首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In general, TGFbeta is synthesized as a procytokine that requires proteolytic activation, release of the mature cytokine from its noncovalently associated latent-associated peptide, and binding to TGFbetaRII to mediate suppressive activity. We tracked this process in mice containing primed CD8 regulatory T cells (Tregs) by immunoblotting in primary whole cell lysates for pro-TGFbeta, latent-associated peptide and mature TGFbeta. Generation of CD8 Tregs promoted processing of the 50 kDa pro-TGFbeta protein into a 12.5 kDa mature TGFbeta species in vivo. Despite the inability to detect mature TGFbeta in the sera of mice with primed CD8 Tregs and in the synthetic culture medium of stimulated CD8 Tregs, we demonstrated engagement of TGFbetaRII through immunoblotting for Smad2 phosphorylation. This process relied on continual TCR triggering, which also induced Smad3 phosphorylation. To understand the movement of mature TGFbeta, we showed that in contrast to IFN-gamma, mature TGFbeta does not remain a soluble cytokine but is likely to be rapidly adsorbed by neighboring cells. These data show the exquisite local control directed toward TGFbeta by the immune system and underscore the fine specificity involved in its detection.  相似文献   

2.
We report here the effect of chloroquine and methylamine two lysosomotropic drugs, on the binding, uptake and subcellular localization of fluorescein-labelled control immunoglobulin G (control IgG) a marker for non-specific adsorptive endocytosis and of anti-(plasma membrane) IgG (specific IgG), a specific ligand of cell-surface antigens. At 4 degrees C, methylamine and chloroquine inhibit the binding of control IgG to the cell surface, probably by a reversible competition. These two drugs, methylamine more than chloroquine, considerably slow down the rate at which control IgG is transferred from its binding sites on the phagosomal membrane to the lysosomal compartment; both drugs block almost completely the intralysosomal digestion of this IgG as well as the release of degradation products into the culture medium. They do not affect the binding and uptake of the specific IgG. In addition, methylamine seems to inhibit partially the return of the cell surface of membrane antigens and of membrane fragments bearing 5'-nucleotidase or binding sites for control IgG. We conclude that important steps (binding to cell surface, delivery to lysosomes, digestion and recycling of plasma membrane) involved in the uptake and the processing of IgG by fibroblasts are inhibited by these two substances. The effects of lysosomotropic agents on the regulation and function of the endocytic pathway and of lysosomes could have many pharmacological and therapeutic implications.  相似文献   

3.
Cultured rat hepatocytes were incubated in medium containing 1.0 mM oleic acid. The incorporation of [3H]glycerol into cell-associated and medium triacylglycerols was measured after 2 h incubation. More than 95% of the secreted [3H]triacylglycerols were recovered in the very low density lipoprotein (VLDL) fraction (d less than 1.006). Chloroquine and other lysosomotropic amines promoted a marked decrease in [3H]triacylglycerol secretion from the hepatocytes while the synthesis was unaffected. At 50-200 microM final concentration, chloroquine inhibited secretion of triacylglycerols by 70-90% of the control. Similar results were obtained when the mass of secreted triacylglycerols was measured. Chloroquine caused decreased secretion of [3H]triacylglycerols after 15-30 min incubation and the inhibitory effect was completely reversible within 1-2 h after washout of chloroquine. The reduced triacylglycerol secretion was not due to increased reuptake of secreted lipoproteins or decreased protein synthesis caused by chloroquine. Electron microscopy of chloroquine-treated cells showed that the inhibition of VLDL secretion occurs at or prior to the level of the Golgi apparatus. These results suggest that chloroquine interferes with crucial steps in the secretory process and/or that lysosomal function could be essential for secretion of VLDL.  相似文献   

4.
Chloroquine, an antimalarial lysosomotropic base, is known for its anti-inflammatory effects and therefore used for treatment of autoimmune diseases. Given its anti-inflammatory effects, it has been under clinical trials to modify neurodegenerative processes. In this study, we examined whether chloroquine has an anti-inflammatory effect in the CNS by determining the in vitro effects of chloroquine on LPS-induced expression of cytokines by glial cells. We observed that (i) chloroquine augmented LPS-induced expression of pro-inflammatory cytokines such as lymphotoxin (LT)-beta, tumor necrosis factor (TNF)-alpha, interleukin (IL)-1alpha, IL-1beta and IL-6 in human astroglial cells, while the same treatment suppressed LPS-induced expression of cytokines in monocytic and microglial cells; (ii) chloroquine alone induced expression of pro-inflammatory cytokines in a dose- and time-dependent manner in astroglial cells; (iii) other lysosomotropic agents such as ammonium chloride and bafilomycin A1 had minimal effects on cytokine expression; and (iv) chloroquine induced the activation of nuclear factor-kappa B in astroglial cells, which is a required component of chloroquine induction of cytokines. These results suggest that chloroquine may evoke either anti- or pro-inflammatory responses in the CNS depending on the cellular context.  相似文献   

