首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human complement factor H-related protein (CFHR) 4 belongs to the factor H family of plasma glycoproteins that are composed of short consensus repeat (SCR) domains. Although factor H is a well known inhibitor of the alternative complement pathway, the functions of the CFHR proteins are poorly understood. CFHR4 lacks SCRs homologous to the complement inhibitory domains of factor H and, accordingly, has no significant complement regulatory activities. We have previously shown that CFHR4 binds C-reactive protein via its most N-terminal SCR, which leads to classical complement pathway activation. CFHR4 binds C3b via its C terminus, but the significance of this interaction is unclear. Therefore, we set out to clarify the functional relevance of C3b binding by CFHR4. Here, we report a novel role for CFHR4 in the complement system. CFHR4 serves as a platform for the assembly of an alternative pathway C3 convertase by binding C3b. This is based on the sustained ability of CFHR4-bound C3b to bind factor B and properdin, leading to an active convertase that generates C3a and C3b from C3. The CFHR4-C3bBb convertase is less sensitive to the factor H-mediated decay compared with the C3bBb convertase. CFHR4 mutants containing exchanges of conserved residues within the C-terminal C3b-binding site showed significantly reduced C3b binding and alternative pathway complement activation. In conclusion, our results suggest that, in contrast to the complement inhibitor factor H, CFHR4 acts as an enhancer of opsonization by promoting complement activation.  相似文献   

2.
Complement is an essential component of innate immunity and a major trigger of inflammatory responses. A critical step in complement activation is the formation of the C3 convertase of the alternative pathway (AP), a labile bimolecular complex formed by activated fragments of the C3 and factor B components that is fundamental to provide exponential amplification of the initial complement trigger. Regulation of the AP C3 convertase is essential to maintain complement homeostasis in plasma and to protect host cells and tissues from damage by complement. During the last decade, several studies have associated genetic variations in components and regulators of the AP C3 convertase with a number of chronic inflammatory diseases and susceptibility to infection. The functional characterization of these protein variants has helped to decipher the critical pathogenic mechanisms involved in some of these complement related disorders. In addition, these functional data together with recent 3D structures of the AP C3 convertase have provided fundamental insights into the assembly, activation and regulation of the AP C3 convertase.  相似文献   

3.
Ixodes scapularis salivary protein 20 (Salp20) is a member of the Ixodes scapularis anti-complement protein-like family of tick salivary proteins that inhibit the alternative complement pathway. In this study, we demonstrate that the target of Salp20 is properdin. Properdin is a natural, positive regulator of the alternative pathway that binds to the C3 convertase, stabilizing the molecule. Salp20 directly bound to and displaced properdin from the C3 convertase. Displacement of properdin accelerated the decay of the C3 convertase, leading to inhibition of the alternative pathway. S20NS is distinct from known decay accelerating factors, such as decay accelerating factor, complement receptor 1, and factor H, which directly interact with either C3b or cleaved factor B.  相似文献   

4.
Factor H of the human complement system exhibits an unusual circular dichroism spectrum. The CD spectrum of Factor H exhibits a positive extreme at 230 nm and a negative extreme at 190 nm. No apparent alpha-helical or beta-sheet conformations were present in the native protein structure. However, when the disulfide bridges are reduced, followed either by reoxidation or alkylation, the structure of Factor H is modified so that it now exhibits conventional protein secondary structure as determined from its CD spectra in the far ultraviolet region. Factor H also fails to mediate its regulatory function of inhibiting the alternative pathway convertase once the disulfides have been ruptured and conformational rearrangement has occurred. CD studies indicate that minor conformational changes take place when Factor H and C3b associate in free solution.  相似文献   

