首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
INTRODUCTION: Evidence collected over the years has demonstrated that cryptorchidism is associated with a defect in spermatogenesis and, as a consequence, with either reduced fertility or infertility. However, the effect of cryptorchidism on Leydig cell function is less clear. The aim of our study therefore was to investigate the regulation of steroid hormone biosynthesis and, additionally, intercellular communication in the cryptorchid equine testes. MATERIAL AND METHODS: Testes of mature bilaterally cryptorchid horse and healthy stallions were used for this study. The expression of luteinising hormone receptor (LHR), 3beta-hydroxysteroid dehydrogenase (3beta-HSD), aromatase and connexin43 (Cx43) was detected by means of immunohistochemistry. Testosterone and oestradiol levels were measured in testicular homogenates using appropriate radioimmunoassays. RESULTS: In the testes of both normal and cryptorchid stallions, immunostaining for LHR, 3beta-HSD and aromatase was confined to the Leydig cells. In the cryptorchid horse, the intensity of the staining for LHR and 3beta-HSD was weaker, whereas the staining for aromatase was clearly stronger than that of the normal stallion. Radioimmunological analysis revealed disturbance of the androgen-oestrogen balance in the cryptorchid testes. Additionally, in both the seminiferous tubules and interstitial tissue of the cryptorchid a clear reduction of the Cx43 signal was observed. CONCLUSIONS: Decreased expression of LHR and 3beta-HSD and increased expression of aromatase in the cryptorchid testes suggest that hormonal imbalance was caused both by reduced testosterone synthesis and by increased androgen aromatisation. Impaired expression of Cx43 in the seminiferous tubules as well as in the interstitial tissue of the cryptorchid horse indicates that cryptorchidism affects intercellular communication in the testes.  相似文献   

3.
Klinefelter's syndrome (47, XXY) is the most common chromosome aneuploidy in men and is usually characterized by underdeveloped testes and sterility. The aim of the present study was to detect cellular distribution of androgen receptors (AR) and aromatase in testes of patient with KS. The tissue sections were processed for morphological and immunohistochemical staining. Additionally, levels of FSH, LH, PRL, estradiol, and testosterone were measured in the plasma. Morphological analysis revealed a complete absence of spermatogenesis. No germ cells were present in seminiferous tubules. In some tubules, nests of apparently degenerating Sertoli cells were found. In the interstitium, Leydig cell hyperplasia was observed. Using immunohistochemistry, nuclear AR staining was detected in Sertoli cells and peritubular cells, whereas in Leydig cells the staining was exclusively cytoplasmic. The immunostaining of aromatase was detected in the cytoplasm of Sertoli cells and Leydig cells. Increased levels of gonadotropins and decreased level of testosterone concomitantly with the cytoplasmic localization of AR in Leydig cells might contribute to the impaired testicular function in patient with KS.  相似文献   

4.
The gap junction proteins, connexins (Cxs), are present in the testis, and among them, Cx43 play an essential role in spermatogenesis. In the present study, we investigated the testicular expression and regulation of another Cx, Cx33, previously described as a negative regulator of gap junction communication. Cx33 mRNA was present in testis and undetectable in heart, liver, ovary, and uterus. In the mature testis, Cx33 was specifically immunolocalized in the basal compartment of the seminiferous tubules, whereas Cx43 was present in both seminiferous tubule and interstitial compartments. During stages IX and X of spermatogenesis, characterized by Sertoli cell phagocytosis of residual bodies, Cx43 was poorly expressed within seminiferous tubules, while Cx33 signal was strong. To evaluate the role of phagocytosis in the control of Cx33 and Cx43 expression, the effect of LPS was analyzed in the Sertoli cell line 42GPA9. We show herein that phagocytosis activation by LPS concomitantly stimulated Cx33 and inhibited Cx43 mRNA levels. These effects appear to have been mediated through IL-1, because the exposure of Sertoli cells to the IL-1 receptor antagonist partly reversed these effects. IL-1 enhanced and reduced, respectively, the levels of Cx33 and Cx43 mRNA in a time- and dose-dependent manner. These data reveal that Cx33 and Cx43 genes are controlled differently within the testis and suggest that these two Cxs may exert opposite and complementary effects on spermatogenesis. Sertoli cell; germ cell proliferation  相似文献   