5.
We studied the role of stimulant processing and presentation and of IL 1 in monocyte-mediated activation of human lymphoproliferative responses. The effects of two lysosomotropic agents, ammonium chloride and chloroquine, on the capacity of human monocytes to activate T lymphocyte responses to the soluble antigen streptolysin O (SLO) and to the polyclonal stimulant S. aureus protein A (SpA) were investigated. These agents inhibited the presentation of SLO and SpA by human monocytes in a dose-dependent manner. The inhibition occurred if monocytes were treated with ammonium chloride and chloroquine for 1.5 hr, starting only 30 min after exposure to the stimulants, whereas only minimal inhibition occurred when monocytes were treated with the two lysosomotropic compounds 2 hr after pulsing with SLO or SpA. In contrast, cell membrane alloantigen presentation by monocytes in the MLR was not affected by ammonium chloride or chloroquine treatment. Thus, these reversible inhibitors of monocyte phagosome-lysosome functions presumably interfere with intracellular processing of the stimulants but do not seem to interfere with alloantigen presentation at the cell surface. Furthermore, we investigated whether gently fixed monocytes were still capable of passively presenting stimulant or whether active metabolic processes as well as IL 1 were required. We observed that only monocytes treated with paraformaldehyde after SLO or SpA pulsing stimulated a proliferative response by T lymphocytes, provided 50 U/ml of partially purified human IL 1 were added back to cultures. In contrast, monocytes fixed before exposure to SLO or SpA were not able to stimulate T lymphocytes even if supplemented by IL 1. Taken together these data suggest that a finite incubation period is required for human monocytes to become able to present SLO or SpA to T lymphocytes. During this time the soluble stimulants presumably undergo some metabolic process in viable macrophages perhaps at the phagosome-lysosome level, to become recognizable by T lymphocytes.  相似文献   

6.
Acidotropic compounds (also termed lysosomotropic) such as chloroquine and amantadine interfered with processing of the single-chain precursors to the third and fourth components of complement (C3 and C4) by the human hepatoma-derived cell line HepG2. When these compounds were added to culture medium, the precursors of C3 and C4 became the major secretory forms in contrast to the normal secretion of C3 and C4 as their mature forms. In addition, secretion of C3, C4, and total protein was inhibited by these compounds. Our results indicate that lysosomotropic agents, in addition to their well recognized effects on lysosomes and endosomes, inhibit functions of the secretory pathway.  相似文献   

7.
Antivirals that are currently used to treat influenza virus infections target components of the virus which can mutate rapidly. Consequently, there has been an increase in the number of resistant strains to one or many antivirals in recent years. Here we compared the antiviral effects of lysosomotropic alkalinizing agents (LAAs) and calcium modulators (CMs), which interfere with crucial events in the influenza virus replication cycle, against avian, swine, and human viruses of different subtypes in MDCK cells. We observed that treatment with LAAs, CMs, or a combination of both, significantly inhibited viral replication. Moreover, the drugs were effective even when they were administered 8 h after infection. Finally, analysis of the expression of viral acidic polymerase (PA) revealed that both drugs classes interfered with early events in the viral replication cycle. This study demonstrates that targeting broad host cellular pathways can be an efficient strategy to inhibit influenza replication. Furthermore, it provides an interesting avenue for drug development where resistance by the virus might be reduced since the virus is not targeted directly.  相似文献   