5.
Complement is a powerful host defense system that contributes to both innate and acquired immunity. There are three pathways of complement activation, the classical pathway, lectin pathway, and alternative pathway. Each generates a C3 convertase, a serine protease that cleaves the central complement protein, C3. Nearly all the biological consequences of complement are dependent on the resulting cleavage products. Properdin is a positive regulator of complement activation that stabilizes the alternative pathway convertases (C3bBb). Properdin is composed of multiple identical protein subunits, with each subunit carrying a separate ligand-binding site. Previous reports suggest that properdin function depends on multiple interactions between its subunits with its ligands. In this study I used surface plasmon resonance assays to examine properdin interactions with C3b and factor B. I demonstrated that properdin promotes the association of C3b with factor B and provides a focal point for the assembly of C3bBb on a surface. I also found that properdin binds to preformed alternative pathway C3 convertases. These findings support a model in which properdin, bound to a target surface via C3b, iC3b, or other ligands, can use its unoccupied C3b-binding sites as receptors for nascent C3b, bystander C3b, or pre-formed C3bB and C3bBb complexes. New C3bP and C3bBP intermediates can lead to in situ assembly of C3bBbP. The full stabilizing effect of properdin on C3bBb would be attained as properdin binds more than one ligand at a time, forming a lattice of properdin: ligand interactions bound to a surface scaffold.  相似文献   

6.
The fluid phase C3 convertase of the alternative pathway of human complement activation has been constructed from the isolated C3 component and from purified factors B and D. The enzyme was able to activate the isolated components C4 and C2 in the presence of C4 but had no effect on C2 in the absence of C4. The C4 and C2 activation was monitored by the loss of their hemolytic activity during the incubation with the alternative fluid phase C3 convertase. The activation of C4 and C2 components by the membrane-bound alternative C3 convertase formed on red cells (EC3bBb) was followed by the formation of C3 convertase of the classic pathway--EC4b2a. This resulted in the enhancement of hemolysis.  相似文献   

7.
Vaccinia virus encodes a homolog of the human complement regulators named vaccinia virus complement control protein (VCP). It is composed of four contiguous complement control protein (CCP) domains. Previously, VCP has been shown to bind to C3b and C4b and to inactivate the classical and alternative pathway C3 convertases by accelerating the decay of the classical pathway C3 convertase and (to a limited extent) the alternative pathway C3 convertase, as well as by supporting the factor I-mediated inactivation of C3b and C4b (the subunits of C3 convertases). In this study, we have mapped the CCP domains of VCP important for its cofactor activities, decay-accelerating activities, and binding to the target proteins by utilizing a series of deletion mutants. Our data indicate the following. (i) CCPs 1 to 3 are essential for cofactor activity for C3b and C4b; however, CCP 4 also contributes to the optimal activity. (ii) CCPs 1 to 2 are enough to mediate the classical pathway decay-accelerating activity but show very minimal activity, and all the four CCPs are necessary for its efficient activity. (iii) CCPs 2 to 4 mediate the alternative pathway decay-accelerating activity. (iv) CCPs 1 to 3 are required for binding to C3b and C4b, but the presence of CCP 4 enhances the affinity for both the target proteins. These results together demonstrate that the entire length of the protein is required for VCP's various functional activities and suggests why the four-domain structure of viral CCP is conserved in poxviruses.  相似文献   

8.
C5 convertase of the alternative complement pathway is a trimolecular complex consisting of two molecules of C3b and one molecule of Bb. We previously proposed a model of the alternative pathway C5 convertase in which the second C3b molecule binds covalently to the first C3b molecule bearing Bb, and the C5 molecule binds to each C3b molecule of the covalently linked C3b dimer, resulting in its appropriate presentation to the catalytic site on Bb. In the present study, we purified the covalently linked C3b dimer and reconstituted the C5 convertase with the C3b dimer and factors B and D to obtain evidence in support of this model. An insoluble glucan, OMZ-176, was incubated with human serum to activate the alternative pathway and to allow formation of the alternative C5 convertase on the surface of the glucan, and the glucan bearing the C5 convertase was then solubilized by incubation with glucosidases. In this way, the covalently linked C3b dimer was obtained in solution without using a detergent. The C3b dimer was then separated from enzymes, C3b monomer, C3b oligomer, and other materials by chromatographies. SDS-PAGE analysis demonstrated that the purified C3b dimer had intact alpha'-chains. Alternative pathway C5 convertase was reconstituted when the isolated C3b dimer was incubated with factors B and D. The presence of P enhanced C5 convertase formation threefold. These results support the notions that the formation of the covalently linked C3b dimer is a general phenomenon associated with activation of the alternative pathway and that the C3b dimer acts as a part of the C5 convertase.  相似文献   