5.
Gap junctions are intercellular channels that connect the cytoplasm of adjacent cells, allowing the passage of small molecules (<1 kDa) and thereby the regulation of many different processes. In the male gonad, the most abundant protein that builds gap junctions is connexin 43 (Cx43, GJA1). Specific knock-out of Sertoli cells (SCCx43KO?/?) results in an impaired spermatogenesis up to the Sertoli cell only syndrome. The aim of this study was to compare the testicular expression pattern of the androgen receptor (AR) in wild type (WT) and SCCx43KO?/? mice. In both WT and SCCx43KO?/? testes, the AR staining was restricted to the nuclei of Sertoli, Leydig, and peritubular cells. However, the staining intensity varied between control and mutant mice. In the latter, the AR expression depended on the level of the seminiferous tubule impairment. In tubules with qualitatively normal spermatogenesis, the AR protein expression was similar to that observed in the testes of WT mice. Conversely, seminiferous tubules with an arrest of spermatogenesis at the level of spermatogonial or spermatocyte phase expressed the AR at a lower intensity. In Sertoli cell only tubules (no germ cells in the tubules), the AR immunoreaction was mainly weak or undetectable. Moreover, AR staining was lower in Sertoli and Leydig cells (p < 0.001 and p < 0.05, respectively) of SCCx43KO?/? mice compared to WT mice, as revealed by a semiquantitative analysis. In conclusion, the deletion of Cx43 leads to a partial disruption of the AR signaling pathway, indicating a possible reason for the observed impaired spermatogenesis.  相似文献   

6.
In order to further characterize the Sertoli cell state of differentiation, we investigated the expression of connexin 43 (cx43) protein in the testis of adult men both with normal spermatogenesis and associated with spermatogenic impairment, since cx43 is first expressed during puberty. Cx43 protein was found as a single 43-kDa band on western blots of extracts of normal human testicular material. Cx43 immunoreactivity was generally present between Leydig cells. Within the normal seminiferous epithelium cx43 immunoreactivity was localized between adjacent Sertoli cells, except at stages II and III of the seminiferous epithelial cycle when primary spermatocytes cross from the basal to the adluminal compartment suggesting a stage-dependent Sertoli cell function. While testes with hypospermatogenesis and spermatogenic arrest at the level of round spermatids or spermatocytes revealed a staining pattern similar to that of normal adult testis, the seminiferous tubules showing spermatogenic arrest at the level of spermatogonia and Sertoli-cell-only syndrome were completely immunonegative. We therefore assume that severe spermatogenic impairment is associated with a population of Sertoli cells exhibiting a stage of differentiation deficiency. Accepted: 10 June 1999  相似文献   

7.
8.
Most cells can communicate directly via gap junction channels. Gap junction intercellular communication (GJIC) participates in the control of cell proliferation. Abnormal expression of connexins (Cx), the constitutive proteins of gap junctions, has been associated with a transformed phenotype. In the seminiferous tubules, connexin Cx43 is predominantly expressed by Sertoli cell and germinal cell membranes. We studied Cx43 expression in four testicular cancers (pure seminoma). Cx43 mRNA and protein characterized by RT PCR and Western blot were found to be similar to controls (normal testes) in each case. However, immunofluorscence study of Cx43 protein indicated a cytoplasmic localization with no membrane expression, excluding the participation of Cx43 in GJIC. The significance of this aberrant localization will be discussed in relation to carcinogenesis.  相似文献   