8.
The classical macrophage is one of the most important cells involved in presenting antigen to helper T cells, because of its ability to regulate its expression of Ia molecules and to encounter and process particulate and soluble antigens. We have summarized in this report studies examining the handling by macrophages of two different antigens, the bacteria Listeria monocytogenes and the protein hen egg white lysozyme (HEL). The purpose was to identify potential sources of immunogenic peptides. Presentation of Listeria required an intracellular processing stage sensitive to lysosomotropic drugs. The Listeria required internalization and processing, after which immunogenic molecules were recognized by T cells on the macrophage surface. Metabolic studies showed that Listeria-derived peptides were released by macrophages that had phagocytosized the bacteria. The release of these peptides was a temperature-dependent process, unaffected by inhibiting lysosomal catabolism by treatment with chloroquine. Listeria-derived peptides were also detected on the surface of the macrophage. These peptides behaved like integral membrane proteins, some of which persisted for at least 24 hr at the macrophage surface. When tested for immunogenicity, the released peptides were very weakly immunogenic. The membrane-associated peptides alone could not stimulate Listeria-specific T cells, but could be reprocessed by additional macrophages and subsequently stimulate the T cells. A defined antigen system using HEL-specific T-cell hybridomas was used to examine the processing of HEL. Presentation of HEL required a chloroquine-sensitive intracellular processing stage. In examining two T-cell hybridomas, a differential requirement for antigen processing was determined.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The nature of the viral antigens recognized by influenza A virus-immune cytotoxic T lymphocytes (CTL) is still a matter of debate. We have used four human influenza A virus-specific T lymphocyte clones with antigen-specific cytotoxic and proliferative activity to investigate the requirements for recognition of viral antigens on infected cells. One clone recognized a cross-reactive determinant on the viral hemagglutinin, and two clones were specific for different epitopes on the viral nucleoprotein (NP). A fourth clone seemed to be specific for the viral M protein. Target cell recognition was abrogated by the addition, during infection, of the lysosomotropic drug chloroquine, known to inhibit antigen processing. Furthermore, target cells that had been pulsed with soluble purified NP were recognized and were lysed by the NP-specific clone. This reaction could also be abrogated by the addition of chloroquine during pulsing. These results were obtained irrespective of whether EBV-transformed B lymphoblastoid cells or Ia antigen-expressing T cell blasts were used as target cells. It is concluded that CTL can recognize internal viral proteins that are actively presented at the surface of the target cell. These data indicate that probably every viral protein can function as a target molecule for virus-immune CTL.  相似文献   

10.
The poliovirus capsid (160S) is modified during eclipse in HeLa cells, which results in at least three types of particles having sedimentation coefficients of 135, 110, and 80S. The lysosomotropic agent chloroquine redirected the production of eclipse products from 135 and 110S particles (containing RNA) to 80S particles (without RNA). The effect started at 5 microM and was fully developed with 20 microM chloroquine. Viral protein synthesis and virion production remained unaffected. The results show that chloroquine can redirect the processing of input virions without interfering with productive uncoating.  相似文献   

11.
The semaphorins are a large group of cell surface and secreted proteins implicated in axonal pathfinding. Here we show that the secreted mouse semaphorin D (SemD) is synthesized as an inactive precursor (proSemD) and becomes repulsive for sensory and sympathetic neurites upon proteolytic cleavage. ProSemD processing can be blocked completely by an inhibitor selective for furin-like endoproteases or mutagenesis of three conserved dibasic cleavage sites. Its C-terminal pro-peptide contains a processing signal that is essential for SemD to acquire its full repulsive activity. SemD processing is regulated during the embryonic development of the mouse and determines the magnitude of its repulsive activity. Similarly to SemD, the secreted semaphorins SemA and SemE display repulsive properties that are regulated by processing. Our data suggest that differential proteolytic processing determines the repulsive potency of secreted semaphorins and implicate proteolysis as an important regulatory mechanism in axonal pathfinding.  相似文献   

12.
Cysteine-rich FGF receptor (CFR) was originally identified as a FGF2 receptor and found to be identical to Golgi complex-localized glycoprotein-1 (GLG1), also known as MG-160, and to a murine E-selectin ligand-1 (ESL-1). Although CFR is a 150-kDa integral membrane glycoprotein that is primarily located in the cis-medial Golgi complex, a substantial proportion of CFR is secreted but the underlying mechanism is unknown. CFR contains several possible furin-like proprotein convertase (PC) and matrix metalloproteinase cleavage sites. Cells expressing CFR were treated with the furin protease inhibitor decanoyl-Arg-Val-Lys-Arg-chloromethylketone (decCMK) or the MMP-inhibitor GM6001. In the presence of furin-like PC inhibitor, secretion of CFR was almost completely inhibited. Secretion was not affected by the GM6001 inhibitor. The secreted forms were further characterized by creating different mutant CFR proteins with N-terminal and C-terminal tags. Immunoblot analysis and immunofluorescence indicated, that successive endoproteolytical processing of CFR which takes place in the Golgi complex is essential for secretion. Secreted CFR bound to heparan sulphate proteoglycan (HSPG) could trap FGFs and thereby directly competing with tyrosine kinase receptors for FGF binding.  相似文献   