9.
The capacity of isolated human glomerular basement membrane (GBM) to initiate surface activation of the human alternative complement pathway was defined by the deposition of C3b under circumstances in which the classical complement pathway was inoperative. The deposition of C3b from normal or C2-deficient serum was time- and magnesium-dependent, implying a role for the alternative pathway. Normal human serum rendered deficient in D did not sustain C3b deposition until its reconstitution with D, indicating an absolute requirement for a protein unique to the alternative pathway and essential to the cleavage activation of the C3 amplification convertase of that pathway. The capacity of the excess control proteins H and I to prevent C3b deposition onto GBM incubated in C2-deficient serum provided further evidence for the direct activation of the alternative pathway in this system. The use of radiolabeled monoclonal antibody to localize the deposited C3b afforded specificity and quantitation of about 100 ng of C3b/mg of GBM. Immunohistochemical analysis with a monoclonal antibody to detect C3b demonstrated its deposition to be confined to the epithelial surface of the GBM.  相似文献   

10.
Characterization of the active sites in decay-accelerating factor   总被引:3,自引:0,他引:3  
Decay-accelerating factor (DAF) is a complement regulator that dissociates autologous C3 convertases, which assemble on self cell surfaces. Its activity resides in the last three of its four complement control protein repeats (CCP2-4). Previous modeling on the nuclear magnetic resonance structure of CCP15-16 in the serum C3 convertase regulator factor H proposed a positively charged surface area on CCP2 extending into CCP3, and hydrophobic moieties between CCPs 2 and 3 as being primary convertase-interactive sites. To map the residues providing for the activity of DAF, we analyzed the functions of 31 primarily alanine substitution mutants based in part on this model. Replacing R69, R96, R100, and K127 in the positively charged CCP2-3 groove or hydrophobic F148 and L171 in CCP3 markedly impaired the function of DAF in both activation pathways. Significantly, mutations of K126 and F169 and of R206 and R212 in downstream CCP4 selectively reduced alternative pathway activity without affecting classical pathway activity. Rhesus macaque DAF has all the above human critical residues except for F169, which is an L, and its CCPs exhibited full activity against the human classical pathway C3 convertase. The recombinants whose function was preferentially impaired against the alternative pathway C3bBb compared with the classical pathway C4b2a were tested in classical pathway C5 convertase (C4b2a3b) assays. The effects on C4b2a and C4b2a3b were comparable, indicating that DAF functions similarly on the two enzymes. When CCP2-3 of DAF were oriented according to the crystal structure of CCP1-2 of membrane cofactor protein, the essential residues formed a contiguous region, suggesting a similar spatial relationship.  相似文献   

11.
The complement regulatory protein decay accelerating factor (DAF; CD55), inhibits the alternative complement pathway by accelerating decay of the convertase enzymes formed by C3b and factor B. We show, using surface plasmon resonance, that in the absence of Mg(2+), DAF binds C3b, factor B, and the Bb subunit with low affinity (K(D), 14 +/- 0.1, 44 +/- 10, and 20 +/- 7 microm, respectively). In the presence of Mg(2+), DAF bound Bb or the von Willebrand factor type A subunit of Bb with higher affinities (K(D), 1.3 +/- 0.5 and 2.2 +/- 0.1 microm, respectively). Interaction with the proenzyme C3bB was investigated by flowing factor B across a C3b-coated surface in the absence of factor D. The dissociation rate was dependent on the time of incubation, suggesting that a time-dependent conformational transition stabilized the C3b-factor B interaction. Activation by factor D (forming C3bBb) increased the complex half-life; however, the enzyme became susceptible to rapid decay by DAF, unlike the proenzyme, which was unaffected. A convertase assembled with cobra venom factor and Bb was decayed by DAF, albeit far less efficiently than C3bBb. DAF did not bind cobra venom factor, implying that Bb decay is accelerated, at least in part, through DAF binding of this subunit. It is likely that DAF binds the complex with higher affinity/avidity, promoting a conformational change in either or both subunits accelerating decay. Such analysis of component and regulator interactions will inform our understanding of inhibitory mechanisms and the ways in which regulatory proteins cooperate to control the complement cascade.  相似文献   

