoglutarate dioxygenase, pyrimidine deoxyribonucleoside 2'-hydroxylase (EC 1.14.11.3). The purity of the 7-hydroxylase was determined with analytical disc gel electrophoresis in which runs were varied with respect to pH, extent of cross-linking, and the presence of sodium dodecyl sulfate-mercaptoethanol. The 7-hydroxylase apparently exists as a monomer since its molecular weight was 42,700 when determined by molecular gel filtration chromatography and was 40,300 when determined by analytical disc gel electrophoresis under denaturing conditions. Gel filtration chromatography under nondenaturing conditions was used to show that the 2'-hydroxylase has a molecular weight of 64,600. The essentially homogeneous preparations of the 7-hydroxylase were shown to catalyze the thymine-, 5-hydroxymethyluracil-, and 5-formyluracil-dependent oxygenations that are coupled to the decarboxylation of alpha-ketoglutarate, as well as a putative uncoupled decarboxylation which is dependent on uracil. Furthermore, these enzyme preparations were used to show that ATP stimulated the 7-hydroxylase reaction in the absence of ascorbate. Even though it is attractive to consider the four pyrimidine-dependent reactions as being catalyzed by the same active site, they were shown to differ markedly in their dependencies on ascorbate or ATP. The effects of ascorbate and ATP on these reactions, and on the 2'-hydroxylase reaction, are discussed in terms of the possible roles of ascorbate and ATP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号