首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Pre-replicative complex (pre-RC) assembly is a critical part of the mechanism that controls the initiation of DNA replication, and ATP binding and hydrolysis by multiple pre-RC proteins are essential for pre-RC assembly and activation. Here, we demonstrate that Adk1p (adenylate kinase 1 protein) plays an important role in pre-RC assembly in Saccharomyces cerevisiae. Isolated from a genetic screen, adk1G20S cells with a mutation within the nucleotide-binding site were defective in replication initiation. adk1Δ cells were viable at 25 °C but not at 37°C. Flow cytometry indicated that both the adk1-td (temperature-inducible degron) and adk1G20S mutants were defective in S phase entry. Furthermore, Adk1p bound to chromatin throughout the cell cycle and physically interacted with Orc3p, whereas the Adk1G20S protein had a reduced ability to bind chromatin and Orc3p without affecting the cellular ATP level. In addition, Adk1p associated with replication origins by ChIP assay. Finally, Adk1-td protein depletion prevented pre-RC assembly during the M-to-G1 transition. We suggest that Adk1p regulates ATP metabolism on pre-RC proteins to promote pre-RC assembly and activation.  相似文献   

3.
4.
5.
6.
Eukaryotic origins of DNA replication are bound by the origin recognition complex (ORC), which scaffolds assembly of a pre-replicative complex (pre-RC) that is then activated to initiate replication. Both pre-RC assembly and activation are strongly influenced by developmental changes to the epigenome, but molecular mechanisms remain incompletely defined. We have been examining the activation of origins responsible for developmental gene amplification in Drosophila. At a specific time in oogenesis, somatic follicle cells transition from genomic replication to a locus-specific replication from six amplicon origins. Previous evidence indicated that these amplicon origins are activated by nucleosome acetylation, but how this affects origin chromatin is unknown. Here, we examine nucleosome position in follicle cells using micrococcal nuclease digestion with Ilumina sequencing. The results indicate that ORC binding sites and other essential origin sequences are nucleosome-depleted regions (NDRs). Nucleosome position at the amplicons was highly similar among developmental stages during which ORC is or is not bound, indicating that being an NDR is not sufficient to specify ORC binding. Importantly, the data suggest that nucleosomes and ORC have opposite preferences for DNA sequence and structure. We propose that nucleosome hyperacetylation promotes pre-RC assembly onto adjacent DNA sequences that are disfavored by nucleosomes but favored by ORC.  相似文献   

7.
Minichromosome maintenance (mcm) is an effective genetic assay for mutants defective in DNA replication. Two classes of mcm mutants have been identified using this screen: those that differentially affect the activities of certain autonomously replicating sequences (ARSs) and those that uniformly affect the activities of all ARSs. The ARS-specific MCM genes are essential for the initiation of DNA replication. Among these are members of the MCM2-7 family that encode subunits of the preinitiation complex and MCM10, whose gene product interacts with members of the Mcm2-7 proteins. Among the ARS-nonspecific MCM gene products are chromosome transmission factors. Refinement of this genetic assay as a screening tool and further analysis of existing mcm mutants may reveal new replication initiation proteins.  相似文献   

8.
9.
How the replication machinery is loaded at origins of DNA replication is poorly understood. Here, we implicate in this process the Xenopus laevis homolog (xRTS) of the RECQL4 helicase mutated in Rothmund-Thomson syndrome. xRTS, which bears homology to the yeast replication factors Sld2/DRC1, is essential for DNA replication in egg extracts. xRTS can be replaced in extracts by its human homolog, while RECQL4 depletion from mammalian cells induces proliferation failure, suggesting an evolutionarily conserved function. xRTS accumulates on chromatin during replication initiation, after prereplication-complex (pre-RC) proteins, Cut5, Sld5, or Cdc45 but before replicative polymerases. xRTS depletion suppresses the loading of RPA, the ssDNA binding protein that marks unwound origins before polymerase recruitment. However, xRTS is unaffected by xRPA depletion. Thus, xRTS functions after pre-RC formation to promote loading of replication factors at origins, a previously unrecognized activity necessary for initiation. This role connects defective replication initiation to a chromosome-fragility disorder.  相似文献   