12.
Ma Z  Zhang H  Zheng J  Li Y  Yi L  Fan H  Lu C 《PloS one》2012,7(2):e32099
Streptococcus equi ssp. zooepidemicus (S. zooepidemicus, S.z) is one of the common pathogens that can cause septicemia, meningitis, and mammitis in domesticated species. M-like protein (SzP) is an important virulence factor of S. zooepidemicus and contributes to bacterial infection and antiphagocytosis. The interaction between SzP of S. zooepidemicus and porcine thioredoxin (TRX) was identified by the yeast two-hybrid and further confirmed by co-immunoprecipitation. SzP interacted with both reduced and the oxidized forms of TRX without inhibiting TRX activity. Membrane anchored SzP was able to recruit TRX to the surface, which would facilitate the antiphagocytosis of the bacteria. Further experiments revealed that TRX regulated the alternative complement pathway by inhibiting C3 convertase activity and associating with factor H (FH). TRX alone inhibited C3 cleavage and C3a production, and the inhibitory effect was additive when FH was also present. TRX inhibited C3 deposition on the bacterial surface when it was recruited by SzP. These new findings indicated that S. zooepidemicus used SzP to recruit TRX and regulated the alternative complement pathways to evade the host immune phagocytosis.  相似文献   

13.
Rhesus rhadinovirus (RRV) is currently the closest known, fully sequenced homolog of human Kaposi sarcoma-associated herpesvirus. Both these viruses encode complement inhibitors as follows: Kaposi sarcoma-associated herpesvirus-complement control protein (KCP) and RRV-complement control protein (RCP). Previously we characterized in detail the functional properties of KCP as a complement inhibitor. Here, we performed comparative analyses for two variants of RCP protein, encoded by RRV strains H26-95 and 17577. Both RCP variants and KCP inhibited human and rhesus complement when tested in hemolytic assays measuring all steps of activation via the classical and the alternative pathway. RCP variants from both RRV strains supported C3b and C4b degradation by factor I and decay acceleration of the classical C3 convertase, similar to KCP. Additionally, the 17577 RCP variant accelerated decay of the alternative C3 convertase, which was not seen for KCP. In contrast to KCP, RCP showed no affinity to heparin and is the first described complement inhibitor in which the binding site for C3b/C4b does not interact with heparin. Molecular modeling shows a structural disruption in the region of RCP that corresponds to the KCP-heparin-binding site. This makes RRV a superior model for future in vivo investigations of complement evasion, as RCP does not play a supportive role in viral attachment as KCP does.  相似文献   

14.
C3 and C5 convertases are central stages of the complement cascade since they converge the different initiation pathways, augment complement activation by an amplification loop and lead to a common terminal pathway resulting in the formation of the membrane attack complex. Several complement inhibitors attenuate convertase formation and/or accelerate dissociation of convertase complexes. Functional assays used to study these processes are often performed using purified complement components, from which enzymatic complexes are reconstituted on the surface of erythrocytes or artificial matrices. This strategy enables identification of individual interactions between convertase components and putative regulators but carries an inherent risk of detecting non-physiological interactions that would not occur in a milieu of whole serum. Here we describe a novel, alternative method based on C3 or C5-depleted sera, which support activation of the complement cascade up to the desired stages of convertases. This approach allows fast and simple assessment of the influence of putative regulators on convertase formation and stability. As an example of practical utility of the assay, we performed studies on thioredoxin-1 in order to clarify the mechanism of its influence on complement convertases.  相似文献   