9.
Non seminomatous testicular germ cell tumors (NSTGCTs) express fetal stem cell markers and display dysregulation of connexin 43 expression. Persistence of fetal spermatogonial characteristics was implicated in the emergence of testicular germ cell tumors. The objective of this study was to analyze the tubular architecture in contralateral testes of patients with NSTGCT. We studied morphologic alterations, expression patterns of markers for the integrity of the germinal epithelium (gap junction proteins connexin 43 and 26), as well as of the embryonic markers c-KIT and placental alkaline phosphatase (PlAP), both established markers to detect carcinoma in situ (CIS). In all samples, tubules showing maturation of germ cells up to spermatozoa were observed. In addition, tubules with alterations in tubular architecture and with impaired spermatogenesis occurred. In tubules showing aberrant spermatogenesis, connexin 43 (Cx43) signal was down-regulated and a shift of signal from gap junctions to the cytoplasm occurred. Concomitantly, Cx26 was found highly up-regulated in tubules with incomplete and aberrant germ cell maturation. All testes exhibited single spermatogonia with positive reaction for c-KIT and a significant positive correlation was found between the mean number of c-KIT positive spermatogonia per tubule and the percentage of tubules presenting severely impaired spermatogenesis. Our data show alterations of the normal architecture of the germinal epithelium and disturbances of spermatogenesis in the contralateral testes of patients with NSTGCT in all cases evaluated. The concomitant occurrence of c-KIT positive spermatogonia and defects in tubular architecture is in line with the hypothesis that patients with NSTGCT suffer from disturbed germ cell development.  相似文献   

10.
In human testis, gap junctions containing connexin(Cx)43 are located within the seminiferous epithelium between Sertoli cells and between Sertoli and germ cells. Cx43 is known to play a role in the differentiation and proliferation of these cell types. It can further be associated with human seminoma development. The dog has been proposed as a model for studies of the male reproductive system, because of the frequent occurrence of testicular neoplasms. Thus, we investigated Cx43-mRNA and -protein expression in testes of normal prepubertal dogs, adult dogs, and in canine testicular tumors. Sertoli cells in prepubertal cords express Cx43 mRNA, but do synthesize only less Cx43 protein. Within the seminiferous tubules, Cx43 mRNA was detected in Sertoli cells, spermatogonia, and spermatocytes. Cx43 protein was mainly present in the basal compartment. In canine testicular tumors Cx43 mRNA was detectable in both seminoma and neoplastic Sertoli cells, whereas Cx43 protein was only found in neoplastic Sertoli cells. Our data indicate that Cx43 is regulated differentially in testicular tumors and that alterations of Cx43 expression may be involved in the pathogenesis of canine testicular malignancies. This study represents the first morphological work on the spatiotemporal expression pattern of Cx43 in normal and neoplastic canine testis.  相似文献   

11.
The present study was undertaken (1) to document structural and functional changes in the testes of seasonally breeding woodchuck during active and inactive states of spermatogenesis and (2) to evaluate the ability of exogenous gonadotropins to reinitiate spermatogenesis outside the breeding season. During seasonal gonadal inactivity, there were significant (P less than 0.05) reductions in volumes of several testicular features (testis, seminiferous tubules, tubular lumen, interstitial tissue, individual Leydig cells, Leydig cell nuclei, and Leydig cell cytoplasm) as compared with gonadally active animals. The diameter of the seminiferous tubules was decreased by 26%, and Leydig cell numbers also declined in the regressed testes. These changes were accompanied by a decline in testosterone (T) levels in both plasma and testis, and reduction in epithelial height of accessory reproductive organs. A hormonal regimen was developed that would reinitiate spermatogenesis in captive, sexually quiescent woodchucks. A combination of PMSG and hCG markedly stimulated testicular growth and function and restored spermatogenesis qualitatively. Quantitatively normal spermatogenesis was restored in 2 of 6 treated males. Morphometric analyses revealed substantial increases in seminiferous tubular diameter and in the volume of seminiferous tubules, tubular lumen, total Leydig cells, and individual Leydig cells in the hormone-treated animals. These increased values corresponded to 99, 75, 68, 51, and 200%, respectively, of the values measured in naturally active woodchucks. Leydig cell numbers, however, remained unchanged and approximated only 31% of the number found in naturally active testes. Hormonal stimulation also resulted in a significant rise in serum T as well as in the total content of testicular T, and a marked increase in epithelial height in various accessory reproductive glands. The most effective hormonal protocol for stimulating spermatogenesis was treatment with 12.5 IU of PMSG twice a week for 4 weeks followed by 12.5 IU of PMSG + 25 IU of hCG twice a week for 4 weeks.  相似文献   