10.
To ensure genomic integrity, the genome must be duplicated exactly once per cell cycle. Disruption of replication licensing mechanisms may lead to re-replication and genomic instability. Cdt1, also known as Double-parked (Dup) in Drosophila, is a key regulator of the assembly of the pre-replicative complex (pre-RC) and its activity is strictly limited to G1 by multiple mechanisms including Cul4-Ddb1 mediated proteolysis and inhibition by geminin. We assayed the genomic consequences of disregulating the replication licensing mechanisms by RNAi depletion of geminin. We found that not all origins of replication were sensitive to geminin depletion and that heterochromatic sequences were preferentially re-replicated in the absence of licensing mechanisms. The preferential re-activation of heterochromatic origins of replication was unexpected because these are typically the last sequences to be duplicated in a normal cell cycle. We found that the re-replication of heterochromatin was regulated not at the level of pre-RC activation, but rather by the formation of the pre-RC. Unlike the global assembly of the pre-RC that occurs throughout the genome in G1, in the absence of geminin, limited pre-RC assembly was restricted to the heterochromatin by elevated cyclin A-CDK activity. These results suggest that there are chromatin and cell cycle specific controls that regulate the re-assembly of the pre-RC outside of G1.  相似文献   

11.
Initiation of DNA replication involves the ordered assembly of the multi-protein pre-replicative complex (pre-RC) during G1 phase. Previously, DNA topoisomerase II (topo II) was shown to associate with the DNA replication origin located in the lamin B2 gene locus in a cell-cycle-modulated manner. Here we report that activation of both the early-firing lamin B2 and the late-firing hOrs8 human replication origins involves DNA topo II-dependent, transient, site-specific dsDNA-break formation. Topo IIβ in complex with the DNA repair protein Ku associates in vivo and in vitro with the pre-RC region, introducing dsDNA breaks in a biphasic manner, during early and mid-G1 phase. Inhibition of topo II activity interferes with the pre-RC assembly resulting in prolonged G1 phase. The data mechanistically link DNA topo IIβ-dependent dsDNA breaks and the components of the DNA repair machinery with the initiation of DNA replication and suggest an important role for DNA topology in origin activation.  相似文献   

12.
The onset of chromosomal DNA replication requires highly precise and reproducible interactions between initiator proteins and replication origins to assemble a pre-replicative complex (pre-RC) that unwinds the DNA duplex. In bacteria, initiator protein DnaA, bound to specific high- and low-affinity recognition sites within the unique oriC locus, comprises the pre-RC, but how complex assembly is choreographed to ensure precise initiation timing during the cell cycle is not well understood. In this study, we present evidence that higher-order DnaA structures are formed at oriC when DnaA monomers are closely positioned on the same face of the DNA helix by interaction with two oppositely oriented essential arrays of closely spaced low-affinity DnaA binding sites. As DnaA levels increase, peripheral high-affinity anchor sites begin cooperative loading of the arrays, which is extended by sequential binding of additional DnaA monomers resulting in growth of the complexes towards the centre of oriC. We suggest that this polarized assembly of unique DnaA oligomers within oriC plays an important role in mediating pre-RC activity and may be a feature found in all bacterial replication origins.  相似文献   

13.
Current models suggest that the replication initiation factor Mcm10 is required for association of Mcm2-7 with origins of replication to generate the prereplicative complex (pre-RC). Here we report that Xenopus Mcm10 (XMcm10) is not required for origin binding of XMcm2-7. Instead, the chromatin binding of XMcm10 at the onset of DNA replication requires chromatin-bound XMcm2-7, and it is independent of Cdk2 and Cdc7. In the absence of XMcm10, XCdc45 binding, XRPA binding, and initiation-dependent plasmid supercoiling are blocked. Therefore, XMcm10 performs its function after pre-RC assembly and before origin unwinding. As one of the earliest known pre-RC activation steps, chromatin binding of XMcm10 is an attractive target for regulation by cell cycle checkpoints.  相似文献   