13.
Glial cell line-derived neurotrophic factor (GDNF) is synthesized as a precursor, proGDNF. However, the molecular mechanisms for the processing and secretion of GDNF are not fully characterized, since the amount of its biosynthesis and secretion in glial cells are below the detection limit of western blotting. We established stably GDNF-overexpressing C6 cells, and this enabled us to monitor its spontaneous secretion, as well as its processed forms in the cells. GDNF secretion was augmented by stimulation with high potassium, while it was inhibited by treatment with either tunicamycin, an inhibitor of protein glycosylation, or brefeldin A, a disturbing factor of ER-Golgi transport. Wild-type GDNF transfected cells secreted three forms of processed GDNF. After deglycosylation, the highest molecular weight of secreted GDNF showed the same mobility on electrophoresis as recombinant human GDNF without a whole pro-domain. Mutations in the pro-domain and two cysteines at the C-terminal of GDNF markedly diminished the secretion of resultant proteins into the culture medium. GDNF proteins having mutations in the putative furin-consensus sequence were secreted partly as unprocessed forms, and forms with lower molecular weights than a mature form were secreted from the C6 cells. Taking these observations together, we conclude that GDNF is likely secreted both with and without processing by furin-like proteases, and that the pro-domain and C-terminal cysteines of GDNF play important roles in its processing and secretion in cultured astrocytes and C6 cells.  相似文献   

14.
Although quinine and its congener chloroquine have been used as antimalarials for many years, and their analog, mefloquine, has been recently introduced, the precise mode of action of these quinoline-containing drugs is not fully understood. The lysosomotropic hypothesis is favoured and Hagai Ginsburg here discusses its principles and its reliability in view of both the physicochemical character of the drugs and new experimental evidence.  相似文献   

15.
Dome formation is a manifestation of transepithelial fluid transport in cell culture, a differentiated characteristic of transporting epithelia. A dramatic increase in numbers of domes in confluent MDCK kidney epithelial cell cultures was noted after addition of Friend cell inducers such as hexamethylane bisacetamide (HMBA) (Lever, 1979b). In the present study, we show that primary amines such as methylamine, ethylamine, and dansyl cadaverine also stimulate dome formation. These compounds largely prevented the marked decrease in numbers of spontaneously occurring domes which occurred when cultures were switched from medium containing 10% serum to medium containing serum concentrations below 0.2%. Many of these primary amines are not only lysosomotropic agents but also potent inhibitors of transglutaminase activity when assayed in MDCK cell extracts, at concentrations correlating with those effective in stimulation of dome formation. Other lysosomotropic agents such as chloroquine and secondary and tertiary amines stimulated dome formation yet did not inhibit transglutaminase. Induction of domes by HMBA differed in several properties from that stimulated by amines and did not involve fluctuations in transglutaminase activity. These findings suggest that lysosomal functions modulate serum stimulation of dome formation in epithelial cells by a pathway distinct from that triggered by HMBA.  相似文献   

16.
Lysosomal enzymes function optimally in acidic environments, and elevation of lysosomal pH can impede their ability to degrade material delivered to lysosomes through autophagy or phagocytosis. We hypothesize that abnormal lysosomal pH is a key aspect in diseases of accumulation and that restoring lysosomal pH will improve cell function. The propensity of nanoparticles to end up in the lysosome makes them an ideal method of delivering drugs to lysosomes. This study asked whether acidic nanoparticles could traffic to lysosomes, lower lysosomal pH and enhance lysosomal degradation by the cultured human retinal pigmented epithelial cell line ARPE-19. Acidic nanoparticles composed of poly (DL-lactide-co-glycolide) (PLGA) 502 H, PLGA 503 H and poly (DL-lactide) (PLA) colocalized to lysosomes of ARPE-19 cells within 60 min. PLGA 503 H and PLA lowered lysosomal pH in cells compromised by the alkalinizing agent chloroquine when measured 1 hr. after treatment, with acidification still observed 12 days later. PLA enhanced binding of Bodipy-pepstatin-A to the active site of cathepsin D in compromised cells. PLA also reduced the cellular levels of opsin and the lipofuscin-like autofluorescence associated with photoreceptor outer segments. These observations suggest the acidification produced by the nanoparticles was functionally effective. In summary, acid nanoparticles lead to a rapid and sustained lowering of lysosomal pH and improved degradative activity.  相似文献   