12.
The objective of the present studies was to determine the localization of epidermal growth factor (EGF) and the epidermal growth factor receptor (EGFR) in testicular tissue collected from male alpacas at 12 and 24 months of age. In the testes of 12-month-old alpacas, positive staining for EGF was not detected. EGFR was localized to Leydig cells within the 12-month-old alpaca testis, but staining was absent within seminiferous tubules. At 24 months of age, EGF was localized to Leydig cells, peritubular myoid cells, Sertoli cells and germ cells of the alpaca testis, with a preferential adluminal compartment staining within the seminiferous tubules. EGFR was also localized to the Leydig cells, peritubular myoid cells, Sertoli cells and germ cells within the 24-month-old alpaca testis, but staining within the tubules was primarily within the basal compartment. Results indicate distinct temporal and spatial regulation of EGF and EGFR in the alpaca testis and support a potential role for EGF and its related ligands in alpaca testis development and spermatogenesis.  相似文献   

13.
The presence of classical components of the renin-angiotensin system has been demonstrated in the male reproductive tract, mainly in the testes and epididymis. The objective of this study was to verify the localization of angiotensin (Ang)-(1–7) and its receptor Mas in human testis. The study included 12 men with previously proven fertility submitted to orchiectomy for prostate cancer and 20 infertile men submitted to testicular biopsy for infertility work-up, comprising a subgroup with obstructive azoospermia/normal spermatogenesis (n = 8) and another with non-obstructive azoospermia and severely impaired spermatogenesis (n = 12). Testicular tissue samples were processed by immunohistochemistry and real time polymerase chain reaction. Ang-(1–7) was strongly expressed in the interstitial compartment, mainly in Leydig cells, with similar intensity in all groups evaluated. The peptide was also detected in the seminiferous tubules, but with much less intensity compared to interstitial cells. The receptor Mas was equally distributed between interstitial and tubular compartments and was found in all layers of the normal seminiferous epithelium. However, neither Ang-(1–7) nor Mas were detected in the seminiferous tubules of samples with impaired spermatogenesis. The testicular samples of infertile men with impaired spermatogenesis (non-obstructive azoospermia) expressed Mas and ACE2 mRNA at lower concentrations (fold change = 0.06 and 0.04, respectively, P < 0.05) than samples with full spermatogenesis (obstructive azoospermia). This shows, for the first time, the immunolocalization of Ang-(1–7) and its receptor Mas in testes of fertile and infertile men, and suggests that this system may be altered when spermatogenesis is severely impaired.  相似文献   