14.
We previously reported the isolation of a series of mcm mutants that are defective in the maintenance of minichromosomes in yeast. These minichromosomes are circular plasmids, each containing an autonomously replicating sequence (ARS) and a centromere. One of the mcm mutants, mcm2, has the following phenotype: at room temperature it affects the stability of only some minichromosomes depending on the ARS present, while at high temperature it affects all minichromosomes tested irrespective of the ARS present. Here we show that the mcm defect as well as its temperature-dependent specificity for ARSs can be demonstrated with circular as well as linear plasmids that do not contain centromeric sequences. Larger chromosomes containing multiple ARSs are also unstable in this mutant. Further analyses indicate that the mcm2 mutation causes the loss, rather than the aberrant segregation, of the circular minichromosomes. In addition, this mutation appears to stimulate mitotic recombination frequencies. These properties of the mcm2 mutant are consistent with the idea that the mcm2 mutation results in a defect in the initiation of DNA replication at ARSs, the putative chromosomal replication origins in yeast.  相似文献   

15.
A Miron  S Mukherjee    D Bastia 《The EMBO journal》1992,11(3):1205-1216
We have isolated mutants of the pi initiator protein of the plasmid R6K that are defective in DNA looping in vitro but retain their normal DNA binding affinity for the primary binding sites (iterons) at the gamma origin/enhancer. One such looping defective mutant called R6 was determined to be a proline to leucine change at position 46 near the N terminus of the pi protein. Using a set of genetic assays that discriminate between the activation of the gamma origin/enhancer from those of the distantly located alpha and beta origins, we show that the looping defective initiator protein fails to activate the alpha and beta origins but derepresses initiation from the normally silent gamma origin in vivo. The results conclusively prove that DNA looping is required to activate distant replication origins located at distances of up to 3 kb from the replication enhancer.  相似文献   

16.
Essential role of MCM proteins in premeiotic DNA replication   总被引:13,自引:0,他引:13       下载免费PDF全文
A critical event in eukaryotic DNA replication involves association of minichromosome maintenance (MCM2-7) proteins with origins, to form prereplicative complexes (pre-RCs) that are competent for initiation. The ability of mutants defective in MCM2-7 function to complete meiosis had suggested that pre-RC components could be irrelevant to premeiotic S phase. We show here that MCM2-7 proteins bind to chromatin in fission yeast cells preparing for meiosis and during premeiotic S phase in a manner suggesting they in fact are required for DNA replication in the meiotic cycle. This is confirmed by analysis of a degron mcm4 mutant, which cannot carry out premeiotic DNA replication. Later in meiosis, Mcm4 chromatin association is blocked between meiotic nuclear divisions, presumably accounting for the absence of a second round of DNA replication. Together, these results emphasize similarity between replication mechanisms in mitotic and meiotic cell cycles.  相似文献   

17.
Regulation of replication licensing by acetyltransferase Hbo1   总被引:1,自引:0,他引:1       下载免费PDF全文
The initiation of DNA replication is tightly regulated in eukaryotic cells to ensure that the genome is precisely duplicated once and only once per cell cycle. This is accomplished by controlling the assembly of a prereplicative complex (pre-RC) which involves the sequential binding to replication origins of the origin recognition complex (ORC), Cdc6/Cdc18, Cdt1, and the minichromosome maintenance complex (Mcm2-Mcm7, or Mcm2-7). Several mechanisms of pre-RC regulation are known, including ATP utilization, cyclin-dependent kinase levels, protein turnover, and Cdt1 binding by geminin. Histone acetylation may also affect the initiation of DNA replication, but at present neither the enzymes nor the steps involved are known. Here, we show that Hbo1, a member of the MYST histone acetyltransferase family, is a previously unrecognized positive regulatory factor for pre-RC assembly. When Hbo1 expression was inhibited in human cells, Mcm2-7 failed to associate with chromatin even though ORC and Cdc6 loading was normal. When Xenopus egg extracts were immunodepleted of Xenopus Hbo1 (XHbo1), chromatin binding of Mcm2-7 was lost, and DNA replication was abolished. The binding of Mcm2-7 to chromatin in XHbo1-depleted extracts could be restored by the addition of recombinant Cdt1.  相似文献   