15.
Decay-accelerating factor (DAF; CD55) inhibits the complement (C) cascade by dissociating the multimolecular C3 convertase enzymes central to amplification. We have previously demonstrated using surface plasmon resonance (Biacore International) that DAF mediates decay of the alternative pathway C3 convertase, C3bBb, but not of the inactive proenzyme, C3bB, and have shown that the major site of interaction is with the larger cleavage subunit factor B (Bb) subunit. In this study, we dissect these interactions and demonstrate that the second short consensus repeat (SCR) domain of DAF (SCR2) interacts only with Bb, whereas SCR4 interacts with C3b. Despite earlier studies that found SCR3 to be critical to DAF activity, we find that SCR3 does not directly interact with either subunit. Furthermore, we demonstrate that properdin, a positive regulator of the alternative pathway, does not directly interact with DAF. Extending from studies of binding to decay-accelerating activity, we show that truncated forms of DAF consisting of SCRs 2 and 3 bind the convertase stably via SCR2-Bb interactions but have little functional activity. In contrast, an SCR34 construct mediates decay acceleration, presumably due to SCR4-C3b interactions demonstrated above, because SCR3 alone has no binding or functional effect. We propose that DAF interacts with C3bBb through major sites in SCR2 and SCR4. Binding to Bb via SCR2 increases avidity of binding, concentrating DAF on the active convertase, whereas more transient interactions through SCR4 with C3b directly mediate decay acceleration. These data provide new insights into the mechanisms involved in C3 convertase decay by DAF.  相似文献   

16.
The alternative pathway of complement is an important defense against pathogens and in tick rejection reactions. The tick Ixodes scapularis is able to feed repeatedly on its natural host and has a salivary anticomplement activity that presumably facilitates feeding. In this study, we purified and then obtained the amino-terminal sequence of the I. scapularis salivary anticomplement (Isac). We found a full-length clone coding for Isac by random screening of a salivary gland cDNA library. Expressing Isac cDNA in COS cells reproduced the activity found in tick saliva, namely, inhibition of rabbit erythrocyte lysis by human serum in the presence of Mg(2+) and EGTA, inhibition of C3b binding to agarose in the presence of Mg(2+) and EGTA, and acceleration of factor Bb uncoupling from the C3 convertase generated by the alternative pathway. Recombinant Isac had no effect on the recalcification time of human platelet-poor plasma or in the classical complement pathway, indicating that it is a specific inhibitor similar to the regulators of complement activation of the alternative pathway such as factor H. Isac, however, has no similarity to any protein in the GenBank(TM) data base, indicating that it is a novel and relatively small (18.5 kDa) anticomplement molecule.  相似文献   

17.
Eosinophil granules contain several cationic proteins that mediate tissue damage in allergic disease. The present study examined the capacity and mechanisms by which these cationic proteins regulate activity of the alternative pathway of C. Eosinophil peroxidase and eosinophil cationic protein inhibited formation of cell-bound alternative pathway C3 convertase, causing 50% inhibition of lysis at about 0.19 and 0.75 microgram/10(7) cellular intermediates, respectively. Major basic protein inhibited alternative pathway C3 activity by only 19% at 1.5 micrograms/10(7) cellular intermediates. Eosinophil-derived neurotoxin had no activity on the alternative pathway. The eosinophil granule proteins were examined for the mechanism by which they inhibited alternative pathway activity. Eosinophil peroxidase and major basic protein inhibited fluid phase factor B consumption in a reaction mixture that also contained factors D and C3b, eosinophil-derived neurotoxin had no activity on factor B consumption, and eosinophil cationic protein consumed factor B in the absence of C3b and factor D. Both eosinophil cationic protein and eosinophil peroxidase enhanced the decay of preformed alternative pathway convertase. Lysis of EAC4b,3b cellular intermediates formed to contain a low surface amount of C3b was more inhibited than was lysis of cells formed with a standard amount of C3b on the surface. This suggests that these eosinophil proteins acted predominantly on C3b to regulate alternative pathway activity. We also found that none of the eosinophil granule cationic proteins had any effect on later events after the formation of the C3 convertase. We conclude that although eosinophil-derived neurotoxin (isoelectric pH value (pI) = 8.9) does not regulate alternative pathway activity, the more highly charged eosinophil granule cationic proteins--major basic protein (pI = 10.9), eosinophil cationic protein (pI = 10.8), and eosinophil peroxidase (pI = 10.8)--do share the capacity to regulate C activity and may exert this activity in vivo.  相似文献   