14.
15.
Antibodies raised against rat hepatic epoxide hydrolase (EC 3.3.2.3) and glutathione S-transferases (EC 2.5.1.18) B, C and E were used to determine the presence and localizations of these epoxide-metabolizing enzymes in testes of sexually immature and mature Wistar and Holtzman rats. Unlabeled antibody peroxidase-antiperoxidase staining for each enzyme was readily detected in rat testes at the light microscopic level. Although significant strain-related differences were not apparent, staining intensity for certain enzymes differed markedly between Leydig cells and seminiferous tubules. Leydig cells of immature and mature rats were stained much more intensely for epoxide hydrolase and glutathione S-transferases B and E than were seminiferous tubules, whereas Sertoli cells, spermatogonia, spermatocytes and spermatids, as well as Leydig cells, were stained intensely by the anti-glutathione S-transferase C. Age-related differences in staining for glutathione S-transferase B were not obvious, while the anti-glutathione S-transferase C stained seminiferous tubules more intensely in immature rats, and antibodies to epoxide hydrolase and glutathione S-transferases C and E stained Leydig cells much more intensely in mature rats. These observations thus demonstrate that testes of both sexually immature and mature rats contain epoxide hydrolase and glutathione S-transferases. Except for glutathione S-transferase C in immature rats, Leydig cells appear to contain much higher levels of enzymes than do seminiferous tubules. During sexual maturation, the testicular level of glutathione S-transferase B appears to remain constant, while levels of epoxide hydrolase and glutathione S-transferases C and E increase within Leydig cells and the level of glutathione S-transferase C decreases within seminiferous tubules.  相似文献   

16.
Expression of calbindin-D28k in developing and growing chick testes.   总被引:2,自引:0,他引:2  
Calbindin, a 28-kDa vitamin D-dependent calcium-binding protein was localized immunohistochemically in developing and growing chick testes. The protein first appeared in the germinal epithelium of developing testes of the eight-day-old embryo and remained therein throughout development. Calbindin was not present in the germinal epithelium after hatching. Calbindin was next detected in the spermatogonia and spermatocytes of one-week-old and growing chick testes. Calbindin-positive spermatogonia and spermatocytes gradually increased in number and staining intensity as the seminiferous tubules further developed. A few interstitial Leydig cells were positive for calbindin from five-week-old and older chicks. Comparison of the time-course of appearance and increase in calbindin content in spermatogonia and spermatocytes with spermatogenesis in chickens suggests that calbindin may be involved in the mitotic process in spermatogonia and spermatocytes.  相似文献   

17.
Summary Calbindin, a 28-kDa vitamin D-dependent calcium-binding protein was localized immunohistochemically in developing and growing chick testes. The protein first appeared in the germinal epithelium of developing testes of the eight-day-old embryo and remained therein throughout development. Calbindin was not present in the germinal epithelium after hatching. Calbindin was next detected in the spermatogonia and spermatocytes of one-week-old and growing chick testes. Calbindin-positive spermatogonia and spermatocytes gradually increased in number and staining intensity as the seminiferous tubules further developed. A few interstitial Leydig cells were positive for calbindin from five-week-old and older chicks. Comparison of the time-course of appearance and increase in calbindin content in spermatogonia and spermatocytes with spermatogenesis in chickens suggests that calbindin may be involved in the mitotic process in spermatogonia and spermatocytes.  相似文献   

18.
Spermatogenesis was examined in testes from 74 dogs of various breeds without clinically detected testicular disease. A modified Johnsen score system was used to determine whether spermatogenesis deteriorates with ageing. The diameter of seminiferous tubules was measured in dogs without testicular disease to examine other possible effects of ageing on tubular performance. There appeared to be no relation between age and these variables. The influence of testicular tumours on spermatogenesis was also investigated in both affected and unaffected testes. The testes of 28 dogs with clinically palpable tumours and 21 dogs with clinically non-palpable tumours were investigated. In cases of unilateral occurrence of a tumour, impairment of spermatogenesis was observed only in the affected testis of dogs with clinically detected tumours. Bilateral occurrence of tumours, whether detected clinically or non-clinically, was associated with severe impairment of spermatogenesis. The prevalence of tumours increased during ageing. Eighty-six per cent of the clinically detected and 57% of the non-clinically detected tumours were found in old dogs. Multiple types of tumour and bilateral occurrence were very common. Seminomas and Leydig cell tumours were more frequent than Sertoli cell tumours. It was concluded that spermatogenesis per se did not decrease during ageing in dogs but the occurrence of testicular tumours increased with ageing and affected spermatogenesis significantly, as reflected by a lower Johnsen score.  相似文献   