18.
DNA replication in eukaryotic cells is tightly regulated to ensure faithful inheritance of the genetic material. While the replicators, replication origins and many replication-initiation proteins in Saccharomyces cerevisiae have been identified and extensively studied, the detailed mechanism that controls the initiation of DNA replication is still not well understood. It is likely that some factors involved in or regulating the initiation of DNA replication have not been discovered. To identify novel DNA replication-initiation proteins and their regulators, we developed a sensitive and comprehensive phenotypic screen by combining several established genetic strategies including plasmid loss assays with plasmids containing a single versus multiple replication origins and colony color sectoring assays. We isolated dozen of mutants in previously known initiation proteins and identified several novel factors, including Ctf1p Ctf3p, Ctf4p, Ctf18p, Adk1p and Cdc60p, whose mutants lose plasmid containing a single replication origin at high rates but lose plasmid carrying multiple replication origins at lower rates. We also show that overexpression of replication initiation proteins causes synthetic dosage lethality or growth defects in ctf1 and ctf18 mutants and that Ctf1p and Ctf18p physically interact with ORC, Cdt1p and MCM proteins. Furthermore, depletion of both Ctf1p and Ctf18p prevents S phase entry, retards S phase progression, and reduces pre-RC formation during the M-to-G1 transition. These data suggest that Ctf1p and Ctf18p together play important roles in regulating the initiation of DNA replication.  相似文献   

19.
Eukaryotic DNA replication is initiated through stepwise assembly of evolutionarily conserved replication proteins onto replication origins, but how the origin DNA is unwound during the assembly process remains elusive. Here, we established a site-specific origin on a plasmid DNA, using in vitro replication systems derived from Xenopus egg extracts. We found that the pre-replicative complex (pre-RC) was preferentially assembled in the vicinity of GAL4 DNA-binding sites of the plasmid, depending on the binding of Cdc6 fused with a GAL4 DNA-binding domain in Cdc6-depleted extracts. Subsequent addition of nucleoplasmic S-phase extracts to the GAL4-dependent pre-RC promoted initiation of DNA replication from the origin, and components of the pre-initiation complex (pre-IC) and the replisome were recruited to the origin concomitant with origin unwinding. In this replication system, RecQ4 is dispensable for both recruitment of Cdc45 onto the origin and stable binding of Cdc45 and GINS to the pre-RC assembled plasmid. However, both origin binding of DNA polymerase α and unwinding of DNA were diminished upon depletion of RecQ4 from the extracts. These results suggest that RecQ4 plays an important role in the conversion of pre-ICs into active replisomes requiring the unwinding of origin DNA in vertebrates.  相似文献   

20.
We have isolated yeast mutants that are defective in the maintenance of circular minichromosomes. The minichromosomes are mitotically stable plasmids, each of which contains a different ARS (autonomously replicating sequence), a centrometeric sequence, CEN5, and two yeast genes, LEU2 and URA3. Forty minichromosome maintenance-defective (Mcm-) mutants were characterized. They constitute 16 complementation groups. These mutants can be divided into two classes, specific and nonspecific, by their differential ability to maintain minichromosomes with different ARSs. The specific class of mutants is defective only in the maintenance of minichromosomes that carry a particular group of ARSs irrespective of the centromeric sequence present. The nonspecific class of mutants is defective in the maintenance of all minichromosomes tested irrespective of the ARS or centromeric sequence present. The specific class may include mutants that do not initiate DNA replication effectively at specific ARSs present on the minichromosomes; the nonspecific class may include mutants that are affected in the segregation and/or replication of circular plasmids in general.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号