17.
Macrophage inhibitory cytokine (MIC-1), a divergent member of the transforming growth factor-beta (TGF-beta) superfamily and activation associated cytokine, is secreted as a 28 kDa dimer. To understand its secretion, we examined its processing in MIC-1-transfected Chinese hamster ovary cells. Mature MIC-1 dimer arises post-endoplasmic reticulum (ER) by proteolytic cleavage of dimeric pro-MIC-1 precursor at a furin-like site. Unlike previously characterized TGF-beta superfamily members, MIC-1 dimers are also secreted in constructs lacking the propeptide. A clue to the function of the propeptide came from the observation that a range of proteasome inhibitors, including lactacystin and MG132, cause major increases in levels of undimerized pro-MIC-1 precursor. There was no effect of proteasome inhibitors on cells expressing mature MIC-1 without the propeptide, suggesting that the propeptide can signal misfolding of MIC-1, leading to proteasomal degradation. Deletion mutagenesis showed the N-terminal 28 amino acids of the propeptide are necessary for proteasomal degradation. This is the first demonstration, to our knowledge, of a quality control function in a propeptide domain of a secretory protein and represents an additional mechanism to ensure correct folding of proteins leaving the ER.  相似文献   

18.
Chloroquine, quinine, and NH4Cl are lysosomotropic agents which inhibit lysosomal function, apparently by raising the intralysosomal pH. We found that preincubation of cultured human skin fibroblasts with these lysosomotropic agents under serum-free conditions induced about a 10-fold stimulation of lipogenesis. A similar stimulatory effect on the incorporation of 3H2O, [14C]acetate, [14C]pyruvate, [14C]palmitate, and [14C]choline into cellular lipids was observed. The effect was both time and dose dependent, and was reversible. The concentrations of chloroquine, quinine, and NH4Cl resulting in half-maximal stimulation were about 3 microM, 30 microM, and 9 mM, respectively. At these concentrations, stimulation of lipogenesis correlated with impairment of lysosomal function. At a concentration of 10 microM chloroquine, the half-time for maximal stimulation was about 4 h. Most of the [14C]acetate was incorporated into phosphatidylcholine and other cellular lipids; less than 10% was found in cholesterol and cholesterol ester. Nevertheless, incorporation of [14C]acetate into cholesterol showed a chloroquine-induced stimulation parallel to that observed for phospholipids, suggesting that stimulation of both lipogenesis and cholesterogenesis occurred. The stimulatory effect of lysosomotropic agents on lipogenesis appeared to depend on active synthesis of cellular proteins. In the presence of cycloheximide, an inhibitor of protein synthesis; the stimulation was completely abolished.  相似文献   

19.
Although tyrosine-azobenzenearsonate (ABA-Tyr) is not degraded by proteolytic enzymes, its presentation by accessory cells is inhibited by lysosomotropic agents such as chloroquine. Presentation of ABA-poly-L-glutamic, alanine, tyrosine (ABA-GAT) is similarly inhibited by chloroquine, but in contrast to ABA-Tyr it is also inhibited by leupeptin. Finally formaldehyde fixation of accessory cells after pulsing with ABA-Tyr but not before permits successful stimulation of ABA-specific hybridoma cells. These results suggest that a lysosomal pathway but not digestion is necessary for the association of ABA-Tyr and la molecules for presentation.  相似文献   

20.
Dissociation of intact and degraded insulin from hepatocytes in monolayer culture was examined under conditions in which processing of insulin was altered by either temperature or pharmacologic agents. Conditions which increased insulin degradation or processing decreased equilibrium insulin binding whereas those conditions which inhibited processing increased equilibrium binding. The effect of lysosomotropic agents on processing was markedly temperature dependent. Not only was processing increased at higher temperatures (37 degrees C, but the effect of lysosomal inhibitors (chloroquine and methylamine) on insulin processing was abolished at this temperature. The temperature dependency of this effect may explain discrepancies between laboratories on the effect of these inhibitors in hepatocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号