19.
Seminiferous tubule differentiation was related to the occurrence of germ cell neoplasia in 38 men, aged 17-47, treated surgically in childhood for cryptorchidism. Tissues from 46 testes obtained from biopsies taken as a neoplastic preventive procedure or whole testes removed because of GCT were evaluated quantitatively. Paraffin sections were treated with antibodies against placental like alkaline phosphatase (PLAP), a marker of germ cell neoplasia, and cytokeratin 18 (CK-18), a marker of immature Sertoli cells. Quality of spermatogenesis and number Leydig cells were assessed with a score count. Seminiferous tubules diameter, thickness of basal membrane and size of intertubular spaces were measured with image analysis software. In 17.4% of testes spermatogenesis was normal (9.9 points) (N) and neoplasia was not found there. In the other 38 specimens (83%) spermatogenesis was abnormal (A). When spermatogenesis was arrested or when germ cells were absent (3.7+/-1.8 points), neoplastic lesions were found in 13.1% of the specimens. In A group 5.1+/-7.1% of tubules contained immature Sertoli cells, while in N they were not found. Tubular diameter was significantly lower in A (161.5+/-31.8 microm) than in N (184.6+/-24.3 microm) and the percentage of seminiferous tubules with the thickening of tubular basal membrane was also greater in A. Intertubular spaces were significantly larger in A (49.9+/-18.6%) in comparison to N group (32.6+/-12.5%). Mean number of Leydig cells was similar in both groups. To conclude, in most of the formerly cryptorchid testes, despite surgical treatment, impaired seminiferous tubules differentiation is predominant. Germ cell neoplasia is present in testes with retarded seminiferous tubules differentiation. Retardation of seminiferous tubule differentiation consists of inhibited spermatogenesis, presence of tubules with immature Sertoli cells, decreased tubular diameter, increased thickness of basal membrane and enlarged intertubular spaces. Examination of testicular biopsy with respect to the state of seminiferous tubule differentiation may be helpful to predict the appearance of germ cell neoplasia in adult men with cryptorchidism in anamnesis. Orchiopexy of cryptorchid testes may not prevent the occurrence of features of testicular dysgenesis and the associated germ cell neoplasia.  相似文献   

20.
 Using RT-PCR, western blot and enzyme and fluorescence immunocytochemical techniques, the three isoforms of neurofilament proteins (NFPs), namely NF-L (NFP-68 kDa), NF-M (NFP-160 kDa) and NF-H (NFP-200 kDa) were found in Sertoli and Leydig cells of human testes. RT-PCR showed specific for the three NFP fragments in testicular tissue, in isolated seminiferous tubules and in isolated Leydig cells. In protein preparations from the same testicular components, western blot analysis detected bands with molecular weights characteristic for NF-H, NF-M and NF-L. Application of immunofluorescence and immunoenzyme methods on cryostat and paraffin sections resulted in differences in the staining pattern in Sertoli cells and Leydig cells. In these cells, the NFPs showed predominantly a perinuclear location from which bundles emerge that were directed towards the basal, apical and lateral extensions of the Sertoli cells as well as the periphery of Leydig cells. NF-H coexists with vimentin-type filaments as seen by dual staining and staining of conseccutive serial sections of material embedded in paraffin. In Sertoli cells, vimentin and NF-H showed distinct dynamic changes depending on the stage of spermatogenesis and some structural variations of seminiferous tubules. Although in some tubules both vimentin and NF-H immunoreactivity was present at high levels, in the Sertoli cells from most individuals an inverse relationship in the staining intensity of vimentin and NF-H was observed. The strongest NF-H immunoreactivity was detected in Sertoli cells associated with stage 3 spermatids, whereas vimentin immunoreactivity was most abundant in association with stage 5 spermatids. The leydig cells did not show functional changes of the NFP immunoreactivity. The results obtained provide new evidence for the heterogeneous phenotype of human Sertoli cells and raise the question of their exact nature and origin. Accepted: 17 November 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号