18.
Complement factor B is a 90 kDa protein consisting of three domains: a three-module complement control protein, a von Willebrand factor A domain, and a C-terminal serine protease (SP) domain that adopts a default inactive (zymogen) conformation. The interaction between factor B and pathogen-bound C3b is mediated by its A domain, triggering a conformational change in factor B that ultimately creates the "C3 convertase" of the alternative complement pathway. We report the crystal structure of the A domain from factor B and show that it contains an integrin-like MIDAS motif that adopts the "open" conformation typical of integrin-ligand complexes, with an acidic residue (provided by a fortuitous crystal contact) completing the coordination of the metal ion. Modeling studies indicate that the factor B A domain can also adopt the closed conformation, supporting the hypothesis that an "integrin-like switch" is conserved in complement proteins and perhaps in 60 other A domains found within the human proteome.  相似文献   

19.
Atypical hemolytic uremic syndrome has been associated with dysregulation of the alternative complement pathway. In this study, a novel heterozygous C3 mutation was identified in a factor B-binding region in exon 41, V1636A (4973 T > C). The mutation was found in three family members affected with late-onset atypical hemolytic uremic syndrome and symptoms of glomerulonephritis. All three patients exhibited increased complement activation detected by decreased C3 levels and glomerular C3 deposits. Platelets from two of the patients had C3 and C9 deposits on the cell surface. Patient sera exhibited more C3 cleavage and higher levels of C3a. The C3 mutation resulted in increased C3 binding to factor B and increased net formation of the C3 convertase, even after decay induced by decay-accelerating factor and factor H, as assayed by surface plasmon resonance. Patient sera incubated with washed human platelets induced more C3 and C9 deposition on the cell surface in comparison with normal sera. More C3a was released into serum over time when washed platelets were exposed to patient sera. Results regarding C3 and C9 deposition on washed platelets were confirmed using purified patient C3 in C3-depleted serum. The results indicated enhanced convertase formation leading to increased complement activation on cell surfaces. Previously described C3 mutations showed loss of function with regard to C3 binding to complement regulators. To our knowledge, this study presents the first known C3 mutation inducing increased formation of the C3 convertase, thus explaining enhanced activation of the alternative pathway of complement.  相似文献   

20.
Regulation by H of formation of the C3 and C5 alternative pathway convertases of complement on cells is dependent on such chemical characteristics of the cell surfaces as their membrane content in sialic acid. Properdin-stabilized C5 convertase sites were assembled on the non-activating cells of the alternative pathway, sheep erythrocytes (Es), and on the activating cells, desialated Es and rabbit erythrocytes (Er). C5 hemolytic sites were revealed by incubation of the convertase-bearing cells with limiting C5 and excess C6-C9. H inhibited generation of C5 hemolytic sites in a dose-related fashion on Es, Er, and desialated Es at molar ratios of H/C5 of 0.03 to 0.5. H similarly inhibited C5 utilization by the cell-bound C5 convertase on Es and desialated Es regardless of the cell membrane sialic acid content; however, H was three to five times less effective on Er. Kinetic experiments also suggested that C5 hemolytic sites are generated more rapidly on Er than on Es and desialated Es. The inhibition effect of H was independent of the number of C5 convertase sites per cell on all cell types; two to three times more residual hemolytic sites were found on convertase-bearing Es that had been incubated with C5 and H as compared with cells that had been decayed by H before incubation with C5. Furthermore, H also inhibited C5 interaction with a preformed classical pathway C5 convertase. These results suggest that H interacts with C5 so as to alter C5 binding and/or cleavage by the cell-bound C5 alternative pathway convertase. Sialic acid-independent modulation by H of C5 cleavage by the C5 convertase represents an additional regulatory step in the activation of the human alternative complement pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号